Sand Treatment Mound Design – Worksheet

Treatment Mound: Area Sizing

This form is to be completed and submitted with the OWMS application to register

This worksheet is for use in Manitoba to: size the sand layer, mound base area, and berm dimensions as required in the construction of a treatment mound. It can be used for: design of a treatment mound.

Use only Imperial units of measurement throughout (feet, inches, Imperial gallons, etc.)

Use the following Worksheet to determine the minimum required dimensions for a treatment mound and fill in the blanks on the appropriate diagram below for a level site or a sloping site of over 1%.

Treatment Mound Dimensions

Level Site

Sloping Site

Slope =
Sand Treatment Mound Design – Worksheet (page 2 of 7)

Treatment Mound: Area Sizing

The completed installation is to comply with MR 83/2003

STEP 1: Determine the expected volume of sewage per day:

Expected Volume of Sewage per Day

Note: Use Manitoba Minimum Expected Volume of Sewage Per Day as a guide to determine expected volume of sewage per day. Provide allowance for additional load factors.

Assure that the sewage strength does not exceed the requirements of Residential Strength Sewage.

<table>
<thead>
<tr>
<th>Expected Volume of Sewage per Day</th>
<th>M1</th>
</tr>
</thead>
</table>

STEP 2: Calculate the treatment area of the sand layer:

<table>
<thead>
<tr>
<th>Expected Volume of Sewage per Day</th>
<th>Sand Layer Effluent Loading Rate</th>
<th>Treatment Area Required for Sand Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>gal/day.</td>
<td>1 gal/sq. ft. per day</td>
<td>sq. ft.</td>
</tr>
</tbody>
</table>

From **M1** this worksheet

| From M1 this worksheet |

STEP 3: Determine the minimum allowable sand layer area:

<table>
<thead>
<tr>
<th>Minimum Sand Layer Area</th>
<th>Area of Sand Layer for Treatment</th>
<th>Area of Sand Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 sq. ft.</td>
<td>sq. ft.</td>
<td>sq. ft.</td>
</tr>
</tbody>
</table>

The minimum area of the sand layer is 400 sq. ft.

From **M2** this worksheet

The greater of 400 or **M2**

STEP 4: Calculate the length of the sand layer:

<table>
<thead>
<tr>
<th>Area of Sand Layer</th>
<th>Width of Sand Layer</th>
<th>Length of Sand Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>sq. ft.</td>
<td>ft.</td>
<td>ft.</td>
</tr>
</tbody>
</table>

M4a From **M3** this worksheet

M4b Select a width to a maximum of 10 ft.

Note: The width of the sand layer will influence the total width of the treatment mound and the amount of fill material required. The lowest cost configuration is often to make the sand layer as wide as allowed, however, on sloping sites, a narrower and longer sand layer design can reduce the amount of fill required.

Manitoba Sand Treatment Mound Design Worksheet
January 2009 rev April 2010

Page 2
Treatment Mound: Area Sizing

The completed installation is to comply with MR 83/2003

STEP 5: Determine the (design) soil effluent loading rate:

- Note: Effluent loading rate can be determined from soil texture classification or from percolation test results.
- Attachment 1 provides the effluent loading rates for various soil classifications between 5 and 120 minute per inch perc rates.

<table>
<thead>
<tr>
<th>Soil Effluent Loading Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>gal/sq. ft. per day. M5</td>
</tr>
</tbody>
</table>

STEP 6: Calculate the preliminary infiltration area of the soil BEFORE area reduction factors:

- Expected Volume of Sewage per Day (gal/day) ÷ Soil Effluent Loading Rate (gal/sq. ft. per day) = Primary Infiltration Area (sq. ft.)

<table>
<thead>
<tr>
<th>Expected Volume of Sewage per Day</th>
<th>Soil Effluent Loading Rate</th>
<th>Primary Infiltration Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>gal/day.</td>
<td>gal/sq. ft. per day.</td>
<td>sq. ft. M6</td>
</tr>
</tbody>
</table>

From M1 this worksheet From M5 this worksheet (Required for Soil. Before Reduction Factors.)

STEP 7: Calculate the required infiltration area INCLUDING allowed area reduction factors:

- Infiltration Area Required for Soil (sq. ft.) x Reduced Area Factor (0.75) = Required Infiltration Area (sq. ft.)

<table>
<thead>
<tr>
<th>Infiltration Area Required for Soil</th>
<th>Reduced Area Factor</th>
<th>Required Infiltration Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>sq. ft.</td>
<td>0.75</td>
<td>sq. ft. M7</td>
</tr>
</tbody>
</table>

(Before Reduction Factors.) From M6 this worksheet A reduction of up to 25% (0.75) can be applied to treatment Mounds. (Including Reduction Factors.)
SDS Design – Worksheet “M” v1.3

Treatment Mound: Area Sizing

The completed installation is to comply with MR 83/2003

STEP 8: Calculate the required width of the infiltration area:

\[
\frac{\text{Required Infiltration Area}}{\text{Length of Sand Layer}} = \text{Width of Required Infiltration Area}
\]

(INCLUDING Reduction Factors.)

From M7 this worksheet
From M4 this worksheet

M8

STEP 9: Determine the slope criteria of the installation:

If the slope of the installation site exceeds 1%, proceed to Step 12.
If the slope is 1% or less, proceed to Step 10.

Slope of Installation Site

M9

Note: The following calculations apply ONLY to the minimum height configuration of a mound unless a value is entered above. If it is necessary to raise the sand layer, (for example to provide clearance to the water table) the following calculations are NOT adequate for the design.

For slopes of 1% or less, use STEPS 10 - 11

STEP 10: Calculate the required infiltration area INCLUDING allowed area reduction factors:

\[
\text{Toe to Toe Width Based on 4:1 Slope Requirement} \quad \text{Width of Required Infiltration Area within Berms} \quad \text{Toe to Toe Width of Mound}
\]

\[
\text{M10a} \quad \text{M10b} \quad \text{The greater of M10a or M10b}
\]

Refer to Berm Dimensions
Diagram this worksheet, or determine by calculation

From M8 this worksheet

STEP 11: Proceed to STEP 16:

STEPS 12-15 are used only for installations where the slope exceeds 1%
Treatment Mound: Area Sizing

The completed installation is to comply with MR 83/2003

STEP 12: Calculate the required width of the infiltration area:

The width of the mound is based on the greater of:
- the width as determined by the 4:1 slope requirement, or
- the width required to provide adequate infiltration area.

<table>
<thead>
<tr>
<th>Downslope Berm Width Based On 4:1 Slope Requirement Plus Width of Sand Layer</th>
<th>Width of Required Infiltration Area Under Sand Layer and Downslope Berm</th>
<th>Width of Sand Layer and Downslope Berm</th>
</tr>
</thead>
<tbody>
<tr>
<td>M12a Refer to Berm Dimensions Diagram this worksheet</td>
<td>M12b From M4b this worksheet</td>
<td>M12c or M12d The greater of M12c or M12d From M8 this worksheet</td>
</tr>
<tr>
<td>M12</td>
<td>M12</td>
<td>M12</td>
</tr>
</tbody>
</table>

STEP 13: Determine the width of the upslope berm:

Width based on 4:1 Slope Requirement
Refer to Berm Dimensions Diagram this worksheet, or determine by calculation.

<table>
<thead>
<tr>
<th>Width of Upslope Berm</th>
</tr>
</thead>
<tbody>
<tr>
<td>M13</td>
</tr>
</tbody>
</table>

STEP 14: Calculate the required infiltration area INCLUDING allowed area reduction factors:

<table>
<thead>
<tr>
<th>Width of Sand Layer and Downslope Berm</th>
<th>Width of Upslope Bem</th>
<th>Toe to Toe Width of Mound</th>
</tr>
</thead>
<tbody>
<tr>
<td>M12</td>
<td>M13</td>
<td>M14</td>
</tr>
</tbody>
</table>

Manitoba Sand Treatment Mound Design Worksheet
January 2009 rev April 2010
STEP 15: Proceed to STEP 16:

Sand Treatment Mound Design – Worksheet (page 6 of 7)

Treatment Mound: Area Sizing

The completed installation is to comply with the MR 83/2003

STEP 16: Summarize the information:

<table>
<thead>
<tr>
<th>Description</th>
<th>From Worksheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width of Sand Layer</td>
<td>M4b</td>
</tr>
<tr>
<td>Length of Sand Layer</td>
<td>M4</td>
</tr>
<tr>
<td>Slope of Installation Site</td>
<td>M9</td>
</tr>
<tr>
<td>Toe to Toe Width of Mound</td>
<td>M10 or M14</td>
</tr>
</tbody>
</table>

STEP 17: Proceed to STEP 16:

Fill in the appropriate diagram on the first page with the numbers calculated in this worksheet.

STEP 18: Proceed to STEP 16:

This worksheet does NOT consider all the requirements of the Mandatory Standard. Please work safely and follow safe practices near trenches and open excavations.
Treatment Mound: Area Sizing

The completed installation is to comply with MR 83/2003