Falcon lake annual water report

2022

This report is to provide public awareness about the operation, requirements and results of the class 2 water treatment system for falcon lake MB. Under the Environment Act's Water and Wastewater Facility Operators Regulation this plant is classed as a Class 2 Treatment Facility because of the population it serves. Copies of this report will be made available at the falcon district office as well as on the Manitoba government website. Residents will be made aware of this report via e-mail and/or signage posted on bulletins around town. The Whiteshell cottagers association will also direct residents on how to access this report.

We strive to provide clean potable water to our families

Plant operators and classification

Matthew Macinnis – MM3, WT2, WD2 Steve Kuharski – MM1, WT2, WD2 Jacob Klassen – TRH, WT1, WD1

Where does our water come from?

We have a very good clean and sufficient water source within close proximity of the
water plant. This water source is an underground aquifer that is a completely separate
water source than the lake, undergoing multiple tests throughout the years and having
no influence from the lake water. We access this raw water source from a large diameter
dug well that we have installed pumps to lift it to the water plant.

What is done to this raw water once it's at the water plant?

• Once the water is pumped into the plant, chlorine (sodium hypochlorite) is added and mixed in the first reactor tank. From there, caustic soda (sodium hydroxide) is added as it enters reactor 2 to then be mixed. After the chemicals have been mixed the water then enters our iron/manganese filters which are filled with multiple layers of different sands and media which take out any impurities like iron from the water. Once this treatment process has finished the now clean potable water is stored in 4 underground reservoirs totaling 121,000 gals of potable water that is constantly circulating from one to the other until it is needed in the distribution system. We are required to have a minimum of 20 minutes of chlorine contact time. This means that the chlorine must have alteast 20 minutes of contact with the raw water before going to the distribution system. Between the four filtration tanks and four reservoirs we exceed the minimum requirement. There are another set of pumps for the stored potable water to distribute water to the town and maintain a constant pressure in the system at all times.

What is the purpose for adding these chemicals to the water?

• The main purpose of the chlorine is that it disinfects and kills any harmful bacteria that may be present in the water. This makes chlorine your number one defense in providing safe drinking water, but it also helps with filtration process by pulling out particulates from the water so the filters can then remove them. The caustic soda is added to keep the water at a neutral PH level, if the PH is too high it will start scaling and restricting pipes, too low and it will eat or corrode pipes and fixtures. So with a neutral PH level your pipes and fixtures in your home can hopefully last as long as possible.

How does the plant operate when no one is there?

• The water plant is controlled by a SCADA system which monitors the operation of the plant 24/7. It monitors system pressure, raw pumps, distribution pumps, water level, water flow, chlorine levels, PH, power, air pressure, security system, etc. If anything goes outside of our set parameters the automated system has an audible alarm, beacon

light as well as immediately calls our operators. When something does go wrong our operators can access this system anytime from anywhere to take control and start making immediate corrective actions keeping our water safe at all times.

So what would happen during a power outage?

• If and when a power outage does occur the water plant is equipped with a generator that provides ample amount of power and starts up automatically to keep everything running. It also has a large power bank to keep things running for the couple seconds it takes for the generator to start up. The SCADA system will also call our operators to notify them that the water plant has lost power and running on the generator, so you may be left in the dark but you won't be left without water.

How can we be assured our water is safe at all times?

There is an entire branch of the government designated to monitoring water plants
throughout the province called The Office of Drinking Water. These water officers work
very closely with plant operators to help ensure water quality is at its best while also
making sure operators are following all requirements under The Drinking Water Safety
Acts and it's regulations on a daily basis.

What kind of regulations need to be met?

- The Office of Drinking Water has different requirements for ever system depending on the water source, population, treatment method, etc. Falcon lake water treatment plant is required to test chlorine free and total in person every day of the year. We must also send water samples to an accredited laboratory every 2 weeks to be analyzed for E-coli and total coliforms. We do this test to the raw water, treatment water at the plant and from various sample points around town in the distribution system. The lab results are sent to the water officer every 2 weeks and our daily monitoring of chlorine levels are sent to the officer every month. We also must test for manganese on the raw, treated and distribution once a year as well as once every three years manganese samples must be taken quarterly on the distribution system. Failing to meet set requirements under The Drinking Water Safety Orders, charges, boil water advisories or water quality advisories.
- What is free and total? And how do you know how much chlorine to make the water safe?

• Free chlorine is the amount of unused chlorine in the water and total chlorine is the total amount of chlorine that was in the water, the difference between the two is how much chlorine was needed to treat the water and make it safe. The Drinking Water Safety Acts requires that we maintain no less than 0.5 mg/l of free chlorine at the water plant at all times as well as 0.1 mg/l in the piping/distribution system. The chart below is our free and total readings at the water plant for everyday of the year. The second chart shows our bi weekly readings of the distribution system.

	Janu	uary	<u>Febr</u>	<u>ruary</u>	<u>Ma</u>	<u>ırch</u>	Ar	<u>oril</u>	<u>M</u>	<u>av</u>	<u>Ju</u>	<u>ne</u>	Ju	ıly	Aug	gust	Septe	ember_	<u>Oct</u>	<u>ober</u>	Nove	<u>mber</u>	<u>Dece</u>	mber_
	<u>Free</u>	total	<u>Free</u>	total	<u>Free</u>	total	<u>Free</u>	total	<u>Free</u>	total	<u>Free</u>	total	<u>Free</u>	total	<u>Free</u>	total	<u>Free</u>	total	<u>Free</u>	total	<u>Free</u>	total	<u>Free</u>	<u>total</u>
1	<mark>.61</mark>	.72	<mark>.54</mark>	<mark>.62</mark>	<mark>.57</mark>	<mark>.68</mark>	<mark>.57</mark>	<mark>.66</mark>	<mark>.59</mark>	.72	<mark>.59</mark>	.71	<mark>.70</mark>	.81	<mark>.55</mark>	<mark>.64</mark>	<mark>.62</mark>	.78	<mark>.63</mark>	.71	<mark>.59</mark>	.70	<mark>.58</mark>	.76
2	.58	.74	.53	<mark>.62</mark>	.55	.66	.54	.67	.62	.72	.59	.72	.73	.84	.69	.83	.68	.81	.61	.73	.58	.66	.57	<mark>.69</mark>
3	<mark>.60</mark>	.72	<mark>.71</mark>	.85	<mark>.67</mark>	.76	.53	.63	<mark>.63</mark>	.72	<mark>.60</mark>	.74	<mark>.65</mark>	.73	<mark>.68</mark>	.83	<mark>.55</mark>	.65	<mark>.59</mark>	.73	<mark>.58</mark>	.65	.58	.67
4	.52	.63	<mark>.56</mark>	<mark>.64</mark>	.68	.79	.57	.66	.59	.67	.59	.71	.74	.87	<mark>.67</mark>	.78	.63	.73	.55	.67	.52	.61	.58	<mark>.67</mark>
5	<mark>.65</mark>	.73	<mark>.51</mark>	<mark>.62</mark>	<mark>.72</mark>	.83	<mark>.55</mark>	.64	<mark>.57</mark>	.68	<mark>.63</mark>	.71	<mark>.55</mark>	.64	<mark>.61</mark>	.71	<mark>.65</mark>	<mark>.76</mark>	<mark>.59</mark>	.70	<mark>.55</mark>	.62	.55	.65
6	.66	.72	.58	<mark>.67</mark>	.74	.86	.58	.69	<mark>.64</mark>	.75	.54	.63	1.0 5	1.1 5	.57	.67	.55	.64	.59	.69	<mark>.56</mark>	.64	.54	<mark>.66</mark>
7	<mark>.55</mark>	<mark>.66</mark>	<mark>.61</mark>	<mark>.71</mark>	<mark>.76</mark>	.88	<mark>.58</mark>	.68	<mark>.59</mark>	.68	<mark>.53</mark>	<mark>.62</mark>	<mark>.69</mark>	.81	<mark>.71</mark>	.83	<mark>.66</mark>	.78	<mark>.57</mark>	.68	<mark>.59</mark>	.68	<mark>.65</mark>	.72
8	.65	<mark>.67</mark>	<mark>.62</mark>	.74	<mark>.76</mark>	.85	.55	<mark>.66</mark>	.58	.68	.60	.72	.68	.78	.55	.67	.54	.66	.57	<mark>.67</mark>	.57	.68	.64	<mark>.75</mark>
9	<mark>.61</mark>	<mark>.69</mark>	<mark>.68</mark>	.80	<mark>.68</mark>	.79	<mark>.51</mark>	.62	<mark>.60</mark>	<mark>.68</mark>	<mark>.69</mark>	.78	<mark>.52</mark>	<mark>.65</mark>	<mark>.68</mark>	.79	<mark>.70</mark>	.84	<mark>.61</mark>	<mark>.69</mark>	<mark>.65</mark>	.77	<mark>.65</mark>	.76
10	<mark>.61</mark>	<mark>.76</mark>	<mark>.67</mark>	.78	<mark>.64</mark>	.75	.50	.61	.62	.71	<mark>.68</mark>	.75	.55	.64	.63	.74	<mark>.64</mark>	.74	.56	<mark>.65</mark>	.68	.80	.67	<mark>.76</mark>
11	<mark>.61</mark>	.74	<mark>.63</mark>	<mark>.71</mark>	<mark>.63</mark>	.73	<mark>.52</mark>	.62	<mark>.63</mark>	.74	<mark>.68</mark>	.75	<mark>.68</mark>	<mark>.75</mark>	<mark>.65</mark>	.74	<mark>.59</mark>	.68	<mark>.55</mark>	<mark>.65</mark>	<mark>.71</mark>	.79	<mark>.73</mark>	.84
12	.61	<mark>73</mark>	<mark>.62</mark>	.73	<mark>.61</mark>	.74	.55	.64	.68	.75	<mark>.68</mark>	.76	.83	.91	<mark>.63</mark>	.75	<mark>.66</mark>	.78	.53	<mark>.62</mark>	<mark>.78</mark>	.92	<mark>.78</mark>	.88
13	.57	<mark>.65</mark>	<mark>.66</mark>	.79	<mark>.64</mark>	.71	<mark>.56</mark>	<mark>.66</mark>	<mark>.60</mark>	.71	.59	.70	<mark>.63</mark>	.74	<mark>.58</mark>	<mark>.67</mark>	<mark>.66</mark>	.78	<mark>.56</mark>	<mark>.67</mark>	<mark>.75</mark>	.88	<mark>.64</mark>	.83
14	.59	.71	<mark>.78</mark>	.89	.58	.71	<mark>.66</mark>	<mark>.76</mark>	.57	<mark>.64</mark>	<mark>.94</mark>	1.0 5	<mark>.74</mark>	.87	.57	.71	.63	<mark>.77</mark>	.57	<mark>.74</mark>	.83	.97	.59	<mark>.72</mark>
15	<mark>.53</mark>	<mark>.63</mark>	<mark>.75</mark>	<mark>.86</mark>	<mark>.60</mark>	<mark>.67</mark>	<mark>.64</mark>	.72	<mark>.55</mark>	<mark>.64</mark>	<mark>.58</mark>	<mark>.68</mark>	<mark>.60</mark>	.71	<mark>.64</mark>	<mark>.72</mark>	<mark>.56</mark>	<mark>.66</mark>	<mark>.58</mark>	<mark>.69</mark>	<mark>.76</mark>	.85	<mark>.63</mark>	.71
16	.60	<mark>.73</mark>	<mark>.70</mark>	<mark>.81</mark>	<mark>.54</mark>	<mark>.64</mark>	<mark>.62</mark>	<mark>.75</mark>	.58	<mark>.66</mark>	<mark>.58</mark>	<mark>.68</mark>	<mark>.64</mark>	<mark>.75</mark>	<mark>.54</mark>	<mark>.62</mark>	<mark>.61</mark>	<mark>.72</mark>	<mark>.56</mark>	<mark>.64</mark>	<mark>.62</mark>	<mark>.71</mark>	.59	.68
17	<mark>.63</mark>	<mark>.74</mark>	<mark>.67</mark>	<mark>.79</mark>	<mark>.56</mark>	<mark>.64</mark>	<mark>.73</mark>	<mark>.81</mark>	<mark>62</mark>	<mark>.69</mark>	<mark>.78</mark>	<mark>.86</mark>	<mark>.62</mark>	<mark>.73</mark>	<mark>.79</mark>	<mark>.88</mark>	<mark>.65</mark>	<mark>.77</mark>	<mark>.61</mark>	<mark>.73</mark>	<mark>.67</mark>	<mark>.78</mark>	<mark>.60</mark>	.70
18	.54	<mark>.62</mark>	<mark>.66</mark>	<mark>.74</mark>	<mark>.59</mark>	<mark>.68</mark>	<mark>.65</mark>	<mark>.77</mark>	.50	<mark>.60</mark>	<mark>.81</mark>	<mark>.91</mark>	<mark>.78</mark>	<mark>.87</mark>	<mark>.57</mark>	<mark>.69</mark>	<mark>.67</mark>	<mark>.77</mark>	<mark>.68</mark>	<mark>.79</mark>	<mark>.71</mark>	<mark>.81</mark>	.58	<mark>.69</mark>
21	<mark>.65</mark>	<mark>.79</mark>	<mark>.57</mark>	<mark>.66</mark>	<mark>.57</mark>	<mark>.66</mark>	<mark>.71</mark>	.82	<mark>.54</mark>	<mark>.61</mark>	1.0 4	1.1 5	<mark>.68</mark>	<mark>.78</mark>	<mark>.61</mark>	<mark>.75</mark>	<mark>.68</mark>	<mark>.78</mark>	<mark>.84</mark>	<mark>.93</mark>	<mark>.72</mark>	<mark>.83</mark>	<mark>.58</mark>	<mark>.70</mark>
22	<mark>.67</mark>	<mark>.75</mark>	<mark>.54</mark>	<mark>.65</mark>	<mark>.57</mark>	<mark>.67</mark>	<mark>.68</mark>	<mark>.78</mark>	<mark>.57</mark>	<mark>.65</mark>	1.0 4	1.1 8	<mark>.70</mark>	<mark>.78</mark>	<mark>.72</mark>	<mark>.88</mark>	<mark>.69</mark>	<mark>.78</mark>	<mark>.80</mark>	<mark>.87</mark>	<mark>.70</mark>	<mark>.81</mark>	<mark>.54</mark>	<mark>.67</mark>
23	<mark>.64</mark>	<mark>.75</mark>	<mark>.55</mark>	<mark>.66</mark>	<mark>.54</mark>	<mark>.62</mark>	<mark>.68</mark>	.79	<mark>.63</mark>	<mark>.76</mark>	1.1 4	1.2 2	<mark>.55</mark>	.63	<mark>.65</mark>	<mark>.77</mark>	<mark>.59</mark>	.70	<mark>.71</mark>	<mark>.84</mark>	<mark>.74</mark>	.83	.55	<mark>.68</mark>
24	<mark>.66</mark>	<mark>.77</mark>	<mark>.62</mark>	<mark>.73</mark>	<mark>.53</mark>	<mark>.62</mark>	<mark>.66</mark>	<mark>.79</mark>	.59	<mark>.70</mark>	<mark>.62</mark>	.80	<mark>.57</mark>	<mark>.67</mark>	.53	<mark>.64</mark>	<mark>.59</mark>	<mark>.68</mark>	<mark>.72</mark>	<mark>.81</mark>	<mark>.64</mark>	<mark>.75</mark>	.65	<mark>.76</mark>
25	<mark>.60</mark>	<mark>.67</mark>	<mark>.64</mark>	.77	<mark>.59</mark>	<mark>.69</mark>	<mark>.74</mark>	.85	<mark>.55</mark>	<mark>.63</mark>	<mark>.58</mark>	<mark>.69</mark>	<mark>.75</mark>	.86	<mark>.67</mark>	.80	.53	<mark>.64</mark>	.55	<mark>.67</mark>	<mark>.63</mark>	.75	<mark>.64</mark>	<mark>.76</mark>
26	.59	<mark>.68</mark>	<mark>.62</mark>	<mark>.71</mark>	<mark>.56</mark>	<mark>.67</mark>	. <mark>68</mark>	.79	<mark>.79</mark>	<mark>.92</mark>	<mark>.59</mark>	.70	<mark>.57</mark>	.69	<mark>.65</mark>	<mark>.74</mark>	<mark>.59</mark>	.70	<mark>.63</mark>	<mark>.75</mark>	<mark>.62</mark>	.74	.60	.73
27	<mark>.56</mark>	<mark>.65</mark>	<mark>.57</mark>	.68	<mark>.57</mark>	<mark>.69</mark>	<mark>.65</mark>	.77	<mark>.99</mark>	1.1 9	<mark>.61</mark>	.70	<mark>.56</mark>	<mark>.66</mark>	<mark>.69</mark>	.81	<mark>.67</mark>	.75	<mark>.64</mark>	<mark>.73</mark>	<mark>.61</mark>	.69	<mark>.69</mark>	.81
28	.54	<mark>.66</mark>	<mark>.58</mark>	<mark>.69</mark>	.57	<mark>.68</mark>	<mark>.64</mark>	<mark>.75</mark>	<mark>.84</mark>	1.0 2	<mark>.64</mark>	.72	. <mark>51</mark>	<mark>.60</mark>	<mark>.68</mark>	.81	. <mark>61</mark>	.70	<mark>.59</mark>	.70	<mark>.62</mark>	<mark>.69</mark>	.70	.84
29	<mark>.62</mark>	.68			<mark>.59</mark>	.70	<mark>.63</mark>	<mark>.72</mark>	<mark>.67</mark>	<mark>.81</mark>	<mark>.56</mark>	<mark>.64</mark>	<mark>.82</mark>	<mark>.93</mark>	<mark>.52</mark>	.62	<mark>.58</mark>	.69	<mark>.61</mark>	<mark>.69</mark>	<mark>.60</mark>	.71	<mark>.71</mark>	.85
30	.58	.71			.59	.71	<mark>.62</mark>	<mark>.71</mark>	.75	.87	.56	<mark>.65</mark>	.69	.79	.66	.82	.55	<mark>.69</mark>	.54	.68	<mark>.62</mark>	.71	.63	.72
31	<mark>.56</mark>	<mark>.66</mark>			<mark>.60</mark>	<mark>.71</mark>			<mark>.68</mark>	<mark>.76</mark>			<mark>.68</mark>	<mark>.79</mark>	<mark>.69</mark>	. <mark>.85</mark>			<mark>.60</mark>	<mark>.69</mark>			<mark>.71</mark>	<mark>.81</mark>

Date	Location	Free	Total	Date	Location	Free	total
Jan 12	Staff trailer village	.30	.39	Jul 13	Lunch room	.51	.62
Jan 2	Maintenance yard	.48	.57	Jul 25	Staff trailer village	.53	.62
Feb 15	Staff trailer village	.46	.55	Aug 9	Cottonwood	.53	.60
Feb 23	Maintenance yard	.42	.50	Aug 10	Cottonwood	.42	.51
Mar 9	Lunch room	.52	.67	Aug 22	townsite	.41	.50
Mar 22	Staff trailer village	.42	.51	Sept 7	Maintenance yard	.41	.54
Apr	Maintenance yard	.40	.52	Sept 21	Staff trailer village	.25	.32
Apr 20	office	.41	.50	Oct 4	Maintenance yard	.44	.50
May 4	office	.43	.52	Oct 20	Maintenance yard	.39	.50
May 16	Seasonal trailer village	.29	.39	Nov 3	Staff trailer village	.33	.41
May 17	Lakeshore campground	.29	.41	Nov 18	Lunch room	.53	65
Jun 14	Staff trailer village	.51	.60	Dec 2	Lunch room	.34	.60
Jun 15	Maintenance yard	.52	.61	Dec 15	Lunch room	.50	.60
Jun 16	Lakeshore campground	.45	.54	Dec 29	Maintenance yard	.50	.62

What happens if you fail to meet any of these regulations?

With constant computer monitoring of the chlorine levels, we are warned of the
chlorine becoming too low before it ever gets below the regulation and the
issue is attended to immediately and corrected. If any lab samples come back
with positive results then the laboratory immediately notifies us as well as the
Water Officer. With a positive result for bacteria, The Office of Drinking Water
and / or Medical Officer of Health will provide instructions on how to proceed.

Will we be notified if a problem occurs?

- Yes, if for any reason a boil water advisory is put in place then you will be notified via call/e-mail list and signage will be posted around town. The Whiteshell cottagers association will also immediately be notified and can reach residents through social platforms.
- Is there anything else in the water that should be monitored or regulations you should meet?
 - Our main focus is the disinfection and bacteria in the water because that has
 the most concerning effect to the publics' direct health, but yes there is much
 more that we monitor. Things that don't directly affect your health like how the
 water looks, tastes, smells, etc. is monitored through a full lab analysis to insure
 their limits are within the regulated guidelines. Below is a full analytical report
 on our water from the laboratory, this includes raw water, treated water and
 distribution water giving any limits set and the results of our water.

ANALYTICAL REPORT

Physical Tests (WATER)

Analyte	Unit	Sample	ALSID ed Date ed Time mnle 10 Guide Limit #2	L251 06 29-SEF 15:3 FAI CON I -RAI	P-20 35 AKF 1	L25106 29-SE 15:3 FALCON -TREA	P-20 5 1 AKF 2
Colour, True	CU	15	_	<5.0		<5.0	
Conductivity	umhos/cm	-	-	678		693	
Hardness (as CaC03)	mg/l	-	-	228	"Te	233	HTO
Langelier Index (4 C)	No Unit	-	_	-0.057		0.16	
Langelier Index (60 C)	No Unit	-	_	0.71		0.93	
pH	pH units	7.00-10.5	-	7.62		7.83	
Total Dissolved Solids	mg/l	500	-	410		422	
Transmittance, UV (254 nm)	T/cm	-		91.0		92.7	
Turbidity	NTU	_	_	48.1		0.52	

Federal Guidelines for Canadian Drinking Water Quality (JAN, 2020)

#1: GCDWQ - Aesthetic Objective/Other Value (Jan.2020)

#2: GCDWQ - Maximum Acceptable Concentrations (MACs-Jan.2020)

Anions and Nutrients (WATER)

			ALSID	L2510633-1	L251 0633-2
			led Date	29-SEP-20	29-SEP-20
			led Time	15:35	15:35
			mple 10	FALCON LAKE 1	FALCON LAKE 2
		Guide	Guide	-RAW	-TREATED
Analyte	Unit	Limit #1	Limit #2		
Alkalinity, Total (as CaC03)	mg/L	-	-	155	155
Ammonia, Total (as N)	mg/l	-	-	0.052	0.017
Bicarbonate (HC03)	mg/l	-	-	189	189
Bromide (Br)	mg/l	-	-	0.050	<0.010
Carbonate (C03)	mg/l	-	-	<0.60	<0.60
Chloride (CI)	mg/L	250	-	107	110
Fluoride (F)	mg/l	-	1.5	0.066	0.064
Hydroxide (OH)	mg/l	-	-	<0.34	<0.34
lodide (I)	mg/L	-	-	<0.20	<0.20
Nitrate (as N)	mg/l	-	10	0.135	0.134
Nitrite (as N)	mg/l	-	1	<0.0010	<0.0010
Total Kjeldahl Nitrogen	mg/l	-	-	<0.20	<0.20
Total Nitrogen	mg/l	-	-	<0.20	<0.20
Sulfate (S04)	mg/L	500	-	26.7	27.1
Anion Sum	me/l	-	-	6.68	6.78
Cation Sum	me/l	-	-	6.31	6.52
Cation - Anion Balance		-	-	-2.9	-2.0

Federal Guidelines for Canadian Drinking Water Quality (JAN, 2020)

#1: GCDWQ - Aesthetic Objective/Other Value (Jan.2020)

#2: GCDWQ - Maximum Acceptable Concentrations (MACs-Jan.2020)

Organic (Inorganic Carbon (WATER)

		ALSID Sampled Date Sampled Time Sam [lle 10	L2S10633-1 29-SEP-20 15,35 FALCON LAKE 1	L2S10633·2 29-SEP-20 15:35 FALCON LAKE 2
		Guide Guide	• RAW	- TREATED
Analyte	Unit	Limit #1 Limit #2		
~~	'-			
Dissolved Organic Carbon	mg/L		2~37	2.58
Total Inorganic Carbon	mg/L		28.1	26.1
Total Organic Carbon	mg/L	- -	2.34	2~37

Federal Guidelines for Canadian Drinking Water Quality (JAN, 2020)

#1: GCDWQ • Aesthetic Objective/Other Value (Jan.2020)

#2: GCDWQ • Maximum Acceptable Concentrations (MACs-Jan.2020)

Total Metals (WATER)

Total Metals (WATER)			ALSID	L251 0633-1	L2510633-2	L2510633-3
		Samp	oled Date	29-SEP-20	29-SEP-20	29-SEP-20
			led Time	15:35	15:35	15:35
		S: Guide	ample ID Guide	FALCON LAKE 1 -RAW	FALCON LAKE 2 -TREATED	FALCON LAKE 3 - DISTRIBUTION
Analyte	Unit		Limit #2	-1271	-TKL/TTLD	- DISTRIBUTION
Aluminum (AI)-Total	mg/L	0.1		<0.0030	<0.0030	<0.0030
Antimony (Sb)-Total	mg/L		0.006	< 0.00010	< 0.00010	< 0.00010
Arsenic (As)-Total	mg/L	-	0.Q1	0.00125	0.00012	0.00011
Barium (Ba)-Total	mg/L	-	2	0.0446	0.0399	0.0408
Beryllium (Be)-Total	mg/L	_	_	< 0.00010	< 0.00010	< 0.00010
Bismuth (Bi)-Total	m9 ^{/L}	_	-	< 0.000050	< 0.000050	< 0.000050
Boron (B)-Total	mg/L	_	5	0.027	0.023	0.022
Cadmium (Cd)-Total	mg/L	_	0.005	0.0000094	< 0.0000050	0.0000092
Calcium (Ca)-Total	mg/l	_	_	66.1	67.9	67.1
Cesium (Cs)-Total	mg/L	_	_	0.000983	0.000995	0_000985
Chromium (Cr)-Total	mg/L	_	0.05	< 0.00010	< 0.00010	< 0.00010
Cobalt (Co)-Total	mg/l	_	_	0.00044	< 0.00010	< 0.00010
Copper (Cu)-Total	mg/l	1	2	0.00270	0.00686	0.104
Iron (Fe)-Total	mg/l	0.3	-	3.69	0.014	0.069
Lead (Pb)-Total	mg/l	-	0.005	< 0.000050	0.000360	0.00363
Lithium (Li)-Total	mg/L	_	-	0.0076	0.0076	0.0076
Magnesium (Mg)-Total	mg/l	-	-	15.4	15.3	15.1
Manganese (Mn)-Total	mg/l	0.02	0.12	0.259	0.00052	0.00102
Molybdenum (Mo)-Total	mg/l	_	_	0.000231	0.000155	0.000166
Nickel (Ni)-Total	mg/l	-	-	0.00303	0.00202	0.00219
Phosphorus (P)-Total	mg/l	-	-	< 0.050	< 0.050	< 0.030
Potassium (K)-Total	mg/l	-	-	3.16	3.12	3.14
Rubidium (Rb)-Total	mg/L	-	-	0.00816	0.00820	0.00801
Selenium (Se)-Total	mg/L	-	0.05	0.000101	0.000087	0.000072
Silicon (Si)-Total	mg/L	-	-	10.3	10.1	10.2
Silver (Ag)-Total	mg/l	-	-	< 0.000010	< 0.000010	0.000018
Sodium (Na)-Total	mg/L	200	-	38.2	41.1	40.4
Strontium (Sr)-Total	mg/L	-	7	0.133	0.134	0.137
Sulfur (S)-Total	mg/l	-	-			9.49
Tellurium (Te)-Total	mg/L	-	-	< 0.00020	< 0.00020	< 0.00020
Thallium (TI)-Total	mg/L	-	-	< 0.000010	< 0.000010	< 0.000010
Thorium (Th)-Total	mg/L	-	-	< 0.00010	<0.00010	< 0.00010
Tin (Sn)-Total	mg/l	-	-	< 0.00010	< 0.00010	< 0.00010

Federal Guidelines for Canadian Drinking Water Quality (JAN, 2020) #1: GCDWQ • Aesthetic Objective/Other Value (Jan.2020)

^{#2:} GCDWQ - Maximum Acceptable Concentrations (MACs.Jan.2020)

ANALYTICAL REPORT

Total Metals (WATER)

			ALSID	L251 0633-1	L251 0633-2	L251 0633-3
		Samp	led Date	29-SEP-20	29-SEP-20	29-SEP-20
		Samp	led Time	15:35	15:35	15:35
		Sample 10		FALCON LAKE 1	FALCON LAKE 2	FALCON LAKE 3
		Guide	Guide	-RAW	-TREATED	- DISTRIBUTION
Analyte	Unit	Limit #1	Limit #2			
Titanium (Ti)-Total	mg/L	-	-	<0.00030	<0.00030	<0.00030
Tungsten (W)-Total	mg/L	-		<0.00010	<0.00010	<0.00010
Uranium (U)- Total	mglL	-	0.02	0.000530	0.000462	0.000457
Vanadium (V)-Total	mg/L	-	-	<0.00050	<0.00050	<0.00050
Zinc (Zn)-Total	mg/L	5	-	0.0191	0.0101	0.0395
Federal Guidelines for Cana	ndian Drinking Wate	er Quality (JAN, 202	0))020	<0.00020	<0.00020

#1: GCDWQ • Aesthetic Objective/Other Value (Jan.2020)
#2: GCDWQ - Maximum Acceptable Concentrations (MACs.Jan.2020)

Volatile Organic Compounds (WATER)

			ALSID	L2510633-1		
		Samp	ed Date	29-SEP-20		
		Sampl	ed Time	15:35		
			mple 10	FALCON LAKE 1		
		Guide	Guide	-RAW		
Analyte	Unit	Limit #1	Limit #2			
Benzene	mg/L		0.005	<0.00050		
1,1-dichloroethene	mg/L	-	0.014	<0.00050		
Dichloromethane	mg/L	-	0.05	<0.0050		
Ethylbenzene	mg/L	0.0016	0.14	<0.00050		
MTBE	mg/L	0.015	-	<0.00050		
1,1,1,2- Tetrachloroethane	mg/L			<0.00050		
1,1,2,2- Tetrachloroethane	mg/L	_	-	<0.00050		
Tetrachloroethene	mg/L		0.01	<0.00050		
Toluene	mg/L	0.024	0.06	<0.00050		
1,1,1- Trichloroethane	mg/L			<0.00050		
1,1,2- Trichloroethane	mg/L			<0.00050		
Trichlaroethene	mg/L		0.005	<0.00050		
a-Xylene	mg/L			<0.00050		
M+P-Xylenes	mg/L			<0.00040		
Xylenes (Total)	mg/L	0.02	0.09	<0.00064		

Federal Guidelines for Canadian Drinking Water Quality (JAN, 2020)

#1: GCDWQ - Aesthetic Objective/Other Value (Jan.2020)

#2: GCDWQ - Maximum Acceptable Concentrations (MACs.Jan.2020)

ANALYTICAL REPORT

L2687855 CONTD.... PAGE 2 of 3 02-MAR-22 14:35 (MT)

Manganese (Mn)-Total	ma/L	0.02	0.12	0.00066
Analyte	Unit	Guide Limit #1	Guide Limit #2	- DISTRIBUTION MIDPOINT
			oled Time ample ID	07:40 FALCON LAKE 3
			oled Date	23-FEB-22
			ALS ID	L2687855-1

Federal Guidelines for Canadian Drinking Water Quality (MAR, 2021) #1: GCDWQ - Aesthetic Objective/Other Value (Jan.2020) #2: GCDWQ - Maximum Acceptable Concentrations (MACs-Jan.2020)

ANALYTICAL REPORT

L2711015 CONTD.... PAGE 2 of 3 13-JUN-22 07:56 (MT)

Total Metals (WATER)				
			ALS ID	L2711015-1 31-MAY-22
			led Time ample ID	08:00 FALCON LAKE 3
Analyte	Unit	Guide Limit #1	Guide Limit #2	- DISTRIBUTION MIDPOINT @ MART YARD
Manganese (Mn)-Total	mg/L	0.02	0.12	0.00032

Federal Guidelines for Canadian Drinking Water Quality (MAR, 2021) #1: GCDWQ - Aesthetic Objective/Other Value (Jan.2020) #2: GCDWQ - Maximum Acceptable Concentrations (MACs-Jan.2020)

ANALYTICAL REPORT

L2729501 CONTD.... PAGE 2 of 3 26-AUG-22 15:45 (MT)

Total Metals (WATER)				
			ALS ID	L2729501-1
		Samp	led Date	22-AUG-22
		Samp	led Time	08:15
	Sample ID			FALCON LAKE
Analyte	Unit	Guide Limit #1	Guide Limit #2	- DISTRIBUTION MIDPOINT @ TOWNSITE WR
Manganese (Mn)-Total	mg/L	0.02	0.12	0.00049

Federal Guidelines for Canadian Drinking Water Quality (MAR, 2021) #1: GCDWQ - Aesthetic Objective/Other Value (Jan.2020) #2: GCDWQ - Maximum Acceptable Concentrations (MACs-Jan.2020)

ANALYTICAL REPORT

L2740876 CONTD.... PAGE 2 of 3 29-NOV-22 13:58 (MT)

lotal Metals (WATER)				
			ALS ID	L2740876-1
		Samp	oled Date	
			led Time	-
		S	ample ID	FALCON LAKE 3
Analyte	Unit	Guide Limit #1	Guide Limit #2	- DISTRIBUTION MIDPOINT @ LUNCH ROOM
Manganese (Mn)-Total	mg/L	0.02	0.12	0.00127

Were there any issues or failures with meeting any requirements over the year?

- This was our year to do our quarterly manganese samples for the distribution system which is down once every three years. Due to operator error and some confusion the four sets of samples were taken but the raw and treated samples which are taken once a year were missed. We received a non-compliance for this and will be back on track in the new year. The quarterly sample results are posted above.
- In February our bi weekly samples were taken and sent to the lab through Canada post but did not arrive in the allotted time. Samples were re taken and driven in by our staff but this left us with a period of 20 days between bi weekly samples going over the required 2 week period which resulted in a non-compliance. Since this issue we have not used any mailing services for our samples and staff members have driven samples in.
- On June 15th we received a bad sample from a public water post in lake shore campground, e. coli and total coliforms were detected. No boil water advisory was issued for this because system was currently already under an advisory from the storm that had shut down the water plant. We resampled the tap as well as water posts upstream and downstream of the affect water post. Upstream and downstream results were ok but total coliform was detected at the original water post so all samples were taken again. Upstream and downstream results were again ok but the original water post had total coliforms detected. With other samples coming back ok we realized this was a isolated incident and traced the source to some campers whom were using the public drinking tap to clean chicken, fish, etc contaminating the water post. All samples were again re taken and all came back clear. All bad samples result in a noncompliance.

• Were there any unforeseen major issues or expenses over the year?

- In June we had a storm that had knocked out one of the phase terminals on the transformer causing major electrical issues throughout the water plant affecting most electronics and instruments. This required multiple service technicians for various different equipment to be repaired, replaced and/or reprogrammed. The backup generator controls were also affected by this and came with costly repairs. As the town was put on a boil water advisory till we could confirm from the labs that the water quality was not affected and remained potable which the samples all came back good and the order was lifted.
- In July heavy rains lead to flooding causing some of our already old sewer main infrastructure to become overwhelmed and the added pressure caused a sewer collops. Which lead to some major replacement of sewer and water mains as well as multiple boil water

advisories until all repairs were made. The first boil water advisory for block D in July was for a shut down and repair of a service line. A water line break in August for this area caused another advisory until a repair was made and another advisory was implemented in November when construction began to replace as much of the detreating block to prevent further issues in this area. All samples taken for the boil water advisories came back good and each order was lifted.

- Do you expect any major projects or expenses next year that we should be aware of, or that may affect my water service?
 - We are hoping to have our PLC and software program replaced which is now old and obsolete.
 - We will be replacing sensor equipment which was affected from the storm earlier in the year.
 - We are working on an infrastructure upgrade plan for water distribution and waste water collection, which we are hoping will start in the new year.

Here at Falcon Lake Water Treatment Plant we'd love to give our thanks to our community for a great year and we plan to continue providing you with excellent and safe drinking water. THANK YOU!

Sincerely your operators

Matt, Steve and Jake

