

Agriculture and Agriculture et Agri-Food Canada Agroalimentaire Canada

Summary of Resources and Land Use Issues Related to Riparian Areas

in the

Rat-Marsh Rivers Watershed Study Area

Agriculture and Agri-Food Canada - Prairie Farm Rehabilitation Administration (AAFC-PFRA) Winnipeg, MB

2005

Manitoba Rural Adaptation Council Inc. Advancing canadian Agriculture and Agri-Food

Preface

This report is one of a series of watershed summary reports completed for the Agriculture Environmental Sustainable Initiative's Riparian Areas: Planning and Priority Setting project. Due to scale and data accuracy limitations, these reports do not replace the need for site-specific analysis; rather, they serve as a generalized guide for overall planning purposes on a watershed basis. These reports are available in .pdf format on the Manitoba Riparian Health Council's website (www.riparianhealth.ca), or can be obtained by contacting:

Agriculture and Agri-Food Canada - Prairie Farm Rehabilitation Administration Prairies East Region, 200-303 Main Street Winnipeg, Mb R3C 3G7 Tel: (204)983-2243 Fax: (204)983-2178

Information contained in this report may be quoted and utilized with appropriate reference to the originating agency. The authors and originating agency assume no responsibility for the misuse, alteration, re-packaging, or re-interpretation of the information.

Citation:

Agriculture and Agri-Food Canada - Prairie Farm Rehabilitation Administration, Prairies East Region. 2004. Summary of Resources and Land Use Issues Related to Riparian Areas in the Rat-Marsh Rivers Watershed Study Area. Agriculture and Agri-Food Canada - Prairie Farm Rehabilitation Administration, Winnipeg.

Acknowledgements:

Funding for this project was provided by the Manitoba Rural Adaptation Council. The following individuals from AAFC-PFRA contributed significantly to the compilation, interpretation and derivation of the information contained in this report.

Professional expertise was provided by:

P. Michiels, T. Horechko, J. Fitzmaurice, J. Powers, R. Lewis, T. Scott, N. Mischuk, J. Tokarchuk

Technical support was provided by:

C. Wyrzykowski, K. Gottfried, R. Aquino, S. Garrick, S. Solivar, J. Bergthorson, N. Diehl, R. Rosario

Table of Contents

List of Figures
List of Tables
Background5
Importance of Riparian Areas6
Watershed Overview7
Climate and Ecology11
Water Resources14
Hydrology14
Water Quality15
Land Cover17
Soil Resources
Soil Surface Texture
Soil Drainage
Agricultural Capability27
Water Erosion Risk
Agricultural Activities
Watershed Considerations
Soils and Land Cover
Riparian Areas
Farm Management Practices42
Agriculture Production Intensity43
Summary
Future Steps

References	51
Glossary	54
Appendix A	55
Appendix B	56
Appendix C	58
Appendix D	61

List of Figures

Figure 1.0 Sub-watersheds within the Rat-Marsh Rivers Watershed Study Area (water
shown at 1:50,000 scale)
Figure 2.0 Digital elevation model of the Rat-Marsh Rivers Watershed Study Area (radar
image was obtained by the Shuttle Radar Topography Mission, 2000)
Figure 3.0 Rural municipalities in the Rat-Marsh Rivers Watershed Study Area10
Figure 4.0 Ecoregions and ecodistricts in the Rat-Marsh Rivers Watershed Study Area13
Figure 5.0 Hydrometric gauging and water quality sampling stations in the Rat-Marsh
Rivers Watershed Study Area16
Figure 6.0 2001 Land cover in the Rat-Marsh Rivers Watershed Study Area19
Figure 7.0 1994 Land cover in the Rat-Marsh Rivers Watershed Study Area20
Figure 8.0 Soil surface texture in the Rat-Marsh Rivers Watershed Study Area23
Figure 9.0 Soil drainage classes for the Rat-Marsh Rivers Watershed Study Area26
Figure 10.0 Agricultural capability class in the Rat-Marsh Rivers Watershed Study Area30
Figure 11.0 Water erosion risk in the Rat-Marsh Rivers Watershed Study Area32
Figure 12.0 Density of shoreline in the Rat-Marsh Rivers Watershed Study Area, as
determined by the 1:50,000 NTS data sheets40
Figure 13.0 Livestock density in the Rat-Marsh Rivers Watershed Study Area, as a
percentage of the highest value in Manitoba of 0.98 Animal Units/ha (as reported in the
2001 Census of Agriculture)45
Figure 14.0 Level of fertilizer use in the Rat-Marsh Rivers Watershed Study Area in 2000,
as a percentage of the highest value in Manitoba of \$101.23/ha (as reported in the 2001
Census of Agriculture)47
Figure 15.0 Level of pesticide use in the Rat-Marsh Rivers Watershed Study Area in 2000,
as a percentage of the highest value in Manitoba of \$81.65/ha (as reported in the 2001
Census of Agriculture)48

List of Tables

Table 1.0 Climate data for ecoregions within the Rat-Marsh Rivers Watershed Study Area
Table 2.0 Mean stream flow on the Rat and Marsh Rivers as recorded by hydrometric
station 05OE001, located north of St. Pierre-Jolys, Manitoba (1912-2002), and
hydrometric station 05OE010, located upstream of the Rat and Marsh River
convergence (1971-2002)14
Table 3.0 Land cover (2001) and the general trend over the seven-year period (1994 – 2001)
in the Rat-Marsh Rivers Watershed Study Area18
Table 4.0 Soil surface texture in the Rat-Marsh Rivers Watershed Study Area
Table 5.0 Soil drainage classes for the Rat-Marsh Rivers Watershed Study Area25
Table 6.0 Canada Land Inventory (CLI) class descriptions 27
Table 7.0 Canada Land Inventory (CLI) subclass descriptions 28
Table 8.0 Agricultural capability in the Rat-Marsh Rivers Watershed Study Area and the
major type of limitations within each class29
Table 9.0 Water erosion risk classes in the Rat-Marsh Rivers Watershed Study Area31
Table 10.0 Summary of cultivated crops, including crops cut for hay (silage, green feed,
etc.) grown by farmers within in the Rat-Marsh Rivers Watershed Study Area (2001
Census)
Table 11.0 Summary of tillage practices in the Rat-Marsh Rivers Watershed Study Area
(2001 Census)
Table 12.0 Summary of the conservation practices carried out in the Rat-Marsh Rivers
Watershed Study Area (2001 Census)35
Table 13.0 Livestock distribution in the Rat-Marsh Rivers Watershed Study Area (2001)
Census)
Table 14.0 Summary of manure application in the Rat-Marsh Rivers Watershed Study
Area in 2000 (from 2001 Census of Agriculture)
Table 15.0 Summary of shoreline density in the Rat-Marsh Rivers Watershed Study Area
(includes permanent and intermittent streams and waterbodies)
Table 16.0 Summary of land cover in a 50 m buffer around all waterbodies and on either
side of watercourses in the Rat-Marsh Rivers Watershed Study Area (using 2001
satellite imagery and 1:50,000 NTS water layers)42
Table 17.0 Comparison of livestock density in the Rat-Marsh Rivers Watershed Study
Area using 2001 Census livestock numbers converted to Animal Units ¹ 44
Table 18.0 – Comparison of crop production intensity in the Rat-Marsh Rivers Watershed
Study Area using dollars spent on pesticides and fertilizers in 2000 (as reported in the
2001 Census of Agriculture)46

Background

Riparian areas play an important role in surface water quality and their ability to carry out this function can be affected by anthropogenic activities on the landscape. Agriculture is only one component, with other human activities such as industry, recreation and residences contributing to degraded riparian areas. The intent of this report is to be a first step towards addressing the issue of riparian health, with respect to agriculture, in the watershed study area. By providing information on the land resources and the agricultural activities in the study area, a better understanding of the issue can be obtained which will assist towards better planning and priority setting by local decision makers, land use planners and policy decision-makers. While this reports studies the agricultural aspect of the watershed study area, in a true watershed study, all factors of activities of all sectors must be considered.

This project is a component of the Agriculture and Agri-Food Canada – Prairie Farm Rehabilitation Administration (AAFC-PFRA) Agricultural Riparian Areas: Planning and Performance Monitoring project. Funding was provided by the Manitoba Rural Adaptation Council (MRAC), through the Agricultural Environmental Stewardship Initiative (AESI). The purpose of this project is to provide a central source of riparianrelated resource information in a format that is easily accessible to land use planners and policy decision-makers. The information provided can assist in strategic planning for riparian areas in Manitoba. Through the identification of potential problem areas, decision makers can make informed land use decisions that target priority areas.

As part of the Agricultural Riparian Areas: Planning and Performance Monitoring project, AAFC-PFRA has collected, analyzed, and displayed riparian-related data using an Internet Map Server (IMS). The IMS web server is designed to be a one-stop source of riparian-related data and information relevant for analysis, land-use planning, and program design. The IMS site is available under the tools menu on the Riparian Health Council website (<u>www.riparianhealth.ca</u>).

The Riparian Health Council (RHC) is comprised of government and non-government agencies with an interest in increasing producer involvement and improving the coordination of cooperative efforts among agencies that develop riparian projects with landowners throughout Manitoba. The Council has developed a vision for cooperative programming that enhances riparian areas and surface water quality across agro-Manitoba while also supporting landowner needs. This project will provide information which can assist the RHC in achieving its vision.

The boundaries used in this report are based on the watershed layer produced by a joint venture between Manitoba Conservation and AAFC-PFRA. For reporting purposes, water flow direction data was used to amalgamate individual sub-watershed units into larger sub-watershed and watershed groups (refer to Appendix D). Due to scale and data accuracy limitations, neither this report nor the information and data provided on the RHC website can replace the need for site-specific analysis. However, these information sources can serve as a guide for general watershed planning purposes.

Importance of Riparian Areas

Although riparian areas occupy only a small percentage of the area of a watershed, they represent an extremely important component of the overall landscape. They are the transitional areas between the aquatic and surrounding upland area. These "green zones" are one of the most ecologically diverse ecosystems. A healthy riparian area can perform a number of ecological functions, including trapping sediment, building and maintaining streambanks, storing floodwater and energy, recharging groundwater, filtering and buffering water, reducing and dissipating stream energy, maintaining biodiversity and creating primary productivity. These functions are essential for sustaining a majority of fish and wildlife species, maintaining functioning watersheds, providing good water quality, forage for livestock and supporting people on the landscape. Disturbance and alteration of a riparian area will impact its ability to carry out these ecological functions. Impacted riparian areas will have a reduced capacity to trap and store sediment and nutrients and stabilizing streambanks (important for surface water quality), provide fish and wildlife habitat, etc.

Recognizing that many sectors contribute to the alteration of riparian areas, including agriculture, recreation, urban and residential development, and forestry, this report will focus on the agricultural impacts to riparian areas in an attempt to provide information that can be used by the agricultural industry to begin to address the issue of riparian health.

Watershed Overview

The Rat-Marsh Rivers Watershed Study Area, is located in southeastern Manitoba and is approximately 201,132 ha in size. This watershed is comprised of three subwatershed units and contains two main rivers; the Rat River and the Marsh River (refer to Figure 1.0). The Marsh River drains the western edge of this watershed, beginning west of the community of Arnaud and moving northward until meeting with the Rat River, approximately four km before the Rat River enters the Red River. The Marsh River has a few small creeks and coulees, as well as numerous local ditches draining into it. The Rat River and its tributaries, including Sand River and Joubert Creek, drain the majority of the study area. The Rat River has its headwaters in the Sandilands Provincial Forest region of south-eastern Manitoba, near the town of Carrick. It moves in a westerly direction, heading north near PTH 59, moving up through St. Malo, and connecting with the Red River north of St. Agathe, Manitoba. Along the Rat River, near the town of St. Malo, is St. Malo Lake, an artificial lake created by damning the Rat River. Along with this waterbody, there are several wetlands and flooded areas in this watershed.

Changes in elevation occur throughout this watershed. Values range from 398 meters above sea level (masl), around the communities of Sandilands and Carrick, down to 226 masl in the western quarter of the watershed (refer to Figure 2.0). The rise in elevation is more obvious in the eastern half of the watershed which sees a 50 km rise in elevation over a 20 km distance.

Rural Municipalities (RMs) in the watershed include Desalaberry, Stuartburn, Franklin, Morris, Montcalm, Ritchot, La Broquerie and Hanover. St. Malo Provincial Park, located near the town of St. Malo, offers many recreational activities such as camping, swimming, fishing and canoeing on St. Malo Lake. The Sandilands Provincial Forest, located in the eastern part of the study area, is a mix of hardwood and pine trees and is used recreationally for activities such as hiking, biking and skiing. Rat River provides fish and wildlife habitat, and is also used for livestock watering. Larger towns and communities within the watershed include St. Pierre Jolys, St. Malo, Woodridge, Sandilands, and Arnaud. The population in the Rat-Marsh Rivers Watershed Study Area is mainly rural and farm-based and agriculture comprises the basis for the local economy within the watershed. However, St. Malo Provincial Park and Sandilands Provincial Forest also provide a source of tourism and recreational revenue to the watershed.

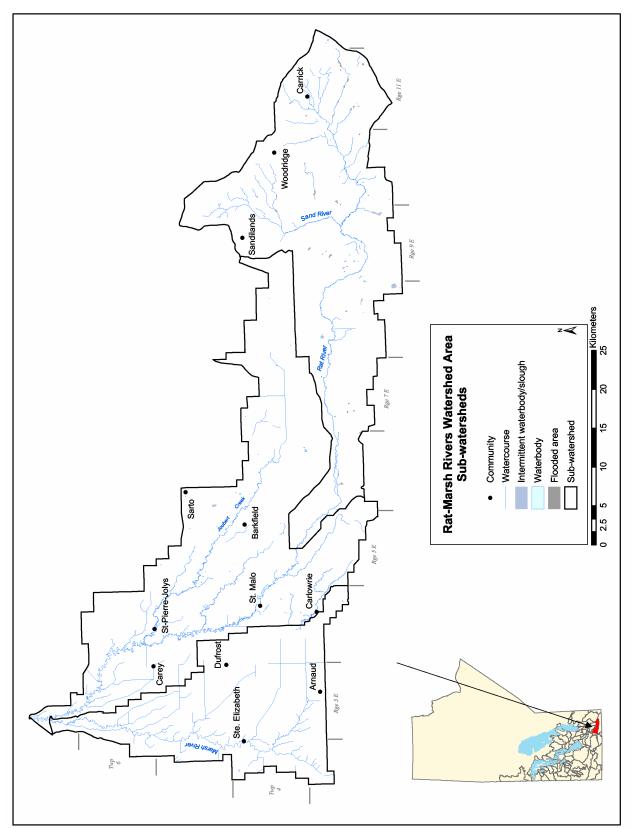


Figure 1.0 Sub-watersheds within the Rat-Marsh Rivers Watershed Study Area (water shown at 1:50,000 scale)

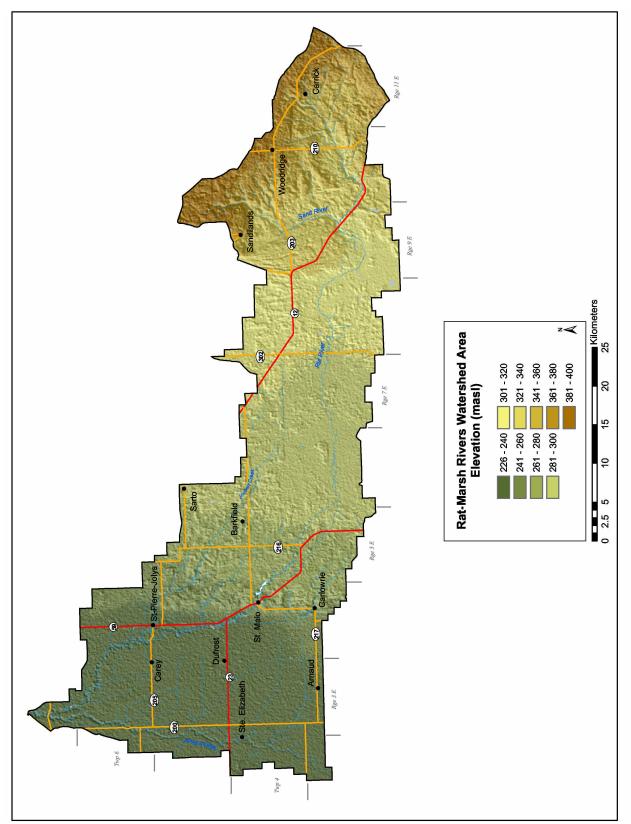


Figure 2.0 Digital elevation model of the Rat-Marsh Rivers Watershed Study Area (radar image was obtained by the Shuttle Radar Topography Mission, 2000)

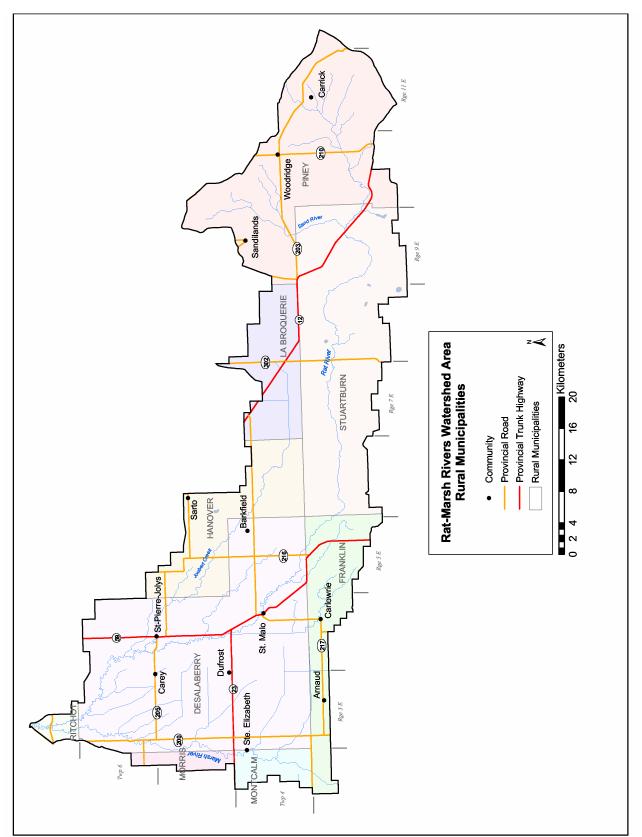


Figure 3.0 Rural municipalities in the Rat-Marsh Rivers Watershed Study Area

Climate and Ecology

The Canadian Ecological Land Classification System divides Canada's natural landscapes into terrestrial ecozones, which are further sub-divided into ecoregions and ecodistricts. The classification system was developed by integrating surface vegetation cover, underlying geology, physiography, soils, and climate data (Smith et al. 1998).

Ecozones, the most generalized level in Environment Canada's ecological land classification system, are defined by Smith et al. (1998) as "areas of the earth's surface representative of very generalized ecological units that consist of a distinctive assemblage of physical and biological characteristics". Ecoregions are broad, integrated map units characterized by a unique combination of landscape physiography and ecoclimate. Ecodistricts are integrated map units characterized by relatively homogeneous physical landscape and climatic conditions and they contain Soil Landscapes of Canada polygons nested within them (Smith et al. 1998).

Based on the Terrestrial Ecozones of Canada (Smith et al. 1998), this watershed contains three distinct Ecozones (refer to Table 1.0, Figure 4.0). The Prairies Ecozone covers the western part of the study area, and contains the Lake Manitoba Plain Ecoregion (which further contains the Winnipeg Ecodistrict), the Boreal Plains Ecozone is found central watershed, and contains the Interlake Plain Ecoregion (further containing the Steinbach Ecodistrict), and the Boreal Shield Ecozone is located in the eastern section of the study area, and contains the Lake of the Woods Ecoregion (which further contains the Stead and Piney Ecodistricts).

The vegetation of the area varies based on moisture, as well as landscape and other Ecoregion characteristics. Native vegetation in the Lake Manitoba Plain Ecoregion consisted of tall and meadow grass communities, however this has largely disappeared due to cultivation and development (Smith et al. 1998). Local pockets of natural vegetation do occur in poorly-drained areas and on pockets of land not broken. Poorly drained sites and riparian areas support slough grass, marsh reed grass, sedge, cattail and shrubby willow. On better drained areas, species such as bur oak and trembling aspen with an undergrowth of snowberry and red-osier dogwood occur. On flood plain deposits and lower river terraces, white elm, basswood, cottonwood, Manitoba maple and green as, with an understory of willows, ferns and associated herbaceous plants occur. Shrubs such as saskatoon and high bush cranberry are found on both floodplains and high terraces. Some grassland species are still present, such as Junegrass and Kentucky bluegrass, however trees have survived better in this region.

In the Interlake Plain and Lake of the Woods Ecoregions, natural vegetation is slightly different. The Interlake Plain Ecoregion is dominated by trembling aspen, and balsam poplar with an understory of red-osier dogwood and willow and a ground cover of grasses and herbs. Jack pine is also found in well-drained areas. In this Ecoregion, as well as the Lake of the Woods Ecoregion, water filled depressions, peatlands, bogs and organic soils support sedges, mosses, willow, tamarack and black spruce. The Lake of the Woods Ecoregion also supports eastern white cedar and alder on shallow organic soils and swamps. Jack pine, trembling aspen, black spruce, balsam fir, white birch, low

shrubs of blueberry and bearberry, and a ground cover of lichens, mosses, grasses and forbs dominate this Ecoregion. Balsam fir and white spruce are common on favourable sites. Along streams deciduous species, such as white elm and bur oak are also present.

Despite weather similarities within the watershed, localized temperature and precipitation conditions exist. Based on climate data for the ecoregions within the Rat-Marsh Rivers Watershed Study Area, mean annual precipitation ranges from 510 to 580 mm, while mean annual temperature ranges from 1.9 to 2.4 °C (refer to Table 1.0). The average number of growing season days ranges from 180 to 184 and the average number of growing degree days ranges from 1600 to 1720. Mean annual moisture deficit ranges between 80 to 250 mm (Ecoregions Working Group 1989). These parameters provide an indication of moisture and heat energy available for the growth of crops and other vegetation.

 Table 1.0 Climate data for ecoregions within the Rat-Marsh Rivers Watershed

 Study Area

Ecozone	Ecoregion	Mean Annual Air Temp (°C)	Mean Growing Season (days)	Mean Growing Degree Days	Mean Annual Precipitation (mm)	Mean Annual Moisture Deficit (mm)
Boreal Shield	Lake of the Woods	1.9-2.1	180	1600	530-580	80-90
Boreal Plains	Interlake Plains	2.4	184	1700	510	200-250
Prairies	Lake Manitoba Plains	2.4	183	1720	515	200

Note: Climate data is based on eco-climatic data (Ecoregions Working Group, 1989)

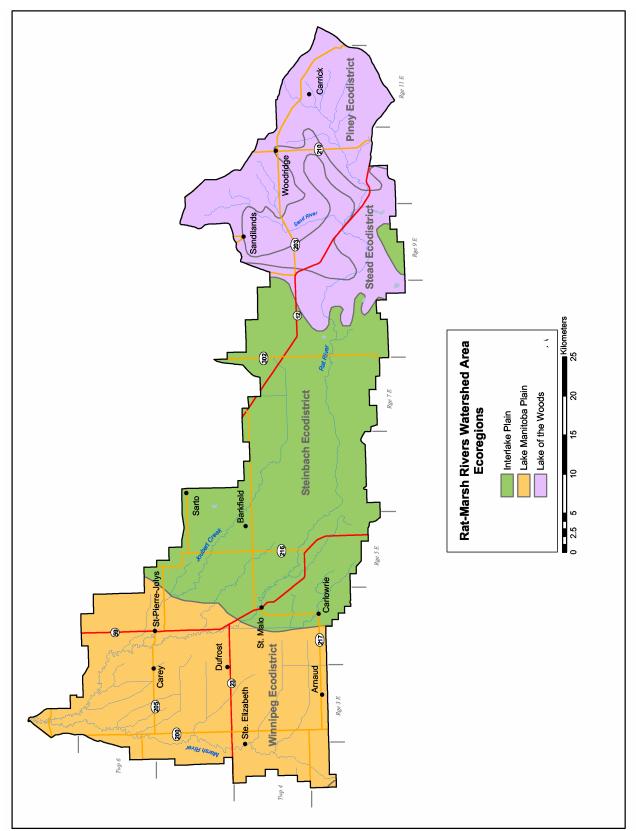


Figure 4.0 Ecoregions and ecodistricts in the Rat-Marsh Rivers Watershed Study Area

Water Resources

Hydrology

The Rat-Marsh Rivers Watershed Study Area is part of the larger Red River Basin. Water within this watershed drains into the Rat and Marsh Rivers, fed by the Sand River, Joubert Creek, and various other creeks and local ditches. The rivers meander east and north through agricultural land, forest and various communities to eventually merge together before joining with the Red River, north of St. Agathe. A dam, constructed on the Rat River near the town of St. Malo, forms the reservoir, St. Malo Lake, which is used as a source of drinking water and recreation for the community. Based on the 1:50,000 National Topographic Series (NTS) data sheets, the watershed contains approximately 1789 km of river and stream shoreline (both sides of the waterways are included in the calculation), and 87 km of waterbody shoreline. Much of the lake shoreline within this watershed surrounds wetlands and intermittent waterbodies. Approximately 28 km of flooded area shoreline is also present, most of which occur in the eastern, poorly-drained areas.

Hydrometric gauging stations within the province provide surface water level and stream-flow data, used for the operation of water control works, flood forecasting, water management investigations, and hydrologic studies (Manitoba Conservation 2003). A network of ten hydrometric gauging stations have been installed within this watershed (refer to Figure 5.0). Mean annual flow rate on the Rat River, as measured by gauging station 05OE001 located north of St. Pierre-Jolys, is 4.16 m³/s. Mean annual flow rate on the Marsh River, as measured by gauging station 05OE010, located approximately eleven km upstream to where the Rat and Marsh Rivers merge, is 7.01 m³/s. Table 2.0 depicts the mean annual monthly flows as measured by these hydrometric stations. Spring discharge, along with spring and summer rain events, create higher flow rates from April through to July, with peak flow generally occurring in April on the Rat River and Marsh River.

	<u>ci gci</u>	1) 201	5114										
				M	onthly	Disch	narge	<u>(m³/s)</u>					
Station No.	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Jan-Dec
050E001	0.18	0.14	1.14	11.0	8.79	5.49	3.01	1.33	1.33	1.68	1.43	0.39	4.16
050E010			0.67	9.97	10.4	0.23	0.40	0.15	0.01	0.003			7.01

Table 2.0 Mean stream flow on the Rat and Marsh Rivers as recorded by
hydrometric station 05OE001, located north of St. Pierre-Jolys, Manitoba (1912-
2002), and hydrometric station 05OE010, located upstream of the Rat and Marsh
River convergence (1971-2002)

Water Quality

Nutrient loading is an important concern with many large and small streams throughout Manitoba. As a result, Manitoba Conservation has developed a long-term nutrient management strategy for surface waters in Manitoba. A comprehensive trend analysis using existing water quality data has been done to detect temporal trends in nutrient concentrations in the streams and rivers in Manitoba (Jones and Armstrong 2001).

Long-term water quality monitoring data is available from sampling station WQ0131, located north of hydrometric gauging station 05OE001, and from sampling station WQ0365, located in the same location as hydrometric gauging station 05OE010. Using water quality monitoring data from station WQ0131, along with flow data from hydrometric station 05OE001, Jones and Armstrong (2001) determined that over the 1973-1999 period (with a gap from 1978-1987) Total Nitrogen (TN) concentrations in Rat River had remained fairly stable, however Total Phosphorus (TP) concentrations increased significantly. Using water guality monitoring data from station WQ0365, and flow data from hydrometric station 05OE010, it was revealed that from 1978 to 1999 (with a gap from 1984-1988) concentrations of TN and TP increased significantly in Marsh River. The median value of flow adjusted TN, had more than doubled (114% increase), while TP had increased by almost 66%. These concentration increases likely reflect a rise in point source (i.e. wastewater treatment facilities) and non-point source loading (i.e. agricultural activities). Jones et al. (2001) considered that periodic flooding and the back up of water from the Red and Rat Rivers may have also affected the increases seen in the Marsh River.

According to Bourne et al. (2002), the Rat River contributed 0.8% of the TN load, and 0.3% of the TP load, into the Red River in 2001.

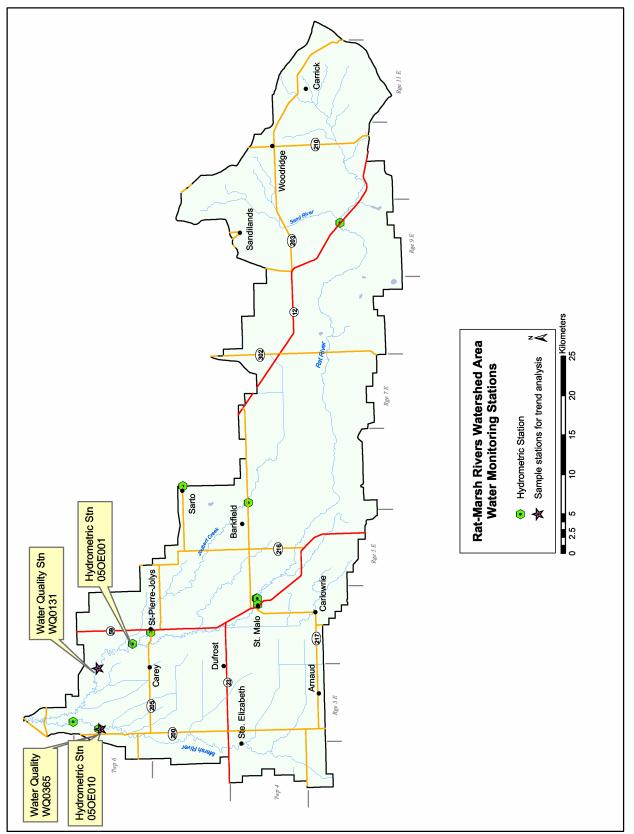


Figure 5.0 Hydrometric gauging and water quality sampling stations in the Rat-Marsh Rivers Watershed Study Area

Land Cover

The land cover classification of the watershed has been interpreted from LANDSAT satellite imagery (which has a 30 metre resolution), using computerized classification techniques. Individual spectral signatures were classified and grouped into the seven land cover classes: annual crop land, forage, grassland, trees, wetlands, water, urban and transportation (refer to Appendix A for land cover class descriptions). Figure 6.0 provides a general representation of the 2001 land cover within the watershed (note that the western tip of the watershed was analyzed using imagery taken September 3, 2001 and the remaining area with imagery taken September 28, 2001).

Land use in the watershed is a mix of naturalized and agricultural areas. Based on 2001 land cover data, trees and grasslands cover the majority of the land, with trees covering roughly 38% (75,383 ha) and grassland covering about 20% (40,296 ha) (refer to Table 3.0, Figure 6.0). These land covers were most prevalent in the central and eastern sections of the watershed. Agricultural production is concentrated to the western half of the watershed. Approximately 30% (58,959 ha) of land within the watershed has been classified as annual crop land, most of which is located west of PTH 59. Wetlands are also present, and cover about 7% of the land. Forages are minimal and cover only around 3% of the land.

Land cover information is also available from 1994 satellite imagery taken October 26, 1994 for the western tip and September 17, 1994 for the remaining area (refer to Figure 7.0). Comparison between the two datasets can result in the emergence of general trends in land cover of the seven-year period, though this will be a rough estimate due to factors such as time/season of satellite image capture, climatic variability and classification requirements.

Over the seven-year period, annual crop land had decreased by approximately 16% (10,998 ha) and forages had decreased by about 26% (1,960 ha) (refer to Table 3.0). Trees, grassland and wetlands had all increased over the 7 years. Wetland and open water classifications showed slight increases though this may be over estimated due to the fact that the 1994 image classification concentrated specifically on annual cropland to aid in delivery of the Western Grains Transportation Payment Program. Greater attention was paid to all classification categories on the 2001 image classification

Due to the small size, and tightly integrated nature of wetlands with other land cover categories such as grasslands and shrubs, they can be very difficult to quantify using course resolution imagery. A Prairie Habitat Joint Venture Habitat Monitoring Program coordinated by the Canadian Wildlife Service provides a detailed evaluation of wetland habitat trends in targeted areas of the prairies. Preliminary analysis indicated that in the targeted areas in Manitoba, there has been a net change of -3.0% in wetland areas from 1985 to circa 2000.

Class	Area ¹ (ha)	Percent of Watershed	Change in Area ² (ha)	Percent Change Since 1994 ²
Annual Crop Land	58,959	29.3	-10,998	-15.7
Trees	75,383	37.5	5,475	7.8
Water	996	0.5	45	4.7
Grassland	40,296	20.0	5,263	15.0
Wetlands	14,900	7.4	2,045 ³	15.9 ³
Forages	5,464	2.7	-1,960	-26.4
Urban/Transportation	5,135	2.6	146	2.9
Total	201,333	100		

Table 3.0 Land cover (2001) and the general trend over the seven-year period (1994 – 2001) in the Rat-Marsh Rivers Watershed Study Area

Area totals are approximate due to the nature of the image analysis procedure
 Negative changes indicate area has decreased since 1994, positive indicates an increase.
 Due to seasonal changes in wetland size, date of imagery will affect change calculations.

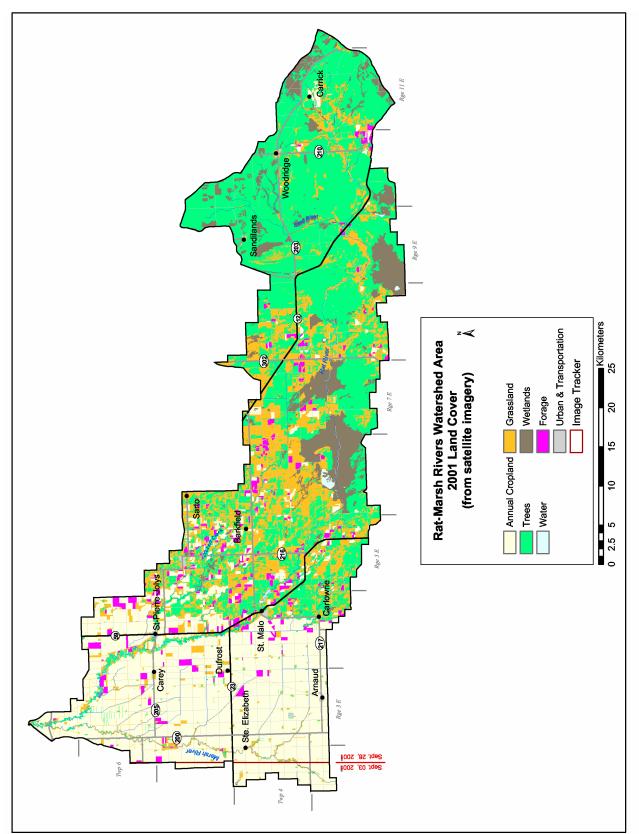


Figure 6.0 2001 Land cover in the Rat-Marsh Rivers Watershed Study Area

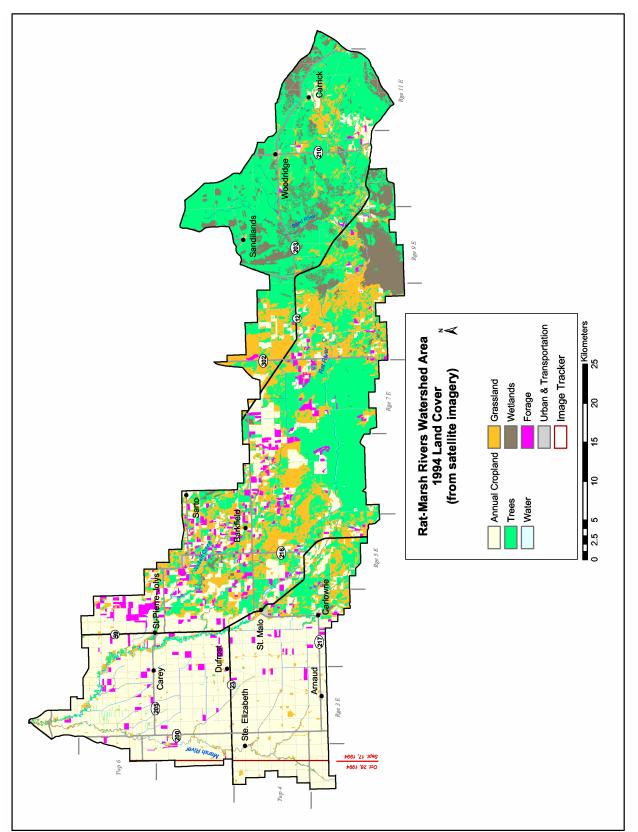


Figure 7.0 1994 Land cover in the Rat-Marsh Rivers Watershed Study Area

Soil Resources

Soils data is a critical component of land-use planning. Soil characteristics can be used to determine agricultural capability and to predict risks of erosion, leaching, and runoff. This type of information is important for determining suitable land uses, identifying sensitive areas, and targeting land-use improvement efforts. In terms of riparian health, analysis of soil characteristics can help to identify soils at high risk for erosion and runoff that could contribute to riparian degradation.

Soils data is available for all areas within the watershed. The soils data used in this report was mapped at a detailed scale of 1:50,000 for the RMs of Hanover and La Broquerie, as well as part of the Stuartburn. The remaining area has been surveyed at a reconnaissance scale of 1:126,720. Soils information provided in this report is based on the characteristics of the dominant soil series within the soils polygon. A more detailed and complete description of the type, distribution and textural variability of soils in the watershed can be found in the published soil surveys for the area.

The majority of the soils in this watershed are derived from lacustrine deposits. The western half of the watershed is in the Red River Plain physiographic region, and most soils here were deposited by glacial Lake Aggasiz. This resulted in deep, clay, lacustrine sediments. In some parts of this region the lacustrine veneers are underlain by stony textured glacial till or bedrock. There are also some stratified alluvial deposits occurring in the narrow floodplain of the Rat River. In the central region of this watershed, local areas of water worked, extremely calcareous stony till, and areas of gravelly sand outwash and beach deposits are common. Large areas of organic deposits developed on fen and forest peat. In the RM of Piney, sandy, gravelly outwash is more common along with beach deposits and local areas of stony calcareous till overlain by coarse lacustrine deposits. There is also shallow to deep organic forest and sphagnum deposits in this area.

The soils within the watershed vary, depending on surface textures and vegetation. In the Red River Valley Region, Chernozemic and Gleysolic Orders are common, more specifically a mix of Black Chernozems and Humic Gleysols. Black Chernozems are fertile soil, characteristic of tall grasslands. Humic Gleysols represent poorly-drained areas and occur in patches throughout the watershed. Regosols are commonly found on terraces and flood plain deposits along the Rat River. Moving east, into the rest of the watershed, Dark Grey Chernozems, as well as local Organic soils are present. Eutric and Eluviated Brunisols and Luvisols are also present in this portion of the watershed, depending on local landscape textures. Dark Grey Chernozems characterize a grassland/forest transition zone, whereas Brunisols and Luvisols are forest soils.

Soil Surface Texture

Soil surface texture strongly influences the soil's ability to retain moisture, its general level of fertility, and the ease or difficulty of cultivation. For example, water moves easily through coarse-textured (sandy) soils, so little moisture is retained and these soils dry out more quickly than fine-textured (clayey) soils. Sandy soils are often characterized by a loose or single-grained structure which is very susceptible to wind erosion. On the other hand, clay soils have a high proportion of very small pore spaces which hold moisture tightly. Clay soils are usually fertile because they are able to retain plant nutrients better than sandy soils. However, they transmit water very slowly and are therefore susceptible to excess moisture conditions.

The predominant soil surface textures within the watershed are clayey (32%) and sand (42%) (refer to Table 4.0, Figure 8.0). The clays predominantly cover the western portion of the watershed, whereas the sands mostly occur in the eastern part of the watershed. Pockets of organic and fine loamy soils occur throughout the eastern region as well.

Class	Area (ha)	Percent of Watershed
Clayey	63,496	31.6
Fine Loamy	12,082	6.0
Coarse Loamy	9,208	4.6
Sand	84,707	42.1
Coarse Sand	227	0.1
Organic	31,164	15.5
Water	89.8	0.05
Unclassified	159	0.1
Total	201,132	100

Table 4.0 Soil surface texture in the Rat-Marsh Rivers Watershed Study Area¹

1. Soil surface texture is based on the dominant soils series for each soil polygon

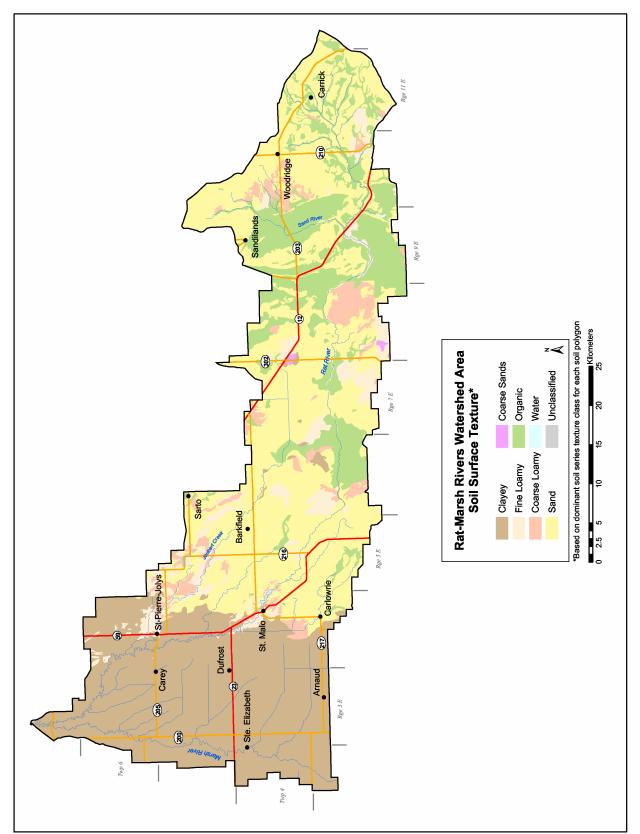


Figure 8.0 Soil surface texture in the Rat-Marsh Rivers Watershed Study Area

Soil Drainage

Soil drainage is described on the basis of actual moisture content in excess of field capacity and the length of the saturation period within the plant root zone. Excessive water content in the soil limits the free movement of oxygen and decreases the efficiency of nutrient uptake. Delays in spring tillage and planting are more frequent in depressional or imperfectly- to poorly-drained areas of a field. Surface drainage improvements and tile drainage are management practices that can be used to manage excess moisture conditions in soils. Agriculture and Agri-Food Canada's Land Resource Unit has divided soil drainage into five classes:

- 1) *Very Poor* Water is removed from the soil so slowly that the water table remains at or on the soil surface for the greater part of the time the soil is not frozen. Excess water is present in the soil throughout most of the year.
- 2) *Poor* Water is removed so slowly in relation to supply that the soil remains wet for a large part of the time the soil is not frozen. Excess water is available within the soil for a large part of the time.
- 3) *Imperfect* Water is removed from the soil sufficiently slowly in relation to supply to keep the soil wet for a significant part of the growing season. Excess water moves slowly down the profile if precipitation is the major source.
- 4) *Well* Water is removed from the soil readily but not rapidly. Excess water flows downward readily into underlying materials or laterally as subsurface flow.
- 5) *Rapid* Water is removed from the soil rapidly in relation to supply. Excess water flows downward if underlying material is pervious. Subsurface flow may occur on steep slopes during heavy rainfall

Drainage classification is based on the dominant soil series within each individual soil polygon.

This watershed has a mixture of drainage types, based on soil texture and land use. According to the drainage classes defined above, over 25% (51,662 ha) of the soils in this watershed are poor to very poorly-drained (refer to Table 5.0, Figure 9.0). These drainage classes tend to occur in the east, coinciding with areas composed of wetlands and organic soils. There are also areas of improved drainage in this watershed and mainly occur in the Red River Valley Region. Improved drainage indicates areas where a network of surface drains have been established to enhance surface runoff and reduce the duration of surface ponding. This is especially important for crop production. Rapid to well-drained soils cover 14% (28,343 ha) of the land and occur mainly in the east.

Class	Area (ha)	Percent of Watershed
Rapid	5,878	2.9
Well	22,466	11.2
Imperfect	87,286	43.4
Poor	20,050	10.0
Very Poor	31,612	15.7
Poor (Improved)	33,592	16.7
Water	89.8	0.05
Unclassified	159	0.1
Total	201,132	100

Table 5.0 Soil drainage classes for the Rat-Marsh Rivers Watershed Study Area¹

1. Area has been assigned to the dominant drainage class for each soil polygon

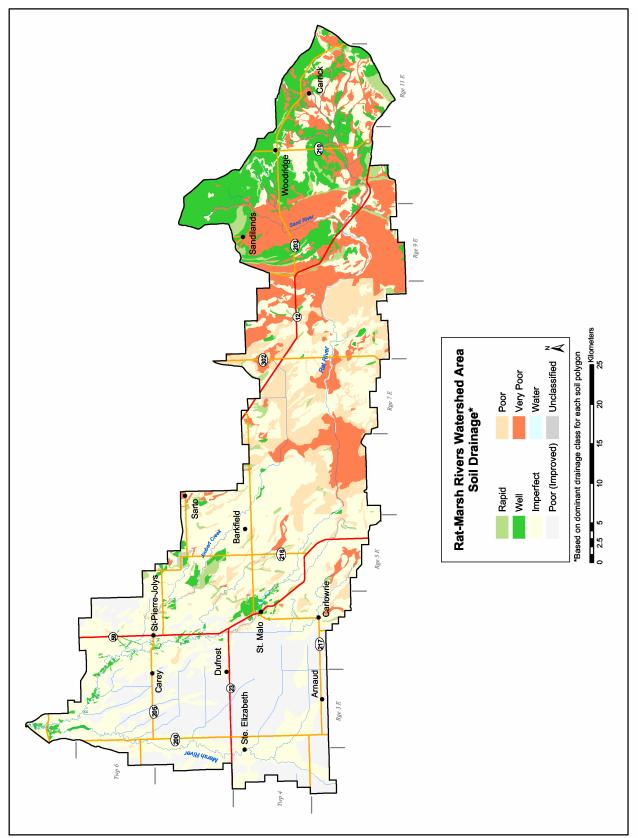


Figure 9.0 Soil drainage classes for the Rat-Marsh Rivers Watershed Study Area

Agricultural Capability

The Canada Land Inventory System (CLI) was used to classify land based on agricultural capability. The CLI is a comprehensive survey of land capability and use designed to provide a basis for making rational land-use planning decisions. Under the CLI, lands are classified according to physical capability for agricultural use. The system uses seven classes to rate agricultural capability, with Class 1 lands having the highest capability to support agriculture, and Class 7 the lowest. Table 6.0 provides a description of each class. Subclass descriptors are also used to identify specific limiting factors within each class (Table 7.0). The classes indicate the degree of limitation for mechanized agriculture imposed by the soil. The subclasses indicate the type of limitations that individually, or in combination with others, affect agricultural land use. The CLI classification assumes good land management and is independent of location, accessibility, ownership, distance from cities or roads, and the present use of the land (Natural Resources Canada 2000).

Class #	Description
1	Soils in this class have no significant limitations in use for crops.
2	Soils in this class have moderate limitations that restrict the range of crops or require moderate conservation practices.
3	Soils in this class have moderate limitations that restrict the range of crops or require special conservation practices.
4	Soils in this class have severe limitations that restrict the range of crops or require special conservation practices or both.
5	Soils in this class have very severe limitations that restrict their capability to produce perennial forage crops, and improvement practices are feasible.
6	Soils in this class are capable only of producing perennial forage crops, and improvement practices are not feasible.
7	Soils in this class have no capability for arable culture or permanent pasture
0	Organic soils
Source:	Natural Resources Canada 2000

Table 6.0 Canada Land Inventory (CLI) class descriptions

Source: Natural Resources Canada 2000.

Subclass	Description
С	Adverse climate
D	Undesirable soil structure and/or low permeability
E	Erosion
F	Low fertility
I	Inundation by streams or lakes
М	Moisture limitations
N	Salinity
Р	Stoniness
R	Consolidated bedrock
Т	Topography
W	Excess water
Х	This subclass is comprised of soils having a limitation resulting from the cumulative effect of two or more adverse characteristics

 Table 7.0 Canada Land Inventory (CLI) subclass descriptions

Source: Natural Resources Canada 2000

Figure 10.0 illustrates the classes of agricultural land found within the watershed. At this generalized map scale, subclass limitations could not be displayed. As Table 8.0 indicates, over 50% of the land within the watershed is prime agricultural land (Classes 1 to 3), much of which is located in the western half of the study area (refer to Figure 10.0). The more marginal land is found in the eastern half of the watershed, where 39% have severe limitations and cropping restrictions (Classes 4 to 6). Organic soils also cover 9% of this watershed. Organic/peat soils are limited in their agricultural productivity, however they are commonly used for the production of forages, including tame and native grasses and forage for seed, feed grains. As indicated in Table 8.0, excess water is the main limitation for Class 2 and 3 land. Moisture limitations become more of an issue as for Class 4 and 5 land, although excess water and stoniness can still be potential problems.

Class	Subclass	Area (ha)	Percent of Watershed
Class 1		553	0.3
Class 2		41,791	20.8
	2M	2,959	1.5
	2MP	8,973	4.5
	2W	29,086	14.5
Class 3		62,032	30.8
	3D	1,923	1.0
	31	2,098	1.0
	3M	10,541	5.2
	3MI	2,341	1.2
	3P	10,783	5.4
	3W	33,672	16.7
Class 4		20,275	10.1
	4DP	5,046	2.5
	4M	15,210	7.6
Class 5		44,846	22.3
	5M	23,534	11.7
	5W	17,921	8.9
Class 6		12,735	6.3
	6W	12,513	6.2
Organic		18,651	9.3
Water		89.8	0.05
Unclassified		159	0.1
Total		210,132	100

 Table 8.0 Agricultural capability in the Rat-Marsh Rivers Watershed Study Area

 and the major type of limitations within each class¹.

1. Agricultural capability is based on the dominant soil series and slope gradient within each soil polygon

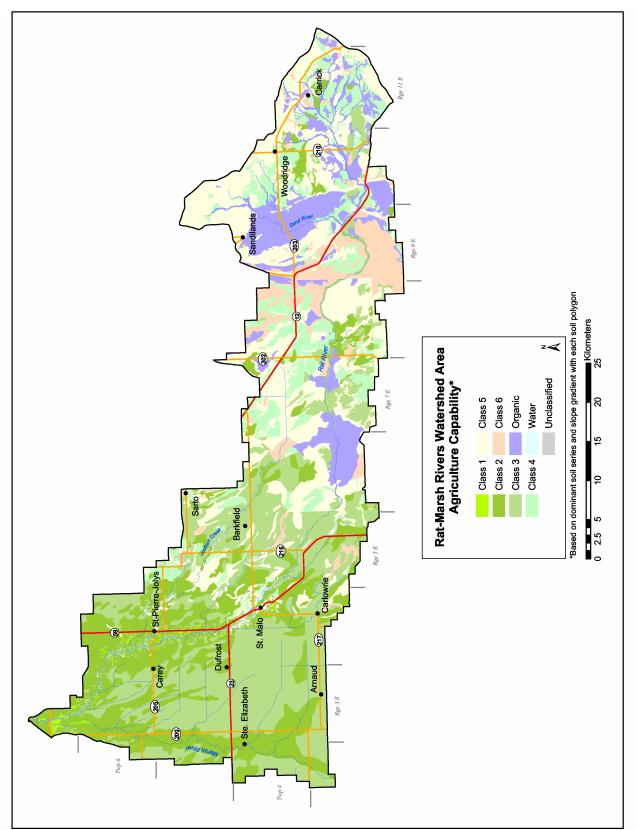


Figure 10.0 Agricultural capability class in the Rat-Marsh Rivers Watershed Study Area

Water Erosion Risk

The risk of water erosion was estimated using the Universal Soil Loss Equation (USLE) developed by Wischmeier and Smith (1965). The USLE predicted soil loss (tonnes/hectare/year) was calculated for each soil component in each soil map polygon. Water erosion risk factors used in the calculation include mean annual rainfall, slope length, slope gradient, vegetation cover, management practices, and soil erodibility (Eilers et al. 2002). Erosion risk classes were assigned based on the weighted average soil loss for each map polygon. The five classes of soil erosion risk (ranging from negligible to severe) are based on a bare, unprotected soil condition. However cropping and residue management practices can significantly reduce this risk depending on crop rotation, soil type, and landscape features. Basing the soil erosion risk on the bare soil case helps to identify areas dominated by sensitive, erosive soils which may otherwise be masked if a land use or surface vegetation cover factor was considered (Eilers et al. 2002).

According to the interpreted water erosion risk classification for soils, water erosion is not a substantial concern within this watershed, with over 95% of the watershed falling under the negligible to low risk category (refer to Table 9.0, Figure 11.0). Just over 3% of the land has a moderate risk and occur mainly around the Rat River, north of St. Pierre Jolys and around Joubert Creek.

Alea		
Risk (tonnes/ha/yr)	Area (ha)	Percent of Watershed
Negligible (<6)	160,687	79.9
Low (6-11)	32,548	16.2
Moderate (11-22)	7,321	3.6
High (22-33)	328	0.2
Water	90	0.05
Unclassified	159	0.1
Total	201,132	100

Table 9.0 Water erosion risk classes in the Rat-Marsh Rivers Watershed Study Area¹

1. Water erosion risk is based on the weighted average USLE predicted soil loss within each soil polygon, assuming a bare unprotected soil

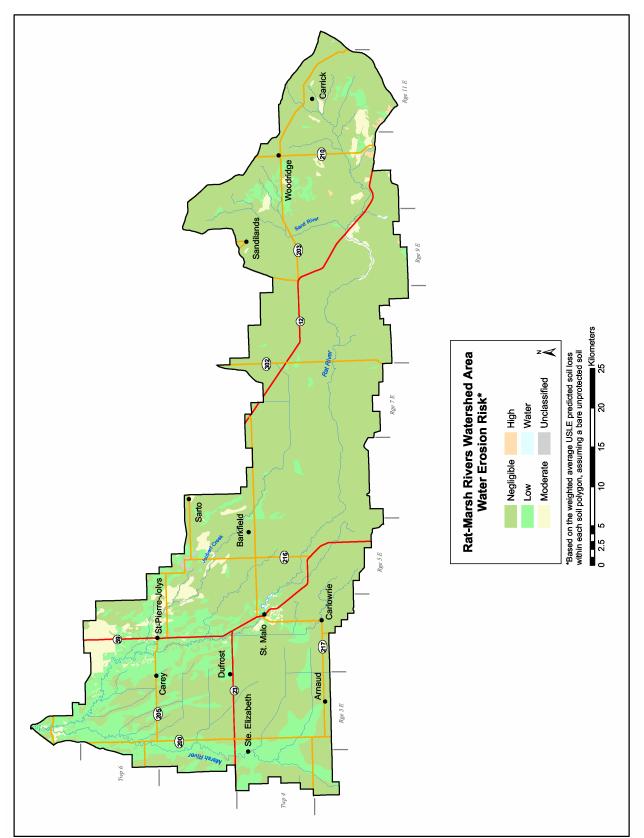


Figure 11.0 Water erosion risk in the Rat-Marsh Rivers Watershed Study Area

Agricultural Activities

Riparian areas can be impacted by anthropogenic activities occurring within a watershed. Land use and management practices within riparian zones and on upland areas affect the health of riparian areas. Although agriculture is only one component, with other human activities such as industry, recreation and residences contributing to degraded riparian areas, this report focuses on the impacts of agriculture. By knowing the extent and type of agricultural activities within the watershed, more effective decision-making and project planning can be put into place.

Agriculture data for the watershed was obtained from the 2001 Census of Agriculture using the farm headquarters reporting method, which links census data to the land location of the farm headquarters. In the 2001 Census, the farm headquarters was defined as "the operator's residence if he/she lives on land that is part of the agricultural operation; the location of the main building or main gate of the agricultural operation; or if many parcels of land without buildings are in separate locations, the parcel with the largest land area or share of gross agricultural receipts is considered the farm headquarters" (Statistics Canada 2002). It should be noted that in cases where the farm headquarters location is different from that of the actual farmed land or the location of livestock, inaccuracies in data will be introduced. For example, the reported farm headquarters could fall within one watershed, whereas a proportion of the land/livestock associated with that operation could fall within another. Despite the inaccuracies, the Census of Agriculture provides the most comprehensive source of available agricultural data (see Appendix B for more information and definitions).

The *Statistics Act* requires that all census information be kept confidential. As a result, any data that could disclose information concerning a particular agricultural operation or individual is suppressed in the data tables reported by Statistics Canada. For example, if there are only one or two dairy operations within a watershed, the number of farms reporting dairy will be given, however the total number of dairy cows reported within that watershed will be suppressed. In instances where a geographic area has very few agricultural operations, data are not released separately but are merged with data from one or more geographically adjacent areas (Statistics Canada 2002).

In the Rat-Marsh Rivers Watershed Study Area, the majority of crop farming is concentrated in the western two thirds of the watershed (i.e. the western two sub-watersheds, refer back to Figure 1.0), whereas more animal production takes place in the eastern sub-watersheds. According to the 2001 Census, there were a total of 477 farms utilizing 57% (115,476 ha) of the land in the watershed. For the purpose of this report, farmland includes all land that is owned, rented, leased (including government land) or crop-shared by agricultural operations. Of this land, 7009 ha is leased government land. Of the farmland, 57,916 ha (50%) were prepared for seeding in the fall of 2000 or spring 2001.

Land use and management practices of upland areas are important considerations in watershed planning. Crop type (permanent vs. annual, high residue vs. low residue), tillage practices, nutrient management, and conservation practices on the upland

landscape are all activities that can affect water quality within the watershed. According to the 2001 Census data, the majority of farmers within the watershed had grown some type of field crop. Table 10.0 summarizes the major crops grown by farmers in the watershed, including crops cut for hay, silage, green feed, etc. The majority of farmland was used for cereals (34%). Forages accounted for another 14% of farmland and oilseeds for 11%. Pulse crops represented very little of the cultivated crops in this area and made up less that 1% of farmland.

Table 10.0 Summary of cultivated crops, including crops cut for hay (silage,
green feed, etc.) grown by farmers within in the Rat-Marsh Rivers Watershed
Study Area (2001 Census)

Сгор Туре	Hectares ¹	Percent of Farm Land ¹	Percent of Study Area ¹
Cereals (wheat ² , barley, oats, mixed grain ³ , corn grain)	38,855	33.6	19.3
Forages (alfalfa, alfalfa mixtures, corn for silage, other tame hay and fodder crops, forage for seed)	15,890	13.8	7.9
Oilseeds (canola, soybeans ² , flaxseed, sunflowers ²)	12,247	10.6	6.1
Pulse Crops (dry field peas, dry beans)	841	0.7	0.4

1 - Numbers do not include suppressed data

2 - Data is suppressed for two farms reporting

3 - Data is suppressed for three farms reporting

Tillage practices on upland fields can affect the amount of erosion and runoff occurring. As the amount of tillage on a field increases, the chance of runoff, containing sediment and nutrients, entering waterways also increases. Table 11.0 provides a breakdown of tillage practices within the watershed. According to the 2001 Census of Agriculture, 71% of the land prepared for seeding in 2001 was tilled to incorporate most of the crop residue, whereas 29% of the fields had little or no tillage for seedbed preparation, retaining most of the residue on the surface of the fields.

Table 11.0 Summary of tillage practices in the Rat-Marsh Rivers Watershed Study Area (2001 Census)

Tillage Practices	Hectares	Percent of Seeded Area	Percent of Study Area
Tillage incorporating most crop residue	41,051	70.9	20.4
Tillage retaining most crop residue on surface	14,947	25.8	7.4
No till or zero till	1,918	3.3	1.0
Total seeding area prepared	57,916	100	28.8

In addition to minimum or no tillage, other conservation practices also reduce water erosion, thereby decreasing the amount of contaminated runoff entering waterways. Other conservation practices reported within the watershed included crop rotation (alternating low residue crops with high residue crops to maintain a good residue cover), permanent grass cover, winter cover crops, contour cultivation, strip cropping, grassed waterways and shelterbelts or windbreaks. Table 12.0 provides a breakdown of the percentage of farms using these conservation practices within the watershed.

Conservation Practices	Percentage of Farms Using Conservation Practices
Crop rotation	48.0
Permanent grass cover	31.2
Winter cover crops	2.3
Contour cultivation	2.9
Strip cropping	1.5
Grassed waterways	3.6
Windbreaks or shelterbelts	13.4

Table 12.0 Summary of the conservation practices carried out in the Rat-MarshRivers Watershed Study Area (2001 Census)

A number of farms within the watershed reported having livestock. As a result, manure production and the utilization of riparian areas by grazing animals are two areas where appropriate management practices should be implemented to reduce nutrient loading into rivers and streams and maintain healthy riparian areas. Table 13.0 provides a breakdown of the livestock distribution within the watershed. Over half of the farms within the watershed have cattle, the majority of which are beef cows. There are also 93 farms reporting pigs, and 70 farms reporting hens and chickens. The number of hens and chickens, and turkeys reported by farms in this watershed make up 13% and 10% respectively of the total number reported in Manitoba in 2001.

Total Animal Units (AU) produced in the watershed (based on annual nitrogen production) has been calculated using Manitoba's Animal Unit coefficients and by making several assumptions (refer to Appendix C). Pigs made the largest contribution to the total AU produced in the study area (48%). Beef contributed 27% to the total AU while dairy contributed to 13%.

Livestock	Total Number of Farms ¹	Number of Animals ²	AU Coefficient ³	Total AU ²
Total cattle and calves	252	29,205		
Total dairy cows	54(1)	3,294	2	6,588
Total beef cows	198	8,303	1.25	10,379
Total heifers & steers for slaughter and feeding (1 yr and older)		5,512	0.631	3,478
Total pigs	93	229,006		
Total sows	35	25,603	0.313	8,014
Total nursing and weaner pigs	36	89,194		
Total grower and finisher pigs	73	113,767	0.143	16,269
Boars	36	443	0.2	89
Total hens and chickens	70	1,054,888		
Broilers and Roasters	33(1)	623,679	0.005	3,118
Layers (19 weeks and older)	40(9)	45,579	0.0083	378
Pullets (under 19 weeks)	8(1)	40,126	0.0033	132
Turkeys	10(1)	68,812	0.014	963
Total sheep and lambs	20	4,499		
Ewes	20	1,546	0.2	309
Lambs	15(2)	2,858		
Total horses and ponies	93	539	1	539
Bison	7(2)	391	0.8875	347
Elk	2(2)	0	0.52	0
Goats	14(1)	324	0.143	46
				50,650

 Table 13.0 Livestock distribution in the Rat-Marsh Rivers Watershed Study Area

 (2001 Census)

1 - Numbers in parentheses indicate the number of farms for which data is suppressed for that livestock category

2 - Numbers do not include suppressed data

3 - Refer to Appendix C for the definition of Animal Unit and assumptions used to derive AU coefficients

Manure is a valuable source of nutrients for crop production. With the prevalence of livestock production in the study area, manure management becomes important. Table 14.0 provides a summary of the method of manure application on the land in the watershed. Although more farms reported spreading solid manure in the study area in 2000, liquid manure was applied to a larger area. Liquid manure was applied using three different methods in the study area with 77 farms spreading it on the surface, 27 farms injecting it and a small number (7 farms) applying it through irrigation. In order to achieve efficient use of the nutrients while ensuring no adverse effects to riparian health and water quality, management practices should include incorporation of manure as soon as possible after field application, determination of application rates based on crop nutrient requirements, and timing of field applications to nutrient utilization by crops.

Method of Manure Application	Number of Farms Reporting ¹	Area (ha) ²
Solid Spreader	125	3,293
Liquid Spreader (on surface)	77 (2)	3,008
Liquid Spreader (injected)	27 (1)	2,121
Irrigation System	7 (1)	506

 Table 14.0 Summary of manure application in the Rat-Marsh Rivers Watershed

 Study Area in 2000 (from 2001 Census of Agriculture)

1. Numbers in parentheses indicate the number of farms for which data is suppressed in that category

2. Numbers do not include suppressed data

Watershed Considerations

The Rat-Marsh Rivers Watershed Study Area is made up of numerous streams, creeks, shallow lakes, potholes and sloughs. This large amount of riparian area must be properly managed to protect surface water quality for users both within the watershed and downstream. Land management decisions in upland areas will also influence riparian health.

The Rat-Marsh Rivers Watershed Study Area is made up of two main rivers, the Rat and the Marsh Rivers, as well as other rivers, creeks, shallow lakes, potholes and local ditches. This large amount of riparian area must be properly managed to protect surface water quality within the watershed. Manitoba Conservation has been monitoring Total Nitrogen (TN) and Total Phosphorous (TP) levels in the Rat River from 1973 to 1999 and in the Marsh River from 1978 to 1999, both containing some data gaps from the 1980s. Analysis shows a trend of increasing TP concentrations on the Rat River site over this time period and a stable TN concentration. In the Marsh River, there was a trend of increasing TN and TP concentrations (Jones and Armstrong 2001). Changes in nutrient concentrations may be attributed to land-use practices.

Soils and Land Cover

The characteristics of soil and landscape affect land use. Half of the soils within the watershed, mostly located in the western Red River Valley region, are rated as Class 1, 2 or 3 and are productive agricultural lands. The main limiting factor to production in these areas is excess water, but also includes stoniness and lack of soil moisture. Class 4 and 5 land are found mainly in the eastern regions where sandy and organic textures occur, and are affected by the same limitations, with more emphasis on lack of soil moisture. The majority of the Rat-Marsh Rivers Watershed Study Area has a low to negligible risk of water erosion (96%).

Improved drainage is present on 17% of the soils in this study area due to the establishment of a network of man-made drains. These drains are effective at moving water off fields quickly and decreasing the amounts of standing water on fields, allowing for agricultural operations to take place. However, these advantages to agricultural production also cause some concern. The drains move water off fields quicker than

normal, loading the river channel to high water levels in response to heavy precipitation events. This could place the river into a flood or near-flood stage, thereby increasing the risk for water erosion. In addition, man-made drains seldom have riparian areas around them, unlike most natural watercourses. With small or non-existent riparian zones, there is increased risk of nutrient and sediment loading into watercourses. Riparian areas and permanent vegetation on adjacent lands are able to trap and store sediment and nutrients found in field runoff, reducing the risk of contamination of surface water.

Land cover provides a glimpse into agricultural practices in the watershed. In 2001 the dominant land cover was trees, making up 38% of the watershed. Annual crop land covered a slightly smaller area (29%). Since 1994 is there was a general decrease in annual crop land and forages while grasslands, wetlands and treed areas increased.

Riparian Areas

In order to provide an indication of the amount of riparian areas present in the study area, a shoreline density was calculated using the length of shoreline around watercourses and waterbodies. This shoreline density can provide a glimpse into how much upland is in contact with surface waterbodies and watercourses (riparian areas). A higher shoreline density could mean there is a greater potential for interaction between upland activities and surface water. For this analysis, length of shoreline of both permanent and intermittent waterbodies and watercourses was determined from the 1:50,000 NTS datasheets (note that densities will be underestimated since numerous small wetlands and potholes as well as some small constructed water courses (first, second and third order drains) are not captured by the NTS sheets). Table 15.0 provides a summary of the length and density of shoreline in the Rat-Marsh Rivers Watershed Study Area. Sub-watersheds #221 and 222 have the highest concentration of riparian areas with around 10 m of shoreline/ha. Watercourses (rivers, creeks, streams, etc) make up the majority of shoreline in the watershed (refer to Figure 12.0). A higher shoreline density will indicate a greater concentration of riparian areas. Since riparian areas provide a buffer between upland areas and surface water, management practices (including riparian pasture management, buffer strips, and grassed waterways) become important to maintain this vegetated buffer area surrounding waterbodies and watercourses.

 Table 15.0
 Summary of shoreline density in the Rat-Marsh Rivers Watershed

 Study Area (includes permanent and intermittent streams and waterbodies).

Sub-watershed ID	Length of Shoreline ¹ (m)	Percent Watercourse Shoreline	Percent Waterbody Shoreline	Shoreline Density ² (m/ha)
220	601,511	90.7	9.3	7.9
221	828,758	96.5	3.5	10.1
222	445,465	99.6	0.4	10.5

1. Length of shoreline is determined from the 1:50,000 NTS data sheets and will be underestimated due the fact that many small wetlands and potholes as well as some small constructed water courses (first, second and third order drains) are not captured in the data sheets

2. Area is calculated as the entire area of the sub-watershed (minus area of waterbodies from the 1:50,000 NTS data sheets)

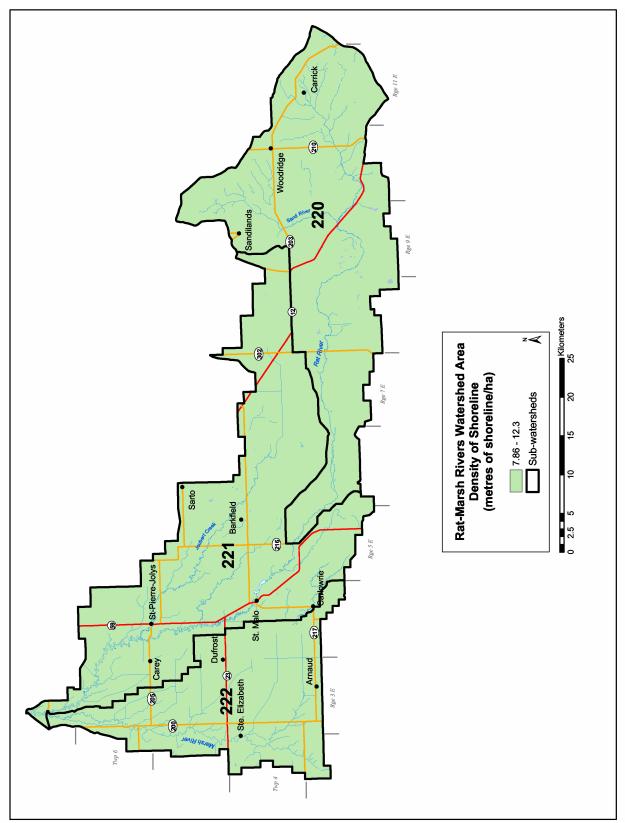


Figure 12.0 Density of shoreline in the Rat-Marsh Rivers Watershed Study Area, as determined by the 1:50,000 NTS data sheets

Riparian areas play a very important role in reducing the impact of agriculture on surface water quality. Riparian areas reduce the amount of contaminants, nutrients, and pathogens reaching surface waters by trapping and filtering sediments and by absorbing excess nutrients. The health of a riparian area determines the extent to which the riparian area can perform its functions. Riparian health is generally determined by onsite assessment and evaluation, however this was not feasible for this project. Instead, land cover in a 50 m buffer around waterbodies and water courses (both permanent and intermittent) within the watershed study area was analyzed, since these areas will have a greater likelihood of influencing water quality. Although this method cannot determine management practices occurring in the riparian areas (ie. livestock use of riparian areas, nutrient and pesticide management practices, etc), percentage of trees and annual crops within the buffered area could give an indication of possible health of riparian areas as well as potential agricultural impacts to water quality. Trees are an important part of the riparian area. Tree roots help to stabilize banks and hold the soil in place while canopy cover provides protection from rain drops. Their sparse presence could be an indication of declining riparian health. Another indicator of potential decline in riparian health is the presence of annual crop land in the buffer area. Annual crop land can potentially impact water quality by allowing contaminated runoff to enter surface water.

Table 16.0 provides a summary of the 2001 land cover in a 50 m buffer area aroundall water courses and waterbodies in the Rat-Marsh Rivers Watershed Study Area (from the 1:50,000 NTS data sheets). Approximately 4% of the study area is located within 50 m of a watercourse or waterbody (including intermittent streams and wetlands). In this buffered area, over a third was treed while about 22% was in annual crops.

Potential impacts of crop production to riparian areas may be greater in areas where annual crop land is predominant within a 50 m area from a watercourse or waterbody. In the western part of the Rat-Marsh Rivers Watershed Study Area (Sub-watershed #221), annual crop land predominates in the buffered areas (refer to Table 16.0). This is likely due to the presence of several man-made drains which tend to have little or no riparian areas. Impacts will be reduced slightly due to the fact that 29% of the crop land was prepared using minimum or zero tillage.

The presence of trees within the 50 m buffer may give an indication of the potential for a riparian area to be healthy. Trees predominate in the buffered areas in Sub-watersheds #220 and #221, while Sub-watershed #222 has less than 3% treed area (Table 16.0). Absence of trees can be a result of several factors; trees have been removed due to overgrazing, cultivation, straightening of creek, or hydrological conditions have changed. Though trees predominate in the 50 m buffer area in Sub-watershed #221, it also has the greatest concentration of livestock (refer to Table 17.0), mainly beef. Riparian pastures will likely be more common, and impacts to riparian health will depend greatly on management practices.

Table 16.0 Summary of land cover in a 50 m buffer around all waterbodies and on either side of watercourses in the Rat-Marsh Rivers Watershed Study Area (using 2001 satellite imagery and 1:50,000 NTS water layers)¹

Sub-	Buffered area	-		Percer	nt of Buffere	d Area		
watershed ID	(percent of sub- watershed)	annual crop land	trees	water	grassland	wetland	forages	roads, urban
220	3.6	0.6	48.9	7.2	24.2	17.4	0.5	1.2
221	4.8	17.4	42.8	4.5	27.1	1.3	1.9	4.8
222	5.2	56.1	2.7	6.6	25.4	0.6	1.0	7.5
Total	4.4	21.8	34.8	5.9	25.8	6.2	1.3	4.4

1. Due to the nature of clipping raster data (land cover layer) with vector data (1:50,000 NTS water layer) and the various scales of the data, areas are estimate.

Farm Management Practices

The 2001 Census for Agriculture had 477 farm headquarters reporting within the study area (note that census data is attached to farm headquarters and reports on activities on farmland associated with that farm headquarter, therefore whether or not the farmland is located within the watershed cannot be differentiated). In 2001, agriculture in the watershed consisted mainly of livestock and grain production with about 57% of the land utilized by farmers. This includes land that is owned, rented, leased (including government land) or crop shared. Land management practices will have an effect on the health of the riparian areas. Upland management practices such as crop selection and rotation, tillage practices, nutrient management and grassed waterways can impact on riparian areas. According to the census data, 50% of the farmland was prepared for the 2001 growing season, of which 29% was prepared using minimum or zero tillage, resulting in a slight reduction of the risk of soil erosion. Crop rotation, along with minimum and zero tillage, will assist in providing extra soil protection by carrying residues over from one year to the next. In 2001, the area seeded to cereals was three times that of the area seeded to oilseed and pulse crops. Grassed waterways are another effective practice and, when located along natural drainage paths in fields, can help to reduce water erosion and filter out sediments from runoff before it enters the watercourse or waterbody. In the Rat-Marsh Rivers Watershed Study Area, 4% of the farms reported using grassed waterways. Efforts should continue to promote reduced tillage, crop rotation, grassed waterways and other practices which will help reduce soil erosion.

Livestock grazing management is important to the health of riparian areas. Although grazing livestock in the watershed include cattle, sheep and horses, beef production is predominant with approximately 42% of the farms having cow/calf operations. Pastures and forages are necessary for summer grazing and winter feed, and land cover trends show an increase in area dedicated to forages to meet the demand for feed. In order to maximize forage productivity and promote healthy riparian vegetation, ranchers must ensure that they avoid grazing riparian areas during vulnerable times, such as when streambanks and shorelines are saturated and are more vulnerable to trampling. Ranchers should also ensure that they allow the vegetation a proper rest period after

grazing during the growing season. Vegetation requires adequate rest in order to rebuild roots (energy supply), and restore vigour. During grazing periods, ranchers should utilize management tools to distribute livestock evenly over the grazing area. This not only reduces streambank damage due to trampling and overuse, but it also helps to distribute manure evenly across the grazing area. Manure is a valuable source of nutrients for plants, and when evenly distributed can be fully utilized with minimal risk of contamination to nearby waterbodies.

In contrast to grazing systems, confined livestock operations often result in an accumulation of manure that will require mechanical removal and subsequent land application. In the Rat-Marsh Rivers Watershed Study Area, there were 54 dairy operations, 93 hog operations and 70 poultry operations in 2001. The majority of these will have confined livestock facilities with associated manure storage facilities. Although riparian areas can trap nutrients found in runoff from fields and reduce the risk of contamination of water sources, manure management practices should include manure incorporation as soon as possible after application to the field and maintenance of buffer zones around riparian areas to minimize the risk of contaminated runoff entering water sources. Other manure management practices include soil and manure testing to assist in applying nutrients to crop requirements.

Agriculture Production Intensity

Riparian areas can be affected by all aspects of activities within a watershed, including agriculture, urban areas, recreation activities, etc. For this report, an attempt was made to determine the level of agriculture production intensity within each sub-watershed to determine which areas of the watershed may have a greater potential agricultural to impact riparian areas. The level of livestock and crop production was determined on a per hectare basis. Because information is not available to indicate at what point the livestock density or crop production intensity becomes critical with respect to potential impacts on riparian health, the values calculated were compared to the highest value calculated in a sub-watershed in all of Manitoba.

Livestock density was calculated for each sub-watershed. Densities of different types of livestock were standardized by calculating Animal Units per hectare (AU/ha). In Manitoba, an Animal Unit (AU) is defined as the number of livestock required to excrete 73 kg (160 lbs) of nitrogen in a 12-month period. Refer to Appendix C for assumptions used to derive AU coefficients. Suppression of livestock numbers in the census data will affect total AU to varying degrees, depending on the amount of suppression (refer to Table 13.0). Area used in the calculation consisted of hay and crop land, summerfallow, tame pasture and native land used for pasture (as reported in the 2001 Census of Agriculture). In Manitoba, the sub-watershed in which the City of Steinbach is located (in the Seine River Watershed Study Area, refer to Appendix D), had the highest livestock density (0.98 AU/ha). All other livestock densities were compared to this one.

Table 17.0 and Figure 13.0 illustrate the different livestock densities within the subwatersheds of the Rat-Marsh Rivers Watershed Study Area. Beef cattle produced the majority of AU in all sub-watersheds. Sub-watershed #221 had the greatest livestock density of 0.75 AU/ha. This is 77% of the province's highest value. The majority of the AU in this area was produced by pigs (47%). The remaining areas had livestock densities which were less than 26% of the province's highest value. Sub-watershed #222 had the lowest livestock production density in the study area though pigs made up a third of the AU in that area. Livestock production at any density requires attention to manure management, nutrient management and riparian pasture management. Any area with a higher livestock density may have a greater potential to impact riparian areas.

	k density in the Rat-Marsh Rivers Wate stock numbers converted to Animal U	
	Livesteck Density	

	2	Livesto	ock Density
Sub-watershed ID	Area ² (ha)	Animal Units/ha ¹	As a percentage of 0.981 AU/ha ³
220	13,141	0.25	25.8
221	53,677	0.75	76.7
222	36,818	0.16	16.6

1. Refer to Appendix C for assumptions used in calculating Animal Units. Some suppression of data occurs (see Table 13.0)

Area is calculated as the amount of land planted to annual and hay crops, summerfallow, tame pasture and native land used for pasture, as reported in the 2001 Census of Agriculture
 Value is calculated as a percentage of the highest AU /ha value determined in Manitoba (using 2001 Census of Agriculture data)

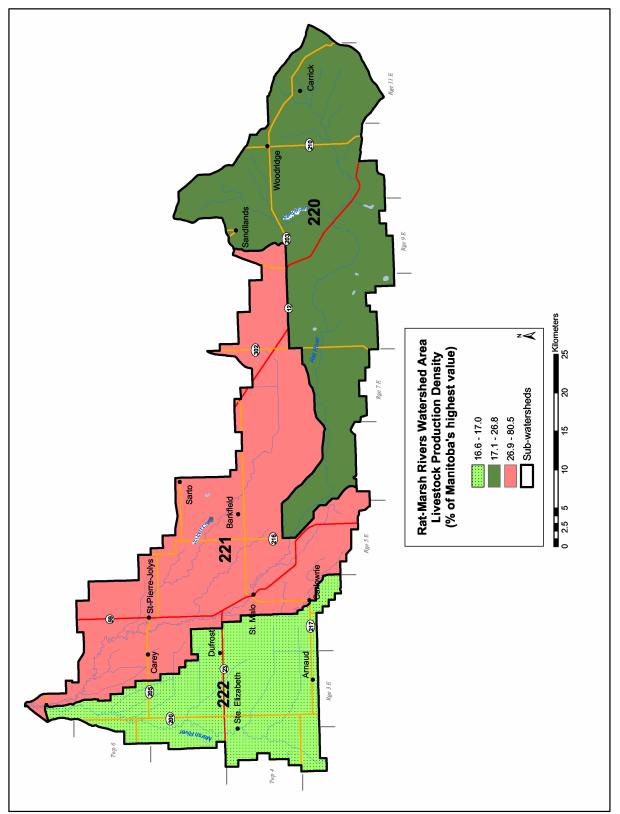


Figure 13.0 Livestock density in the Rat-Marsh Rivers Watershed Study Area, as a percentage of the highest value in Manitoba of 0.98 Animal Units/ha (as reported in the 2001 Census of Agriculture)

The potential for crop production to impact riparian health is present in all the subwatersheds but may be greater in those with higher fertilizer and pesticide crop inputs. Run-off containing nutrients from manure and commercial fertilizers, pesticides, and pathogens can affect riparian vegetation and biodiversity. The value of commercial crop inputs can be used as an indication of crop production intensity. Crop production intensity within a watershed was determined as dollars spent on fertilizers and pesticides (herbicides, insecticides and fungicides) per hectare in the year 2000, as reported by farms in the 2001 Census. Land area was calculated as the number of hectares used for crop and hay production and summerfallow (as reported by farms within the study area). These numbers (\$ fertilizer/ha, \$ pesticides/ha) were then compared to the highest respective value calculated in all the sub-watersheds with census data in Manitoba. Fertilizer dollars spent per hectare were compared with the highest value of \$101.23/ha, found in the sub-watershed containing the community of Bagot (in the Whitemud River Watershed Study Area). Pesticide dollars were compared with the highest value of \$81.65/ha, found in the sub-watershed containing the communities of Poplar Point and High Bluff, north of the Assiniboine River (in the Lower Assiniboine River Watershed Area, refer to Appendix D).

Table 18.0 and Figures 14.0 and 15.0 illustrate the different levels of fertilizer and pesticide use in 2000 within the sub-watersheds of the Rat-Marsh Rivers Watershed Study Area. Fertilizer and pesticide inputs were highest in Sub-watershed #222, with #221 a close second. It is in these two areas where the majority of the crop production occurs within the study area. Sub-watershed #220 had the lowest fertilizer and pesticide inputs in the watershed since it has very little annual crop land (refer to Figure 6.0). Though areas with higher crop production intensities may have a greater potential to impact riparian areas and water quality, best management practices with regards to pesticide and fertilizer use are important in all areas.

reported in the 200		griculture)	
Sub-watershed ID	Area ¹ (ha)	Fertilizer ² (as a percentage of \$101.23/ha)	Pesticides ² (as a percentage of \$81.65/ha)
220	4,641	36.3	26.3
221	34,388	59.2	61.0
222	35,405	72.8	64.0

Table 18.0 – Comparison of crop production intensity in the Rat-Marsh Rivers Watershed Study Area using dollars spent on pesticides and fertilizers in 2000 (as reported in the 2001 Census of Agriculture)

1. Area is calculated as the land planted to annual and hay crops, and summerfallow, as reported in the 2001 Census of Agriculture

2. Value is calculated as a percentage of the highest fertilizer (or pesticide) dollars/ha value determined in Manitoba (using 2001 Census of Agriculture data)

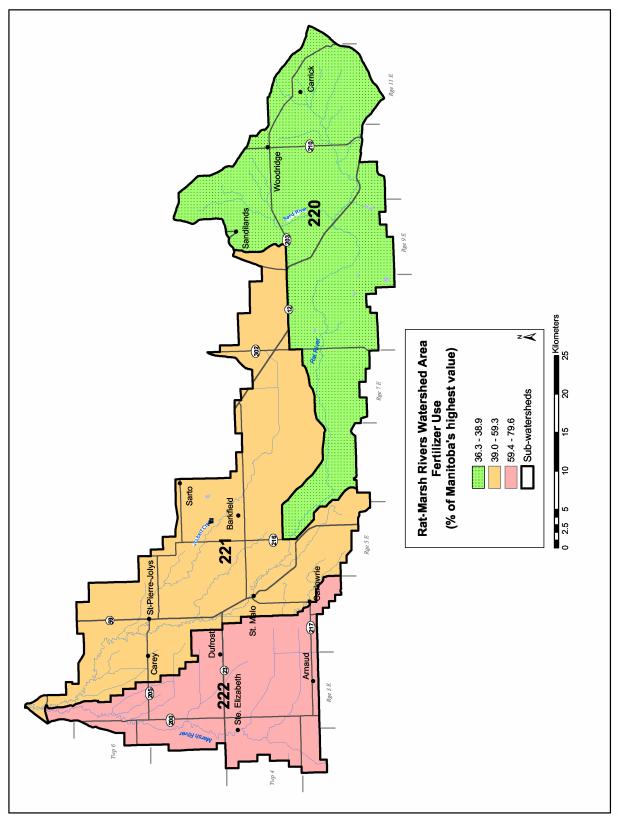


Figure 14.0 Level of fertilizer use in the Rat-Marsh Rivers Watershed Study Area in 2000, as a percentage of the highest value in Manitoba of \$101.23/ha (as reported in the 2001 Census of Agriculture)

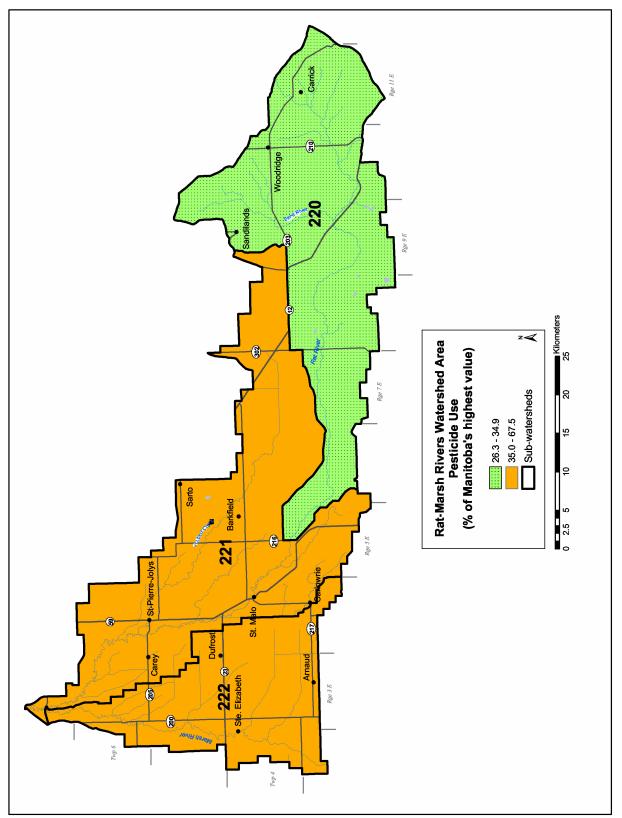


Figure 15.0 Level of pesticide use in the Rat-Marsh Rivers Watershed Study Area in 2000, as a percentage of the highest value in Manitoba of \$81.65/ha (as reported in the 2001 Census of Agriculture)

<u>Summary</u>

Although riparian areas are affected by all activities in a watershed, this report concentrates on the potential impacts from agricultural activities. The Rat-Marsh Rivers Watershed Study Area contains a variety of soils and landscapes and, as a result, supports a diverse agricultural landscape. Appropriate management of agricultural activities is very important to protect riparian areas in the watershed.

Approximately half of the Rat-Marsh Rivers Watershed Study Area has productive agricultural land. Although trees were the predominant land cover in 2001, annual crop land made up almost 30% of the land cover in the watershed, located mostly in the west. Although beef cattle were the most common livestock reported by farms, hogs contributed to almost half of the Animal Units produced in the study area. Efforts should continue on education and awareness of the importance of nutrient management, manure management, residue management and crop rotation.

By looking at land cover in an area within a 50 metre distance from all waterbodies and watercourses, an attempt was made to determine areas which might have the potential for healthier riparian areas and areas which may be impacted by agricultural activities. Overall, just over 20% of the buffered area was annually cropped and a slightly greater percentage was treed. Annual crop land was the dominant land cover in the buffer area in the western part. With annual crop land in close proximity to surface water, there may be greater opportunity for contaminated runoff or chemical drift to affect riparian areas and water quality. Trees were more common in the buffered areas in the eastern region of the watershed where the Sandilands Provincial Forest is located. Trees are an important part of the riparian area and their presence can indicate a certain level of riparian health. More detailed on-site analysis will be required to determine riparian actual health.

Calculation of shoreline densities provides information on areas where riparian areas are more concentrated. In the Rat-Marsh Rivers Watershed Study Area, rivers and creeks, including intermittent streams make up the majority of shoreline. The subwatersheds of Marsh Creek and the lower part of Rat River have the highest shoreline densities. These areas also have the highest crop production intensity. A higher shoreline density will indicate a greater concentration of riparian areas. Since riparian areas provide a buffer between upland areas and surface water, efforts should continue to promote management practices which maintain or improve riparian health.

An attempt was made to determine an overall level of agricultural intensity with respect to livestock production and crop production. Because thresholds are not known, determinations of high, medium and low were not made. Instead, values were compared to the highest value calculated in Manitoba. In the Rat-Marsh Rivers Watershed Study Area, livestock densities was the highest in the central portion of the study area, with a value that was over 75% of highest livestock density in Manitoba. Crop production intensity was generally found to be highest in the western parts of the watershed where shoreline densities were higher and annual crop land occupied a large portion of a 50m buffer around the waterbodies and watercourses in the area. Areas with higher levels of livestock density or crop production intensity, or both, should be targeted for programs which promote the use of management practices that improve riparian health and reduce impacts to water quality.

This report has been presented to provide a central source of riparian-related information to assist in strategic planning for riparian areas in Manitoba. Riparian areas play an important role in surface water quality and their ability to carry out this function can be affected by anthropogenic activities on the landscape. Agriculture is only one component, with other human activities such as industry, recreation and residences contributing to degraded riparian areas. The intent of this report is to be a first step towards addressing the issue of riparian health, with respect to agriculture, in the watershed study area. By providing information on the land resources and the agricultural activities in the study area, a better understanding of the issue can be obtained which will assist towards better planning and priority setting by local decision makers, land use planners and policy decision-makers. While this reports studies the agricultural aspect of the watershed study area, in a true watershed study, all factors of activities of all sectors must be considered. Due to scale and accuracy limitations, this report does not replace the need for site-specific analysis; rather, it serves as a guide for general planning purposes in the Rat-Marsh Rivers Watershed Study Area.

Future Steps

Agriculture is a significant land use found within many watersheds across the southern portions of Manitoba. The way in which individual producers manage their land can have positive and negative impacts on the environment. The understanding of the relationship between management choices available to agricultural producers in Manitoba and the type and extent of their impact on riparian and water quality issues is not well understood. It is crucial that a better understanding of these relationships be developed. This, in combination with more information about the agricultural activities within a watershed, will provide a solid foundation of science and information upon which programs, policies and beneficial management practices can be developed and evaluated.

However, agriculture is only one component of the anthropogenic activities that occur within any given watershed. Other human activities, such as industry, residences and recreation can also significantly contribute to degraded riparian areas and reduced water quality within a watershed. As with agriculture, the relationship between these activities and the type and extent of their impact is typically not well known. If issues related to riparian areas and water quality within watersheds are to be understood there needs to be significant work done to collect information on these other activities and relate them to watershed issues. This will require all sectors, public and private, to jointly focus on these issues and work together to reaching their resolution.

References

Bourne, A., N. Armstrong, G. Jones. 2002. A preliminary estimate of total nitrogen and total phosphorus loading to streams in Manitoba, Canada. Manitoba Conservation Report No. 2002-04. 49 pp.

Canada Land Inventory. 1965. Soil Capability Classification for Agriculture. ARDA, Dept. of Forestry, Canada, Ottawa.

Digital Elevation Model – radar image obtained from Shuttle Radar Topography Mission, an international project spearheaded by the National Geospatial-Intelligence Agency (NGA) and the National Aeronautics and Space Administration, <u>http://www.jpl.nasa.gov/srtm/</u>; Cited 26 November, 2003.

Ecoregions Working Group. 1989. Ecoclimatic Regions of Canada, First Approximation. Ecoregions Working Group of the Canada Committee on Ecological Land Classification. Ecological Land Classification Series, No. 23, Sustainable Development Branch, Environment Canada, Ottawa, Canada. 119p. and mapped at 1:7,500,000 scale.

Eilers, R.G., G.W. Lelyk, P.Cyr, and W.R.Fraser. 2002. Status of Agricultural Soil Resources of Manitoba; Summary of Applications and Interpretations of RMSID, (Rural Municipality Soil Information Data Base). Land Resource Group - Manitoba, Semiarid Prairie Agricultural Research Centre, Research Branch, Agriculture and Agri-Food Canada.

Ehrlich, W.A., E.A. Poyser, L.E. Pratt, and J.H. Ellis. 1953. Report of Reconnaissance Soil Survey of Winnipeg and Morris Map Sheet Areas. Soils Report No. 5. Manitoba Soil Survey. Published by Manitoba Dept. of Agriculture. 111pp and 2 maps.

Environment Canada. Archived Hydrological Data. Available from <u>http://www.msc.ec.gc.ca/wsc/hydat/H2O/;</u> INTERNET; Cited 31 March, 2004.

Geomatics and Remote Sensing, Manitoba Conservation. 2001. Land Use/Land Cover Descriptions.

Hopkins, L. A. 1985. Soils of the Rural Municipalities of Ste Anne and La Broquerie, and Part of the Local Government District of Stuartburn. Report No. D49. Canada-Manitoba Soil Survey. Winnipeg.

Hopkins, L. A., E. St. Jacques, and G.F. Mills. 1993. Soils of the Rural Municipality of Hanover. Report No. D82. Canada-Manitoba Soil Survey. Winnipeg.

Jones, G, and N. Armstrong. 2001. Long-term trends in total nitrogen and total phosphorus concentrations in Manitoba streams. Manitoba Conservation Report No. 2001-07. 154 pp.

Land Resource Unit, 1998. Soils and Terrain. An Introduction to the Land Resource. Rural Municipality of DeSalleaberry. Information Bulletin 98-22, Brandon Research Centre, Research Branch, Agriculture and Agri-Food Canada.

Land Resource Unit, 1998. Soils and Terrain. An Introduction to the Land Resource. Rural Municipality of Hanover. Information Bulletin 98-23, Brandon Research Centre, Research Branch, Agriculture and Agri-Food Canada.

Land Resource Unit, 1998. Soils and Terrain. An Introduction to the Land Resource. Rural Municipality of La Broquerie. Information Bulletin 98-24, Brandon Research Centre, Research Branch, Agriculture and Agri-Food Canada.

Land Resource Unit, 1998. Soils and Terrain. An Introduction to the Land Resource. Rural Municipality of Stuartburn. Information Bulletin 98-20, Brandon Research Centre, Research Branch, Agriculture and Agri-Food Canada.

Land Resource Unit, 1999. Soils and Terrain. An Introduction to the Land Resource. Rural Municipality of Piney. Information Bulletin 99-22, Brandon Research Centre, Research Branch, Agriculture and Agri-Food Canada.

Lewis, R., C. Wyrzykowski, M. Wisener. 2004. Watershed-based Census of Agriculture in Canada (as reprocessed by farm headquarters to the Manitoba Gross watershed delineations, Version 5, in the Province of Manitoba with variable totals from the 2001 Census). [electronic format]. Based on: Statistics Canada, 2001 Census of Agriculture custom tabulation, Winnipeg, Manitoba

Manitoba Agriculture and Food. 2000. Farm Practices Guidelines for Poultry Producers in Manitoba. Province of Manitoba

Manitoba Conservation. 2003. 2001-2002 Annual Report. Available from http://www.gov.mb.ca/conservation/annual-report/conservation/2002-report.pdf

Manitoba Conservation 2000. Development of a nutrient management strategy for surface waters in southern Manitoba, Winnipeg, Manitoba. Information Bulletin 2000-02E. <u>http://www.gov.mb.ca/natres/watres/nutrmgt.pdf</u>

Michalyna, W., Gardiner, Wm. and Podolsky, G., 1975. Soils of the Winnipeg Region Study Area. Report D14. Canada-Manitoba Soil Survey. Winnipeg.

Natural Resources Canada. Geogratis CLI Home Page. <u>http://geogratis.cgdi.gc.ca/CLI/frames.html</u>; INTERNET; Cited 14 July 2003. Updated January 2000.

Smith, R.E., W.A. Ehrlich, J.S. Jameson, and J.H. Cayford. 1964. Report of the Soil Survey of the South-Eastern Map Sheet Area. Soils Report No. 14. Canada-Manitoba Soil Survey. Winnipeg. 108 pp and 1 map.

Smith, R.E., G.F. Veldhuis, G.F. Mills, R.G. Eilers, W.R. Fraser, G.W. Lelyk. 1998. Terrestrial Ecozones, Ecoregions, and Ecodistricts, An Ecological Stratification of Manitoba's Natural Landscapes. Technical Bulletin 98-9E. Land Resource Unit, Brandon Research Centre, Research Branch, Agriculture and Agri-Food Canada, Winnipeg, Manitoba.

Soil Classification Working Group. 1998. The Canadian System of Soil Classification, 3rd Edition. Research Branch, Agriculture and Agri-Food Canada.

Statistics Canada. 2002. Census of Agriculture. Available from http://www.statcan.ca/english/freepub/95F0301XIE/about.htm; INTERNET; Cited 27 May 2003.

Toews, E. 1990. Peatland Farming Manual. Manitoba Peatland Farming Association. Manitoba Agriculture, Manitoba, Canada.

Watmough, M.D., D. Ingstrup, D. Duncan, and H. Schinke. 2002. Prairie Habitat Joint Venture Habitat Monitoring Program Phase I: Recent habitat trends in NAWMP targeted landscapes. Technical Report Series No. 391. Canadian Wildlife Service, Edmonton, Canada

Wischmeier, W.H. and D.D Smith. 1965. Predicting Rainfall-erosion Loss from Crop land East of the Rocky Mountains. U.S. Department of Agriculture, Agriculture Handbook No. 282, U.S. Government Printing Office, Washington, D.C.

<u>Glossary</u>

Alluvial – An accumulation of alluvium (sediment), consisting of gravel or clay, in the bed of a former river. Glaciers may also deposit alluvium known as till.

Animal Unit - the number of livestock required to excrete 73 kg (160 lbs) of nitrogen in a 12-month period in Manitoba

Erosion – The wearing away of the land surface by detachment and transportation of soil and rock material through the action of moving water, wind or other geological processes.

Field Capacity – The amount of water remaining in a soil after free water has been allowed to drain away after the root zone had been previously saturated

Glacial till – Unstratified glacial deposits consisting of clay, sand, gravel and boulders intermingled in any proportion.

Lacustrine – Mineral deposits that either have settled from suspension in bodies of standing fresh water or have accumulated at their margins through wave action. The sediments generally consist of either stratified are varved (layered annual deposits) fine sand, silt and clay deposited on the lake bed; or moderately well sorted and stratified sand and coarser materials that are beach and other near-shore sediments transported and deposited by wave action.

Mean Annual Growing Degree Days - accumulation of days that the daily average temperature [average of maximum and minimum temperature] is greater than 5 C multiplied by the number of 5 C the daily average exceeds 5 C for each day).

Moisture Deficit – Precipitation [P] – Potential Evapotranspiration [PE] = Moisture Deficit accumulated over the growing season by August 13 or September 30.

Permeability – The ease with which water and air pass through the soil to all parts of the profile.

Appendix A

Classif	ication Scheme: Land Cover Mapping of Manitoba
1. Annual crop land:	Land that is normally cultivated on an annual basis.
2. Forage:	Perennial forages, generally alfalfa or clover with blends of tame grasses.
3. Grassland:	Areas of native or tame grasses, may contain scattered stands of trees
4. Trees:	Lands that are primarily in tree cover
5. Wetlands:	Areas that are wet, often with sedges, cattails, and rushes
6. Water	Open water – lakes, rivers, streams, ponds, and lagoons
7. Urban and Transportation:	Towns, roads, railways, quarries

Appendix B

The Census of Agriculture is conducted concurrently with the Census of Population by Statistics Canada, every five years. The 2001 Census of Agriculture is the most recent census to date. The Census of Agriculture collects information from operations that meet the definition of a census farm.

In 1996 and 2001, a census farm was defined as "an agricultural operation that produces at least one of the following products intended for sale: crops (hay, field crops, tree fruits or nuts, berries or grapes, vegetables, seed); livestock (cattle, pigs, sheep, horses, game animals, other livestock); poultry (hens, chickens, turkeys, chicks, game birds, other poultry); animal products (milk or cream, eggs, wool, furs, meat); or other agricultural products (Christmas trees, greenhouse or nursery products, mushrooms, sod, honey, maple syrup products)" (Statistics Canada 2002).

The *Statistics Act* requires that all census information be kept confidential. As a result, any data that could disclose information concerning a particular agricultural operation or individual is suppressed in the data tables reported by Statistics Canada. Suppressed data are, however, included in the aggregate subtotals and totals within each data table. In instances where a geographic area has very few agricultural operations, data are not released separately, but are merged with data from one or more geographically adjacent areas (Statistics Canada 2002).

2001 Census of Agriculture Terms and Definitions (*Source: Statistics Canada* 2002)

Agricultural operation: a farm, ranch or other agricultural operation producing agricultural products for sale. Other agricultural operations include, for example: feedlots, greenhouses, mushroom houses, nurseries, Christmas tree farms, fur farms, hobby farms, game farms, beekeeping, sod, fruit and berry, maple syrup and poultry hatchery operations. Sales in the past 12 months are not necessary but there **must** be the intent of sales.

Summerfallow land: a term used to describe land on which no crop will be grown in order to conserve moisture but which will be sprayed or cultivated for weed control.

Tame or seeded pasture: grazeable land that has been improved from its natural state by seeding, draining, irrigating, fertilizing or weed control.

Natural land for pasture: grazeable land that has not been recently improved.

Tillage: the practice of working the soil for the purpose of bringing about the more favourable conditions for plant growth. Clean-till (conventional tillage) incorporates most of the crop residue into the soil, while minimum-till (conservation tillage) retains most of the crop residue on the surface. No-till includes direct seeding into stubble or sod.

Crop rotation: a practice where crops are alternated each year, or in a multi-year cycle, for soil conservation or disease control purposes.

Permanent grass cover: a practice where a field or land is kept in grass cover indefinitely to keep the soil from being eroded away.

Winter cover crops: crops such as oats or fall rye seeded in the fall to protect the soil from water and wind erosion during the winter and from heavy rains and runoff in the spring.

Green manure crops for plough down: the practice of incorporating young green plants into the soil for fertility purposes. These plants are usually grown with the single purpose of being used as a soil improver. Common examples are buckwheat and red clover.

Contour cultivation: the practice of cultivating the field across the slope to reduce soil erosion from rapid water runoff.

Grassed waterways: either natural or constructed, to control soil erosion. The waterway is permanently grassed and consists of a shallow channel, which is designed to slow down runoff water. The grass stabilizes the soil and prevents it from being washed away. They are usually shaped to allow easy crossings by farm machinery.

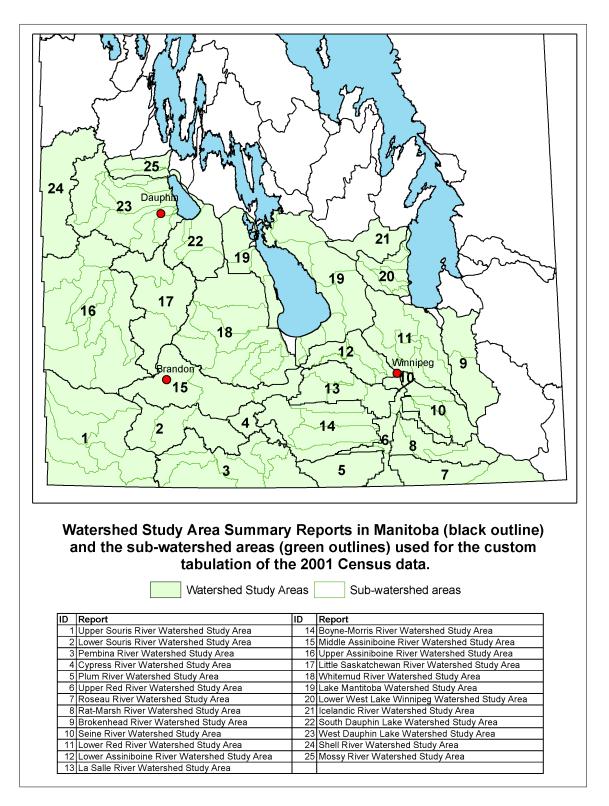
Strip-cropping: (or strip farming, field strip-cropping or wind strip-cropping) a method of controlling soil erosion by dividing the farm into narrow fields having different crops, with or without fallow. For example, the narrow fields may be alternately cropped—uncropped (e.g., wheat–fallow–wheat–fallow) or they may be strips of different crops (cereals, corn, soybeans). The widths of the cropped strips are usually multiples of a tillage implement or spray boom, etc.

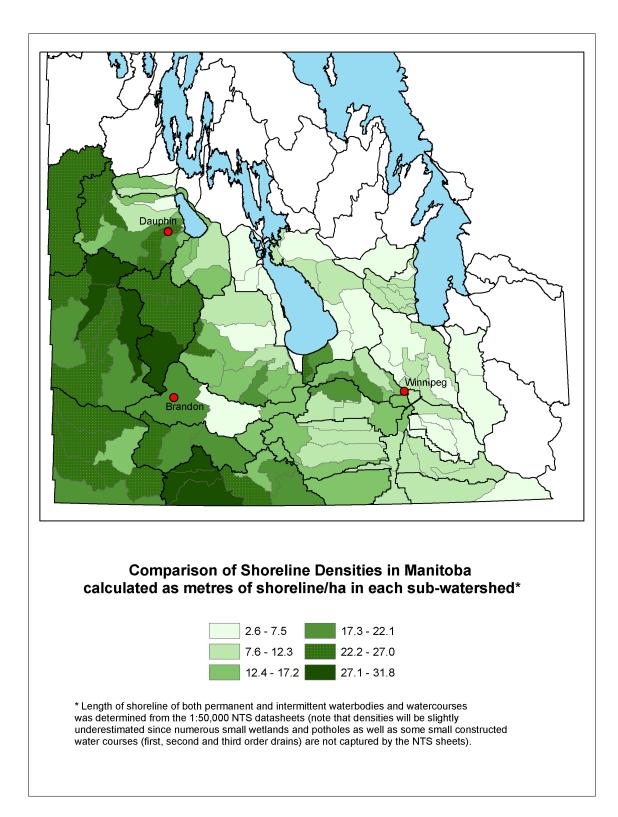
Windbreaks or shelterbelts: trees, either planted or naturally present. This practice is used more predominantly in western Canada where farmland is more susceptible to wind action and where trapping snow for moisture is important.

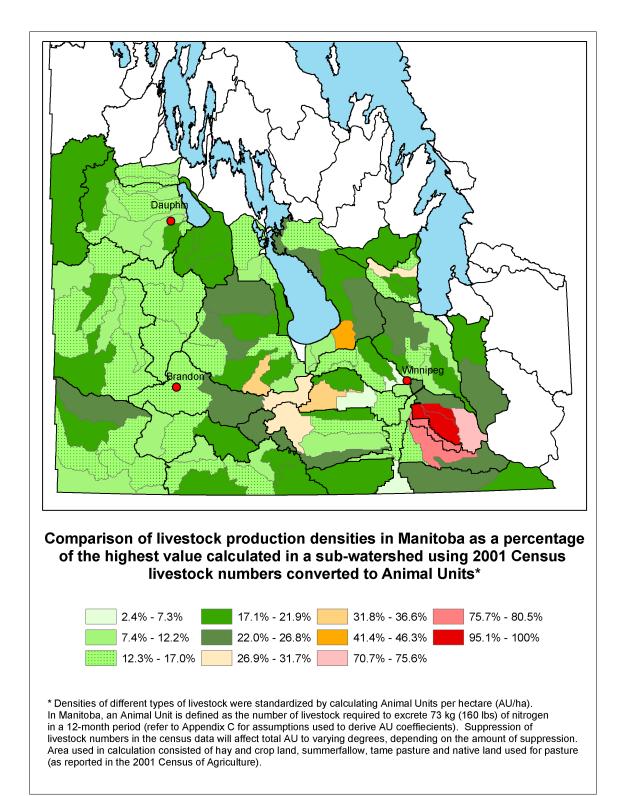
<u>Appendix C</u> Summary of Animal Unit coefficients used in Manitoba as compared to those used for calculations in this report¹. Assumptions are given in the following Table.

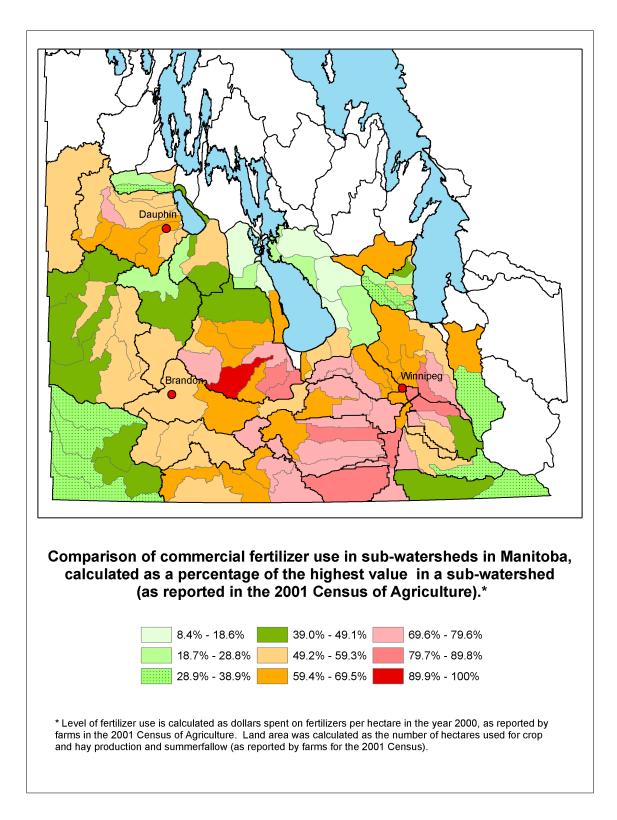
Livestock	Animal Units produced by one animal (MAFRI)	Animal Unit coefficient used in report
Dairy		
Milking Cows (including associated livestock)	2.000	2.000
Beef		
Beef Cows, incl. associated livestock	1.250	1.250
Backgrounder	0.500	λ.
Summer pasture	0.625	} 0.631
Feedlot	0.769	/
Hogs		
Sows, farrow-to-finish	1.250	
Sows, farrow-to-weanling	0.313	0.313
Sows, farrow-to-nursery	0.250	
Weanlings	0.033	
Grower/finishers	0.143	0.143
Boars (artificial insemination operations)	0.200	0.200
Chickens		
Broilers	0.0050	0.0050
Roasters	0.0100	
Layers	0.0083	0.0083
Pullets	0.0033	0.0033
Turkeys		
Broilers	0.010	\
Heavy Toms	0.020	} 0.014
Heavy Hens	0.010	/
Horses (PMU)		
Mares, including associated livestock	1.333	1.00
Sheep		
Ewes, including associated livestock	0.200	0.200
Feeder Lambs	0.063	
Goats	0.143	0.143
Bison		
Cow	1.00	\
Bull	1.00	} 0.8875
Calf	0.25	/
Elk	0.50	
Cow	0.53	
Bull	0.77	} 0.520
Calf	0.05	/

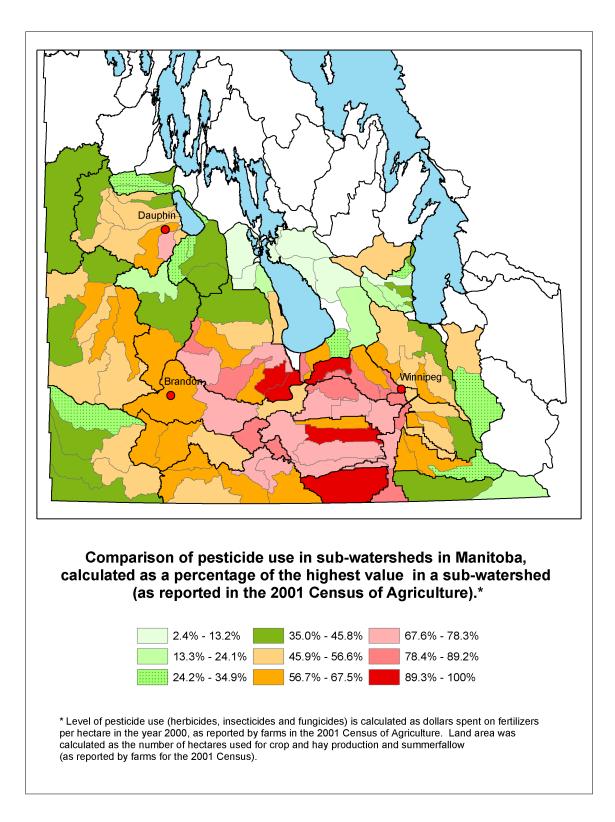
1. An Animal Unit is defined as the number of livestock required to excrete 73 kg (160 lbs) of nitrogen in a 12-month period (as defined in the Farm Practices Guidelines for Poultry Producers in Manitoba)


Livestock	Manitoba Animal Unit Category	Census Category	Assumptions Used for Animal Unit Calculations with census data	
Dairy	Milking cows (including associated livestock)	Dairy cows	Assumed categories are equal.	
Beef	Beef cows	Beef cows	Assumed number of beef cows reported in 2001 Census equal cow/calf pairs	
	Backgrounder Summer pasture Feedlot cattle	Heifers and steers for slaughter or feeding 1 yr and older (combined categories)	Assumed steers and heifers reported in these census categories are split into the three categories (communication with MAFRI). Animal unit coefficient determined using this ratio.	
Pigs Sows, farrow-to-weanling Grower/finishers		Sows Grower and finisher pigs	Assumed there are no farrow-to-finish operations and no weanling operations in Manitoba – only farrow-to- weanling and grower/finisher operations.	
	Boars (artificial insemination operations)	Boars	Assumed all boars reported in the 2001Census are from artificial inseminations.	
Chickens	Broilers	Broilers and roasters	Assumed all birds reported in the census category are broilers (communication with MAFRI).	
	Layers	Laying hens (19 weeks and older)	Assumed categories are equal.	
	Pullets	Pullets (under 19 weeks)	Assumed categories are equal.	
	Broiler breeding hens	Laying hens in hatcheries	Assumed all laying hens in hatchery supply flocks reported in Manitoba are broiler breeder hens.	
Turkeys	Broiler, Heavy Toms, Heavy Hens	Turkeys	Assumed "turkeys" represents 20% boilers, 40% heavy toms, 40% heavy hens (communication with MAFRI). Animal unit coefficient is determined using this ratio.	
Sheep	Ewes, including associated livestock	Ewes	Assumed ewe/lamb pairs (communication with MAFRI).	
	Feeder lambs	Lambs	Assumed no feeder lambs in province since numbers are very small and cannot be determined from census data (communication with MAFRI).	
Horses	Horses	Total horses and ponies	Assumed each animal produces 1 Animal Unit – PMU farms not identified in census (communication with MAFRI).	


Summary of assumptions made in calculating Animal Units¹ from 2001 Agricultural census data.


Livestock	Manitoba Animal Unit Category	Census Category	Assumptions Used for Animal Unit Calculations with census data	
Bison	Bison	Bison	Assumed adults represent 85% and calves represent 15% of bison population in Manitoba (communication with MAFRI). Animal unit coefficient is determined using this ratio.	
Elk	Elk	Elk	Number of calves and sex of animals not identified in census – assumed 45% cows, 35% bulls and 20% calves (communication with MAFRI). Animal unit coefficient is determined using this ratio.	
Goats	Goats	Goats	Number of kids and sex of animals not identified in census – assumed 7 goats make up one Animal Unit, irregardless of age and sex.	


1. One Animal Unit is defined as the number of livestock required to excrete 73 kg (160 lbs) of nitrogen in a 12-month period (as defined in the Farm Practices Guidelines for Poultry Producers in Manitoba)


Appendix D

