

City of Winnipeg Water and Waste Department

Combined Sewer Overflow Management Study

PHASE 3 Technical Memoranda

Appendix No. 4

NEWPCC IMPACTS

April 1999 0510-A-38 Internal Document by:

WARDROP Engineering Inc. In Association With: TetrES CONSULTANTS INC.

Gore & Storrie Limited and EMA services Inc.

and

1. INTRODUCTION

Appendix No. 4, "NEWPCC Impacts" comprises the attached report entitled "City of Winnipeg, Report for the Combined Sewer Overflow Control Study – Impacts on the North End WPPCC", prepared for Wardrop/Tetr*ES* by CG&S and dated March 1998.

The purpose of this study, leading to the report, was to determine the impacts of three storage dewatering flow options (600, 830 and 1060 ML/d) on the NEWPCC facilities and operations and to develop, in concept, modifications to the plant which would mitigate such impacts. These issues were discussed in Sections 4.3, 4.3.1 and 4.3.2 of the Phase 3, T.M. No. 1.

City of Winnipeg Report for the Combined Sewer Overflow Control Study Impacts on the North End WPCC

> Prepared for: Wardrop Engineering Inc. TetrES Consultants Inc.

Prepared by: CH2M Gore & Storrie Limited

March, 1998

Table of Contents

ACKNOWLEDGEMENTS EXECUTIVE SUMMARY

SECTION 1 - INTRODUCTION

1.1 BACKGROUND	1-1
1.2 Study Objectives	1-2
1.3 Study Methodology	1-2

SECTION 2 - PLANT DESIGN AND PLANT OPERATION

2.1 PLANT DESIGN	2-1
2.1.1 Raw Wastewater Pumping	2-1
2.1.2 Screens and Aerated Grit Tanks	2-2
2.1.3 Primary Clarifiers	2-2
2.1.4 Secondary Treatment Facility	2-3
2.1.5 Sludge Digestion	2-6
2.1.6 Sludge Holding Tanks	2-6
2.1.7 Gas Storage Tank	2-6
2.1.8 Sludge Dewatering System	2-6
2.2 PLANT OPERATION	2-7
2.2.1 Review of Plant Operating Data	2-7

SECTION 3 - BASIC CRITERIA FOR ASSESSMENT

3.1 WET WEATHER COMBINED SEWAGE (WWCS) QUALITY	3-1
3.2 PLANT EFFLUENT CRITERIA	3-2
3.3 DEVELOPMENT OF COMPUTER MODEL	3-3
3.4 DETERMINATION OF PRIMARY CLARIFIER REQUIREMENT	3-3
3.5 DETERMINATION OF OXYGEN ACTIVATED SLUDGE PROCESS REQUIREMENT	.3-5

3.6 DETERMINATION OF SLUDGE DIGESTION REQUIREMENT
3.7 DETERMINATION OF DIGESTED SLUDGE DEWATERING REQUIREMENT
3.8 DETERMINATION OF CHLORINATION AND DECHLORINATION REQUIREMENT

SECTION 4 - TREATMENT OF WWCS FLOWS

4.1 IMPACT OF WWCS FLOWS	4-1
4.2 PLANT UPGRADING REQUIREMENTS	4-2
4.2.1 WWCS Flow of 600 ML/d	4-2
4.2.2 WWCS Flow of 830 ML/d	4-4
4.2.3 WWCS Flow of 1060 ML/d	4-4
4.2.4 Summary of Plant Upgrading Requirement	4-5
4.3 CAPITAL COST ESTIMATE	4-5

SECTION 5 - CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS	-1
5.2 RECOMMENDATIONS	-1

LIST OF ILLUSTRATIONS

LIST OF FIGURES

Figure 1	Primary Clarifier TSS – Removal	Efficiency	3-4	ŀ
Figure 2	Specific BOD ₅ Removal Rate vs.	Specific BOD ₅ Loading Rate	3-5	5

LIST OF TABLES

Table 2-1	Raw Wastewater Pumps	2-1
Table 2-2	Primary Clarifiers	2-2
Table 2-3	Design Conditions of Secondary Treatment Facility	2-3
Table 2-4	Design Conditions of Oxygenation Reactors	2-4
Table 2-5	Final Clarifiers	2-5
Table 2-6	1996 Plant Flows and Influent and Effluent Quality	2-7
Table 3-1	CSO Data	3-1
Table 3-2	Proposed WWCS Quality	3-2
Table 4-1	Impact of WWCS Flows	4-1
Table 4-2	Plant Upgrading Requirements	4-5
Table 4-3	Unit Capital Costs	4-5
Table 4-4	Estimated Capital Costs for Plant Upgrading Requirements	4-5

Acknowledgements

The significant effort and contribution over the course of the study by North End WPCC supervisory, operation and laboratory staff is gratefully acknowledged.

The contribution of staff from Wardrop Engineering Inc. and TetrES Consultants Inc. is recognized.

1. Addendum

An erratic conversion of 2300 kg/d to 230000 g/d (should read 2300000 g/d) on Page APP4-5 generates errors in the following areas:

Page ES1-4,	Line 19:	For \$25,957,000	read \$26,003,000
Page ES1-4,	Line 21:	For \$41,399,000	read \$41,491,000
Page ES1-5,	Line 3:	For \$25,957,000	read \$26,003,000
Page ES1-5,	Line 4:	For \$41,399,000	read \$41,491,000
Page 4-5,	Line 8 up:	For 4.00	read 4.20
Table 4.4, Alte	ernative 5, row 9:	For 920,000	read 966,000
Table 4.4, Alte	ernative 5, row 12:	For 25,957,000	read 26,003,000
Table 4.4, Alte	ernative 6, row 9:	For 1,840,000	read 1,932,000
Table 4.4, Alte	ernative 6, row 12:	For 41,399,000	read 41,491,000
Page 5-1,	Line 19:	For \$25,957,000	read \$26,003,000
Page 5-1	Line 20:	For \$41,399,000	read \$41,491,000
Page APP4-5	Line 9:	For 230000	read 2300000
Page APP4-5	Line 9:	For 1,916.7 L/d	read 19,167 L/d
Page APP4-5	Line 10:	For 9.8	read 0.98
Page APP4-5	Line 11:	For A FRP tank	of 27,000 L
		read Three FRP ta	anks of 27,000 L each
Page APP4-5	Line 11:	For \$18,000	read \$54,000
Page APP4-5	Line 17:	For \$75,000	read \$111,000
Page APP4-6	Line 13:	For 75,000	read 111,000
Page APP4-6	Line 16:	For 743,900	read 779,900
Page APP4-6	Line 17:	For 1,400	read 1,458
Page APP4-6	Line 18:	For 1,200	read 1,256

Page APP4-6	Line 19	For 57,280	read 60,052
Page APP4-6	Line 20:	For 26,780	read 28,076
Page APP4-6	Line 21:	For 830,560	read 870,742
Page APP4-6	Line 22:	For 91,360	read 95,781
Page APP4-6	Line 23:	For 921,910	read 966,523
Page APP4-7	Line 1:	For 921,910	read 966,523
Page APP4-7	Line 1:	For 4.00	read 4.20.

1. Executive Summary

1.1 BACKGROUND

This study was to assess the impacts of combined sewer overflow (CSO) on the NEWPCC. The CSO mixes with the sanitary wastewater, plant recycle flows, hauled wastes and leachate and is treated at the plant. The combined wastewater is termed wet weather combined sewage (WWCS) flow in this report.

The specific objectives for the study are to assess the impacts of three collected WWCS flow rate options, 600 ML/d, 830 ML/d and 1060 /d, on the NEWPCC and upgrade requirements including sludge digestion; identify necessary upgrade requirements of the plant for minimum treatment of the flows exceeding the secondary treatment capacity; and develop conceptual costs for the plant upgrades. A study was also conducted to determine the plant upgrade requirements for treatment of the WWCS flow of 600 ML/d to meet the nitrified effluent criteria of 25 mg/L BOD₅, 30 mg/L SS, and 5 mg/L NH₃-N.

The design of the existing plant was reviewed. According to the Functional Design Report, the most recent upgrade of the plant was designed to serve the anticipate flows and loads to the year 1994. The treatment processes include preliminary treatment, primary treatment and secondary treatment using oxygen activated sludge system and anaerobic sludge digestion. Digested sludge is dewatered by centrifuges. The installed capacity of raw wastewater pumps, screens and aerated grit tanks is sufficient to handle the study flow rates. Upgrading of these facilities was not considered in this study.

The existing primary clarifiers were reported to have a hydraulic capacity of 830 ML/d. At this hydraulic load, the surface overflow rate is $127.6 \text{ m}^3/\text{m}^2$.d. This rate appears too high for the primary facility to be operated for co-thickening of waste activated sludge, because the waste activated sludge solids are lighter and are unable to settle out under such high surface overflow rate. With waste activated sludge co-thickening in the primary clarifiers, the surface overflow rate of 60 m³/m².d is normally used. The overflow rate is also too high for chemically enhanced treatment in the primary clarifiers. For this study a surface overflow rate of 40 m³/m².d with ferric or alum was used for the chemically enhanced primary treatment process.

The secondary treatment facility was designed for an effluent quality of 25 mg/L BOD_5 and 30 mg/L TSS at a maximum flow of 589 ML/d. It is noted that under the maximum flow condition although the projected primary effluent BOD₅ was 260 mg/L, the secondary treatment facility was designed for a maximum BOD₅ load of 89,600 kg/d, corresponding to a BOD₅ concentration of only 152 mg/L.

The performance of primary and secondary treatment facilities work together to produce good quality of plant effluent. If the secondary treatment facility is capable of handling low quality of primary effluent, the entire treatment system is still able to produce good quality effluent. The existing secondary treatment facility was designed for a primary effluent BOD₅

of 150 mg/L and TSS of 285 mg/L and a maximum flow of 598 ML/d. It appears that the low quality primary effluent for a short duration was considered in the design.

In 1996, the plant received an annual average flow of 259.5 ML/d, representing 78% of the plant design flow. The average BOD_5 load to the secondary treatment facility was 53,016 kg/d, representing 88.6% of the maximum design BOD_5 load. However, monthly average BOD_5 concentrations in the secondary effluent were consistently greater than 50 mg/L. Investigation of the cause of such high effluent BOD_5 is out of the scope of this study.

1.2 Basic Criteria

Basic criteria used for determination of plant upgrade requirements and associated costs include flows, WWCS quality and effluent requirements. The estimated WWCS quality established for the study is shown below:

WWCS Parameters	Concentration
BOD	212 mg/L
COD	530 mg/L
TSS	250 mg/L
NH ₃ /NH ₄	18 mg/L
TKN	27 mg/L
Total P	3.5 mg/L
Alkalinity	150 mg/L
pH	7.2

Proposed WWCS Quality

The plant effluent requirements for treatment of the WWCS three flow options have been identified as follows:

Secondary Treatment Requirement

Parameters	BOD ₅ Removal	Nitrification
TSS	\leq 30 mg/L	\leq 30 mg/L
BOD ₅	$\leq 25 \text{ mg/L}$	$\leq 25 \text{ mg/L}$
NH3-N		$\leq 5 \text{ mg/L}$

WWCS flows exceeding the secondary treatment system capacity will receive a minimum of

Primary treatment or equivalent,

- Solids and floatable disposal; and
- Disinfection of effluent

The effluent guidelines for normal primary treatment are assumed to be 30% BOD₅ removal and 50% TSS removal.

The need for phosphorus removal was not included in the plant assessment. Effluent phosphorus removal is not currently a discharge requirement and is also not expected to be a future requirement.

1.3 Impact of WWCS Flows

The impacts of WWCS flows of 600 ML/d and 830 ML/d on the NEWPCC were assessed using the basic criteria described above. Under these two flow conditions the secondary treatment system is overloaded and the effluent quality will be detrimentally affected. It is certain that the plant cannot handle the WWCS flow of 1060 ML/d without upgrading, because this flow rate is higher than the design flows for both primary and secondary treatment facilities.

1.4 Treatment Alternatives

Alternatives for the plant upgrades that were identified and investigated include the following:

WWCS Flow of 600 ML/d

Alternative 1 - Expansion of Final Clarifiers,

Alternative 2 - Chemically Enhanced Primary Treatment for Entire Flow,

Alternative 3 - Expansion of Primary Clarifiers,

Alternative 4 - Expansion of Secondary Treatment to Produce a Nitrified Effluent,

WWCS Flow of 830 ML/d

Alternative 5 - Expansion of Primary Clarifiers for Treatment of 830 ML/d,

WWCS Flow of 1060 ML/d

Alternative 6 - Expansion of Primary Clarifiers for Treatment of 1060 ML/d.

1.5 Capital Costs

Conceptual capital costs for the plant upgrades were estimated with reference to the most recent contracts completed by CH2M Gore & Storrie Limited. To facilitate cost calculations for this study, unit costs for various unit processes were first established using the construction contract price for the unit processes. The unit costs were then brought up to January 1998 costs using ENR Construction Cost Index and included an allowance of 11% for engineering and construction supervision but excluded land costs, taxes, and piling foundation costs if required. The estimated capital cost for the plant upgrade in each alternative is shown in the following table. Estimated effluent quality for meeting the effluent criteria for each alternative is also shown.

<u>No</u>	Alternative No	<u>Est. Capital</u> <u>Costs</u>	<u>Meeting Effluent</u> <u>Criteria</u>		
	600 ML/d				
1.	Alternative 1	\$10,427,000	Yes		
2.	Alternative 2	\$27,856,000	Yes		
3.	Alternative 3	\$12,483,000	Yes		
4.	Alternative 4 <u>830 ML/d</u>	\$28,810,000	Yes		
5.	Alternative 5 <u>1060 ML/d</u>	\$25,957,000	Yes		
6.	Alternative 6	\$41,399,000	Yes		

1.6 Conclusions

To treat the WWCS flows for meeting the effluent criteria the plant requires upgrading including sludge digestion. The recommended alternatives for plant upgrades are listed as follows:

For treatment of the WWCS flow of 600 ML/d, Alternative 1 - Expansion of Final Clarifiers is the lowest cost alternative and therefore recommended. Expansion of the final clarifiers is required to handle the high mixed liquor solids load from the reactors. Increase of sludge load requires an expansion of the sludge digestion facility. Total estimated capital cost is \$10,427,000.

From the result of treatment alternative evaluation for the 600ML/d flow it is understood that expansion of the existing primary treatment facility is the only cost-effective alternative for treatment of the WWCS flow of 830 ML/d and 1060 ML/d. Flow exceeding the existing secondary treatment capacity will be chlorinated and dechlorinated prior to discharge.

Increase of sludge load due to treatment of the WWCS flows requires an expansion of the sludge digestion facility. Expansion of the existing sludge dewatering facility is not required.

Total estimated capital cost for treatment of 830 ML/d is \$25,957,000,

Total estimated capital cost for treatment of 1060 ML/d is \$41,399,000.

To treat the WWCS flow of 600 ML/d for meeting the nitrified effluent criteria of 25 mg/L BOD₅, 30 mg/L TSS and 5 mg/L NH₃-N, the plant requires an expansion of the secondary treatment and sludge digestion facilities. Total estimated capital cost is \$28,810,000.

Based on the accuracy of the cost estimate and the small difference in flows between the current design and the WWCS flow of 600 ML/d, the estimated cost of \$28,810,000 can be applied for upgrade of the existing facility to achieve nitrification.

1.7 Recommendation

In 1996 the plant received an average wastewater flow and an average BOD₅ load to the secondary treatment facility of 78% and 88.6% of the design respectively. However, the secondary effluent BOD₅ concentrations were consistently over 50 mg/L, greater than the design of 25 mg/L. It is recommended that a plant audit be carried out to investigate the cause of not meeting the design effluent quality.

SECTION 1

INTRODUCTION

1.1 Background

The City of Winnipeg has investigated alternatives for control and treatment of combined sewer overflow (CSO). As a result of the studies to date, it appears that the probable long-term solution to the reduction of CSO impacts on the City's rivers, will be in the form of inline storage, either alone or in combination with other storage alternatives. The collected CSO will be treated at the North End Water Pollution Control Centre (NEWPCC) before discharge. This will reduce the CSO impacts throughout the City, since about 90% of the combined sewer districts in the City are in the service area of the NEWPCC. The discharge of the collected CSO will however, have significant impacts on the plant.

Three flow options for treatment of the collected CSO at the NEWPCC have been identified:

- 600 ML/d; it represents the design hydraulic capacity of the secondary facility of the NEWPCC. The entire flow would be given secondary treatment. The plant effluent would be the least detrimental to the river,
- 830 ML/d; it represents the design hydraulic capacity of the primary facility of the plant. A portion of the flow exceeding the hydraulic capacity of the secondary treatment facility would receive primary treatment only. It would have the least impact on the operation and configuration of the plant,
- 1060 ML/d; it represents current installed hydraulic capacity of the raw wastewater pumping and headworks. An additional facility would be required for treatment of flow exceeding the current hydraulic capacity of the primary treatment facility. It would have the greatest impact on the configuration of the plant.

Once storage of CSO is in place, the entire plant will operate at peak hydraulic load for longer periods of time than under present conditions. The extended periods of peak hydraulic loads will affect the operation and performance of the plant. Increased sludge quantity due to treatment of CSO will also affect the digester operation. Because of the reserve capacity available in the existing facility, the changes would not likely affect the sludge dewatering facility.

Currently the raw wastewater flow to the NEWPCC includes municipal wastewater, recycle of centrate, hauled wastes of septic tanks and leachate. During runoff periods, the plant continues to receive this raw wastewater flow plus stormwater collected in the combined sewer area. The combined flow to the plant is in effect, a wet weather combined sewage (WWCS) flow. For the purpose of this study a term of WWCS flow instead of CSO is used.

1.2 Study Objectives

The objectives of this study are to assess the impacts of the three WWCS flow rate options, 600 ML/d, 830 ML/d, and 1060 ML/d, on the NEWPCC including sludge digestion facility; identify necessary upgrade requirements of the plant for each option; and develop conceptual costs for the upgrades. Specific objectives include:

- Impact of WWCS flow of 600 ML/d on the current plant and upgrade requirements to meet secondary effluent criteria,
- Upgrade requirements of the plant for treatment of WWCS flow of 600 ML/d to meet nitrified effluent criteria,
- Impact of WWCS flow of 600 ML/d on the existing sludge digestion and sludge dewatering facilities and upgrade requirements,
- Primary treatment and disinfection of WWCS flows exceeding the secondary treatment capacity,
- Chemically enhanced primary treatment and disinfection of WWCS flows exceeding the secondary treatment capacity,
- Impact of WWCS flows of 830 ML/d and 1060 ML/d on the existing sludge digestion and sludge dewatering facilities and upgrade requirements,
- Development of conceptual costs for the plant upgrades.

Impacts of the WWCS flows and the plant effluent on the receiving water are out of the scope of this study.

1.3 Study Methodology

The study was performed in a logical and systematic manner. The key tasks completed are outlined below.

1. Existing sources of information and plant design reports were reviewed to develop an understanding of various unit processes of the plant. A plant tour with a review of plant operating records was performed to become familiar with current plant operation and to establish WWCS characteristics for the study. The information reviewed included:

\ISTOR1\VOL1\111T\7681\SECTION1.DOC

- Technical Memoranda completed to date for the CSO study,
- Functional Design Reports for the secondary treatment, sludge treatment and sludge dewatering facilities,
- 1996 plant operating data,
- Experience of plant staff,
- Appropriate technical papers, reports, and other plant operational information with respect to treatment of CSO.
- 2. Appropriate process configurations were developed for treatment of WWCS flows to meet the effluent criteria.
- 3. Conceptual costs for the plant upgrade requirements were estimated.
- 4. Conclusions and recommendations were made based on the findings in the study.

SECTION 2

PLANT DESIGN AND PLANT OPERATION

Section 2 - Plant Design and Plant Operation

2.1 Plant Design

The North End Water Pollution Control Centre (NEWPCC) was initially constructed in 1937. Over the years the plant has been upgraded from primary treatment to secondary treatment. The most recent upgrade of the plant was completed in 1989. According to the Functional Design Report, the most recent upgrade was designed to serve the anticipate flows and loads to the year 1994. The treatment processes of the plant include preliminary treatment, primary treatment and secondary treatment using oxygen activated sludge system and anaerobic sludge digestion. Digested sludge is dewatered by centrifuges. Design conditions of the unit processes are provided below.

2.1.1 Raw Wastewater Pumping

Table 2.1 provides a summary of the raw wastewater pump control and capacities.

No. of Units	Speed	MLD			
2	Variable	77 - 180			
2	Constant	180			
1	Constant	107			
1	2 - Speed	140/180			
Total Installed Capac	rity	1007			
Total Firm Capacity		827			

Table 2.1 - Raw Wastewater Pumps

The pumps have a nominally increased capacity at high surge well water levels. The pump cycling and speed variations are computer controlled to maintain a particular set point elevation in the surge well. The set point is adjustable and is normally set low during the wet-weather season to permit maximum storage within the surge well and interceptor sewers.

The raw wastewater pumps discharge to a chamber from which wastewater flows by gravity through the plant. A control gate for by-passing of the treatment system is installed at the chamber.

2.1.2 Screens and Aerated Grit Tanks

There are four bar screens and four parallel aerated grit tanks. The screens are installed in front of the aerated grit tanks. Each aerated grit tank is $46 \text{ m} \times 9.1 \text{ m} \times 4.6 \text{ m}$ average depth. Each set of screen and grit tank has a hydraulic capacity of 280 ML/d. The system has a firm capacity of 840 ML/d and an installed capacity of 1120 ML/d.

2.1.3 Primary Clarifiers

There are five primary clarifiers, three circular and two rectangular. The following table lists the sizes of the clarifiers:

Tank No.	Dimension	<u>Area, m²</u>			
1	$35 \mathrm{m} \Phi \times 3.6 \mathrm{m}$	962.1			
2	$35 \text{ m} \Phi \times 3.6 \text{ m}$	962.1			
3	$44 \text{ m} \Phi \times 3.6 \text{ m}$	1,520.5			
4	66.5m×23m×3.6 m	1,529.5			
5	66.5m×23m×3.6 m	<u>1,529.5</u>			
Total		6,503.7			

Table 2.2 - Primary Clarifiers

It is reported that these primary clarifiers have a hydraulic capacity of 830 ML/d. At this hydraulic load, the surface overflow rate will be 127.6 m³/m².d. This surface overflow rate appears too high for the primary clarifiers to be operated for co-thickening of waste activated sludge, because the waste activated sludge solids are lighter and are unable to settle out under such high surface overflow rate. With waste activated sludge co-thickening in the primary clarifier, the surface overflow rate of $60 \text{ m}^3/\text{m}^2$.d is normally used.

IISTOR1/VOL1/111T/7681/SECTION2.DOC

A facility for secondary by-passing is provided at the primary effluent channel. This by-pass operates during wet weather periods when flow exceeds the secondary treatment capacity.

2.1.4 Secondary Treatment Facility

The secondary treatment facility is an oxygen activated sludge treatment system consisting of oxygenation reactors and final clarifiers. The following are the design conditions of the secondary treatment facility:

Parameter	Annual Average	Max. Condition
Flow, ML/d	332	598
P. eff. BOD5, mg/L	180	260
BOD5 loading, kg/d	59,800	89,600 (peak 5 day @ 150 mg/L)
P.eff TSS, mg/L	170	285
Max. temperature °C	22	22
Min. temperature °C	. 11	11
Eff. BOD5, mg/L	13.4	25 (peak month)
Eff. TSS, mg/L	13.1	30 (peak month)

Table 2.3 - Design Conditions of Secondary Treatment Facility

It is noted that under maximum flow condition of 589 ML/d although the projected primary effluent BOD_5 was 260 mg/L, the secondary treatment facility was designed for a maximum BOD_5 load of 89,600 kg/d, equivalent to a primary effluent BOD_5 concentration of only 150 mg/L. The facility was also designed for an effluent BOD_5 of 25 mg/L and TSS of 30 mg/L at the maximum flow conditions. The same effluent quality is proposed for this assessment.

The performances of primary and secondary treatment facilities work together to produce good quality of plant effluent. If the secondary treatment facility is capable of handling low quality of primary effluent, the entire treatment system is still able to produce good quality effluent. The existing secondary treatment facility was designed for a primary effluent BOD₅ of 150 mg/L and TSS of 285 mg/L and maximum flow of 598 ML/d. It appears that the low quality primary effluent for a short duration was considered in the design.

Oxygen Activated Sludge Reactors

The activated sludge process at this plant includes three oxygenation reactors and 26 final clarifiers. Each reactor is covered and consists of two 4 -stage trains of tanks. Each stage is equipped with a surface mixer for oxygen dissolution. The installed power of the mixers is INSTORTIVOL1111TT7681/SECTION2.DOC 2-3 approximately 37.5 kw in the first stage and 26 kw in each of the subsequent stages. The design conditions of the oxygenation reactors are shown in Table 2.4.

Design flow (AAF), ML/d 332 Peak flow, ML/d 589 Number of tanks 6 Size of tanks, m 17.1 × 1 Liquid depth, m 4.3 Number of stages per tank 4 Freeboard (gas space), m 1.2 Total tank volume, m³ 30,132. Retention: 2.16 at peak 30-consecutive day flow, hrs 1.4 at peak 5-consecutive day flow, hrs 1.22 F/Mv: 1.22 at AAF 0.71 at 30-day peak load 0.95 at 30-day peak load 0.95 at 30-day peak load 2.680 at 30-day peak load 2680 at 5-day peak load 2970 MLVSS, mg/L 2800		
Peak flow, ML/d 589 Number of tanks 6 Size of tanks, m 17.1 x Liquid depth, m 4.3 Number of stages per tank 4 Freeboard (gas space), m 1.2 Total tank volume, m³ 30,132. Retention: 2.16 at Peak 30-consecutive day flow, hrs 1.4 at peak 30-consecutive day flow, hrs 1.4 at peak 5-consecutive day flow, hrs 1.22 F/Mv: 1.22 at AAF 0.71 at 30-day peak load 0.95 at 30-day peak load 1.06 Volumetric loading rate, kg BODs/1000m³/day: 2680 at 30-day peak load 2680 at 30-day peak load 2680 at 5-day peak load 2680 At S, mg/L 2800	Design flow (AAF), ML/d	332
Number of tanks 6 Size of tanks, m 17.1 × 1 Liquid depth, m 4.3 Number of stages per tank 4 Freeboard (gas space), m 1.2 Total tank volume, m³ 30,132. Retention: 2.16 at peak 30-consecutive day flow, hrs 1.4 at peak 30-consecutive day flow, hrs 1.2 F/Mv: 1.2 at AAF 0.71 at 30-day peak load 0.95 at 30-day peak load 0.95 at 30-day peak load 2.66 at 30-day peak load 2.680 at 30-day peak load 2.680 at 30-day peak load 2.680 at 5-day peak load 2.680 MLVSS, mg/L	Peak flow, ML/d	589
Size of tanks, m17.1 × 1Liquid depth, m4.3Number of stages per tank4Freeboard (gas space), m1.2Total tank volume, m³30,132Retention:2.16at AAF, hrs2.16at peak 30-consecutive day flow, hrs1.4at peak 5-consecutive day flow, hrs1.22F/Mv:1.22at AAF0.71at 30-day peak load0.95at 30-day peak load1.06Volumetric loading rate, kg BOD₅/1000m³/day:1985at 30-day peak load2680at 5-day peak load2070MLVSS, mg/L2800MLSS, mg/L4000	Number of tanks	6
Liquid depth, m4.3Number of stages per tank4Freeboard (gas space), m1.2Total tank volume, m³30,132.Retention:2.16at AAF, hrs2.16at peak 30-consecutive day flow, hrs1.4at peak 5-consecutive day flow, hrs1.22F/Mv:1.22at AAF0.71at 30-day peak load0.95at 30-day peak load1.06Volumetric loading rate, kg BOD₅/1000m³/day:1985at 30-day peak load2680at 5-day peak load2970MLVSS, mg/L2800MLSS, mg/L4000	Size of tanks, m	17.1 x 68.3
Number of stages per tank4Freeboard (gas space), m1.2Total tank volume, m³30,132.Retention:30,132.at AAF, hrs2.16at peak 30-consecutive day flow, hrs1.4at peak 5-consecutive day flow, hrs1.4at peak 5-consecutive day flow, hrs1.22F/Mv:1.22at AAF0.71at 30-day peak load0.95at 30-day peak load1.06Volumetric loading rate, kg BOD₅/1000m³/day:1985at AAF1985at 30-day peak load2680at 5-day peak load2970MLVSS, mg/L2800MLSS, mg/L4000	Liquid depth, m	4.3
Freeboard (gas space), m1.2Total tank volume, m³30,132.Retention:2.16at AAF, hrs2.16at peak 30-consecutive day flow, hrs1.4at peak 5-consecutive day flow, hrs1.22F/Mv:1.22at AAF0.71at 30-day peak load0.95at 5-day peak load1.06Volumetric loading rate, kg BODs/1000m³/day:1985at 30-day peak load2680at 5-day peak load2970MLVSS, mg/L2800MLSS, mg/L4000	Number of stages per tank	4
Total tank volume, m³30,132.Retention:2.16at AAF, hrs2.16at peak 30-consecutive day flow, hrs1.4at peak 5-consecutive day flow, hrs1.22F/Mv:1.22at AAF0.71at 30-day peak load0.95at 5-day peak load1.06Volumetric loading rate, kg BOD₅/1000m³/day:1.985at 30-day peak load2680at 5-day peak load2970MLVSS, mg/L2800MLSS, mg/L4000	Freeboard (gas space), m	1.2
Retention: at AAF, hrs 2.16 at peak 30-consecutive day flow, hrs 1.4 at peak 5-consecutive day flow, hrs 1.22 F/Mv: at AAF 0.71 at 30-day peak load 0.95 at 5-day peak load 1.06 Volumetric loading rate, kg BOD5/1000m³/day: at AAF 1985 at 30-day peak load 2680 at 5-day peak load 2070 MLVSS, mg/L 2800	Total tank volume, m ³	30,132.6
at AAF, hrs 2.16 at peak 30-consecutive day flow, hrs 1.4 at peak 5-consecutive day flow, hrs 1.22 F/Mv: at AAF 0.71 at 30-day peak load 0.95 at 5-day peak load 1.06 Volumetric loading rate, kg BOD₅/1000m³/day: at AAF 1985 at 30-day peak load 2680 at 5-day peak load 2970 MLVSS, mg/L 2800	Retention:	
at peak 30-consecutive day flow, hrs 1.4 at peak 5-consecutive day flow, hrs 1.22 F/Mv: at AAF 0.71 at 30-day peak load 0.95 at 5-day peak load 1.06 Volumetric loading rate, kg BOD₅/1000m³/day: at AAF 1985 at 30-day peak load 2680 at 5-day peak load 2970 MLVSS, mg/L 2800	at AAF, hrs	2.16
at peak 5-consecutive day flow, hrs 1.22 F/Mv: at AAF 0.71 at 30-day peak load 0.95 at 5-day peak load 1.06 Volumetric loading rate, kg BOD₅/1000m³/day: at AAF 1985 at 30-day peak load 2680 at 5-day peak load 2970 MLVSS, mg/L 2800	at peak 30-consecutive day flow, hrs	1.4
F/Mv: at AAF 0.71 at 30-day peak load 0.95 at 5-day peak load 1.06 Volumetric loading rate, kg BOD₅/1000m³/day: at AAF 1985 at 30-day peak load 2680 at 5-day peak load 2970 MLVSS, mg/L 2800	at peak 5-consecutive day flow, hrs	1.22
at AAF0.71at 30-day peak load0.95at 5-day peak load1.06Volumetric loading rate, kg BOD5/1000m³/day:1985at AAF1985at 30-day peak load2680at 5-day peak load2970MLVSS, mg/L2800MLSS, mg/L4000	F/Mv:	
at 30-day peak load0.95at 5-day peak load1.06Volumetric loading rate, kg BOD5/1000m³/day:1985at AAF1985at 30-day peak load2680at 5-day peak load2970MLVSS, mg/L2800MLSS, mg/L4000	at AAF	0.71
at 5-day peak load 1.06 Volumetric loading rate, kg BOD5/1000m³/day: at AAF 1985 at 30-day peak load 2680 at 5-day peak load 2970 MLVSS, mg/L 2800 MLSS, mg/L 4000	at 30-day peak load	0.95
Volumetric loading rate, kg BOD ₅ /1000m ³ /day: at AAF 1985 at 30-day peak load 2680 at 5-day peak load 2970 MLVSS, mg/L 2800 MLSS, mg/L 4000	at 5-day peak load	1.06
at AAF 1985 at 30-day peak load 2680 at 5-day peak load 2970 MLVSS, mg/L 2800 MLSS, mg/L 4000	Volumetric loading rate, kg BOD ₅ /1000m ³ /day:	
at 30-day peak load2680at 5-day peak load2970MLVSS, mg/L2800MLSS, mg/L4000	at AAF	1985
at 5-day peak load 2970 MLVSS, mg/L 2800 MLSS, mg/L 4000	at 30-day peak load	2680
MLVSS, mg/L 2800 MLSS, mg/L 4000	at 5-day peak load	2970
MLSS, mg/L 4000	MLVSS, mg/L	2800
	MLSS, mg/L	4000

Table 2.4 - Design Conditions of Oxygenation Reactors

Final Clarifiers

There are 26 final clarifiers, 16 rectangular and 10 square. The square clarifiers are the original final settling tanks at the plant. The rectangular clarifiers were retrofitted from the original aeration tanks during the last plant expansion. The dimensions and surface areas of the clarifiers are shown in Table 2.5.

IISTOR1/VOL1/111T/7681/SECTION2.DOC

Table 2.5 - Final Clarifiers

Tank No.	No. of Units	Each Tank Dimension	Area of Group
1 to 10	10	20 m square	4,000.0 m ²
11 to 18	8	$70.5 \text{ m} \times 9.1 \text{ m} \times 3.65 \text{ m}$	5,132.4 m ²
<u>19 to 26</u>	8	70.5 m × 9.1 m × 3.65 m	<u>5,132.4 m²</u>
Total			14,264.8 m ²

Under normal operation mixed liquor from Oxygenation Reactor No.1 discharges to the square final clarifiers No.1 to 10. Reactor No. 2 discharges to the retrofitted final clarifiers No. 11 to 18. Reactor No. 3 discharges to the retrofitted final clarifiers No. 19 to 26.

If wastewater flow can be uniformly distributed to the final clarifiers according to their surface area, the surface overflow rate of the final clarifers under design conditions is as follows:

	Overflow Rate, m3/m2.d
Design Flow, 332 ML/d	23.3
Peak Flow, 598 ML/d	41.9

If any one retrofitted secondary clarifier needs to be drained for service, it will be necessary to drain four clarifers at once, because the dividing walls of the original aeration tanks (before retrofit) were not designed for unbalanced hydraulic pressure. If four retrofitted clarifiers are out of service, mixed liquor flow can be uniformly distributed to the remaining clarifiers, resulting in a surface overflow rate as follows:

	Overflow Rate, m ³ /m ² .d
Design Flow, 332 ML/d	28.4
Peak Flow, 598 ML/d	51.1

\ISTOR1\VOL1\111T\7681\SECTION2.DOC

2.1.5 Sludge Digestion

There are 6 sludge digesters. Each has a diameter of 33.5 m and a liquid depth of approximately 8.5 m. Total volume of the digesters is 44,800 m³.

2.1.6 Sludge Holding Tanks

There are 8 sludge holding tanks with a total volume of 21,400 m³ shown on the drawings and in the Plant Tour Booklet. Tank No. 2, 3, and 4 are original digesters and are at present mothballed. The actual storage capacity is less than 21,400 m³.

2.1.7 Gas Storage Tank

There is one spherical gas storage tank. The tank volume is 2,065 m³.

2.1.8 Sludge Dewatering System

There are 6 centrifuges for sludge dewatering and 6 sludge cake transfer pumps. The design conditions of these equipment are shown below: The sludge cake is utilized on agricultural lands.

Centrifuges

Capacity,	14 L/s/unit
Power,	200 HP/unit
Bowl Speed,	2400 RPM
Typical Solids Content,	in, 3 to 4%,
	out, 25 to 29%
Sludge Cake Pumps	
Power,	75 HP/unit
Operating pressure,	1200 to 4480 kPa
Capacity,	4.4 L/s/unit
Number of cake bins,	3
Total holding capacity,	600 m ³ .

IISTOR1/VOL1/111T/7681/SECTION2.DOC

2.2 Plant Operation

The most recent plant upgrade was designed to serve the anticipated flows and loads to the year 1994. Review of current flows and organic loads to the plant and the plant performance is essential to assess the plant for the treatment of WWCS flows. The review included study of plant operating data and discussion with plant operating staff to understand current operating conditions.

2.2.1 Review of Plant Operating Data

1996 plant operating data were obtained and reviewed. Plant flows and unit process effluent quality in 1996 are summarized in Table 2.6

In 1996, the plant received an average flow of 259.5 ML/d, representing 78% of the plant design flow. The average BOD₅ load to the secondary treatment section was 53,015.8 kg/d, representing 88.6% of the maximum design BOD₅ load. However, monthly average BOD₅ concentrations in secondary effluent were consistently greater than 50 mg/L, exceeding the design effluent BOD₅ of 25 mg/L. Investigation of the cause of the high effluent BOD₅ is out of the scope of this study. It is noted that the plant raw wastewater samples include the recycles of centrate and hauled wastes of septic tanks and leachate.

The plant operating data supplemented with raw wastewater quality data is used to calibrate a computer model and develop WWCS quality. The WWCS flows and quality are then used to assess the impact of WWCS on the treatment system. WWCS quality is site specific and it changes from time to time. Only the plant wastewater data, particularly during the runoff periods, can give the most reliable and representative quality of the WWCS to be treated at the plant.

As shown in the Table 2.6, the 1996 monthly average plant flows were all below the plant design hydraulic capacity. The plant wastewater data useful for development of WWCS quality during runoff period are very limited. As a result, the 1996 plant data can not be used alone to develop WWCS quality for the study. Review of data available in the literature was therefore required for this purpose.

	Plant Flows		Raw Waster	water	Primary Effl	uent	Primary SC	R	Secondary	Effluent	Secondary	SOR	Final Effluer	it
Month	Average	Max.	BOD	SS	BOD	SS	Average	Max.	BOD	SS	Average	Max.	BOD	SS
	ML/d	ML/d	mg/L	mg/L	mg/L	mg/L	m ³ /m ² /d	m ³ /m ² /d	mg/L	mg/L	m ³ /m ² /d	m ³ /m ² /d	mg/L	mg/L
Jan. 96	178.7	367.6	385.0	382.0	236.0	101.0	27.5	56.4	50.9	21.7	12.5	25.8	34.4	22.5
Feb. 96	189.7	363.2	360.0	312.0	223.0	107.0	29.2	55.8	51.8	10.5	13.3	25.5	28.7	10.8
Mar. 96	216.8	402.6	250.0	287.0	154.0	102.0	33.3	61.9	50.1	13.8	15.2	28.2	18.8	14.1
Apr. 96	481.8	682.9	-	277.0	-	152.0	74.1	105.0	53.6	19.5	33.8	47.9	-	52.8
May 96	400.4	546.0	-	235.0	-	130.0	61.6	83.9	52.8	13.8	28.1	38.3	-	28.6
Jun. 96	304.1	489.8	-	315.0	-	126.0	46.8	75.3	52.5	14.0	21.3	34.3	-	24.9
Jul. 96	267.3	474.3	-	232.0	-	94.0	41.1	72.9	52.7	12.7	18.7	33.2	-	16.5
Aug. 96	253.2	440.7	-	207.0	-	78.0	38.9	67.8	56.7	13.2	17.7	30.9		29.9
Sep. 96	232.1	423.7	-	208.0	-	94.0	35.7	65.1	56.1	19.7	16.3	29.7		19.9
Oct. 96	205.1	409.2	-	208.0		105.0	31.5	62.9	56.7	14.9	14.4	28.7	-	23.0
Nov. 96	200.5	397.3	-	227.0		103.0	30.9	61.1	54.8	20.1	14.1	27.8		25.2
Dec. 96	184.1	370.6	-	273.0		109.0	28.3	57.0	50.7	17.1	12.9	26.0		20.4
Mean	259.5		331.7	263.6	204.3	108.4	39.9		53.3	15.9	18.2		27.3	24.0
St. Dev.	90.1		58.6	51.9	36.0	18.6	13.8		2.2	3.4	6.3		7.9	10.2
N	12.0		3.0	12.0	3.0	12.0	12.0		12.0	12.0	12.0		3.0	12.0

Table 2.6 - 1996 Plant Flows and Influent & Effluent Quality

SECTION 3

BASIC CRITERIA FOR ASSESSMENT

о

.

.

0

Section 3 - Basic Criteria for Assessment

Criteria proposed as a reference for determination of unit process performance under various loading conditions include WWCS quality, and effluent requirement. Methodology for determination of unit process performance is uniformly applied to all treatment alternatives considered. This will ensure that a fair evaluation of all treatment alternatives is achieved.

3.1 Wet Weather Combined Sewage (WWCS) Quality

The plant data are insufficient to develop the WWCS quality for the study. Consequently a review of literature was conducted to compile a background database of CSO quality. This database was used as a reference to develop WWCS quality for the NEWPCC. Table 3.1 is a summary of CSO data from cities in North America where data are available.

The concentrations shown in the table are the average values of drainage areas within the cities. However, data for the four drainage areas in the City of Toronto have been kept separate and are reported as they are shown in the literature. This illustrates that variations in CSO quality within a city are minimal.

To estimate WWCS quality for the study the following considerations were applied:

- 1996 plant operating data of the NEWPCC was used as the basis,
- Raw wastewater samples at the NEWPCC include recycle of centrate, hauled wastes and leachate,
- Dilution will directly affect WWCS quality, the dilution factor was established based on the WWCS flow of 1060 ML/d and the 1996 annual average plant flow of 259.5 ML/d,
- The effect of street washing during runoff period was considered.

Three assumptions were made as follows:

- TSS an average TSS concentration for those days in 1996 plant operating records when the peak flow rate exceeds 600 ML/d (1996 annual average flow of 259.5 ML/d \times 2.5),
- BOD, TKN, NH₃/NH₄, and P because the plant raw wastewater samples include recycle of centrate, hauled wastes and leachate, it was assumed that about half of the concentrations was from the recycles, hauled wastes and leachate, and the remaining concentrations were from the City. During the runoff period, the city portion is diluted by rainwater,
| | | | Toronto | | | San | Altanta | Sasramen- | Columbus | Louisville | Boston | Cincinnati | New York | Cleveland | Portland | Prodence | Seattle |
|------------|------|---------|---------|-----------|------------|------------|---------|------------|----------|------------|----------|------------|----------|-----------|----------|----------|----------|
| Parameters | | Western | Inner | N. Toroni | o To Black | Francisco | | to | | | Massach- | | | | | Rhode | Washing- |
| | | Bridges | Harhour | Det. Tanl | Creek | California | Georgia | California | Georgia | Kentucky | setts | Ohio | New York | Ohio | Oregan | Island | ton |
| BOD | mg/L | Est. 24 | - | 95. | 2 116 | - | 15.4 | • | 43.5 | 69.1 | 76.4 | - | 80.7 | 81 | - | 74.5 | - |
| COD | mg/L | 9.3 | 1016 | | - - | | - | - | - | · - | - | - | - | • | | - | • |
| TSS | mg/L | 219 | 338 | 17 | D 278 | 173 | 85.2 | 160 | 255.1 | 151.7 | 132 | 155.4 | 121 | 390 | 59 | 111 | 165 |
| NH3+NH4 | mg/L | 0.6 | 0.85 | • | - 1.82 | | 1.41 | - | 1.5 | - | 3.1 | | - 1 | • | - | | - |
| TKN | mg/L | 5.39 | 5.96 | 14. | 9 - | - 1 | • | - | - | | - | l· - | • | | - | - | - |
| Total P | mg/L | 1.01 | 1.45 | | - 0.78 | - | 0.35 | - | 0.3 | - | | | - | 2.4 | • | - | - |
| NO2+NO3 | mg/L | 1.18 | 0.59 | | | - | - | - 1 | - | • | - | - | - | - | - | | - |
| Alkalinity | mg/L | 146 | 133 | | | · · | - | - | - | • | | - | - | | | | - |
| Phenolics | ug/L | 9.56 | 6.1 | 1 | - | · · | - | | - | | - | - | - | | - | ļ - | - |
| он | | 7.33 | 7.39 | | - I | · · | -i - | | • | - | • | - | - | • | • | | - |

Table 3.1 - CSO Data

 During runoff periods, the City portion of concentrations increases by 15% due to the effect of street washing.

The plant raw wastewater concentration data excluding the TSS data were divided, modified as described in the above assumptions and then re-combined to establish the WWCS quality. The estimated WWCS quality shown in Table 3.2 is proposed for determination of plant upgrade requirements and associated costs.

Table 3.2 - Proposed WWCS Quality

WWCS Parameters	Concentration
BOD	212 mg/L
COD	530 mg/L
TSS	250 mg/L
NH₃/NH₄	18 mg/L
TKN	27 mg/L
Total P	3.5 mg/L
Alkalinity	150 mg/L
pH	7.2

3.2 Plant Effluent Criteria

Selection of economical alternatives of plant upgrading for treatment of the WWCS flow will be based on meeting a set of plant effluent criteria. The plant effluent criteria for all WWCS flow options have been identified as follows:

Secondary treatment effluent criteria

- TSS $\leq 30 \text{ mg/L}$.
- BOD₅ $\leq 25 \text{ mg/L}$,

WWCS flows exceeding the secondary treatment system capacity will receive a minimum of

- Primary treatment or equivalent,
- Solids and floatable disposal; and

• Disinfection of effluent.

The effluent guidelines for normal primary treatment is assumed to be 30% carbonaceous biochemical oxygen demand (BOD₅) removal and 50% total suspended solids (TSS) removal.

One alternative of plant upgrading for treatment of WWCS flow of 600 ML/d requires to produce a nitrified effluent. The plant effluent for this alternative has been identified to meet the following criteria:

- BOD₅ $\leq 25 \text{ mg/L}$,
- TSS $\leq 30 \text{ mg/L}$,
- NH₃-N $\leq 5 \text{ mg/L}$.

Plant effluent phosphorus removal process was not included in the plant assessment. Effluent phosphorus removal is not currently a discharge requirement and is also not expected to be a future requirement.

3.3 Development of Computer Model

After collection of necessary plant physical and wastewater data, a model of the NEWPCC was built in the GPS-X (General Process Simulator). The GPS-X model can be described as a grouping of smaller models for each of the unit processes simulated. In the case of the NEWPCC, the GPS-X model consists of an influent characteristic model, a plug-flow bioreactor model and a secondary clarifier model. Secondary bypass, return sludge and waste sludge flows are simulated and are included in the model mass balance.

Once the basic model is build, a basic calibration of the kinetic and stoichiometric constants used in the model is made. For the NEWPCC average historical data was used for the steady-state calibration. The kinetic and stoichiometric parameters used in the model for this study are shown in Appendix 1.

After calibration, the user can simulate a variety of scenarios in which changes are made to model parameters such as flow rates, flow splits, wastewater characteristics, tank sizes and return and waste sludge rates. The model predicts the impact of these changes on effluent quality and operating parameters (e.g. mixed liquor suspended solids) which are used to assess the plant capacity. The model can be also used to determine tank sizes required for meeting the effluent criteria.

3.4 Determination of Primary Clarifier Requirement

The primary clarifier performance has an impact on the secondary treatment system loading and performance. It also has an impact on the costs of treatment alternatives under consideration. The primary clarifier performance is difficult to predict due to influence by the following conditions:

- Wastewater characteristics,
- Variations of wastewater flows,
- Waste activated sludge, if it is co-thickened in the primary clarifier,
- In-plant recycle flows,
- Chemical pre-treatment of wastewater,
- Operating surface overflow rate,
- Hydraulic detention time.

Preferably the primary clarifier performance is determined by full scale testings. However the full scale testing is out of the scope of this study. Due to constant changes of settling characteristics of raw wastewater particles under various flow conditions a computer model (such as GPS-X model) is less effective to predict the primary clarifier performance. To overcome this shortcoming, the performance of primary clarifiers was estimated by a spreadsheet established using actual plant operating data.

For comparison, another two spreadsheets were also created using data reported in the "EPA Process Design Manual for Suspended Solids Removal" January 1975, one is for degritted raw wastewater and the other is for chemically treated raw wastewater. In general, the primary clarifiers at the NEWPCC performed slightly better than that reported in the literature. To estimate the primary clarifier performance for chemical coagulation-flocculation of raw wastewater the spreadsheet created by EPA data was used. The spreadsheets are shown in Figure 1.

Chemical coagulation-flocculation can be used as a means of improving the performance of primary settling facility. The degree of clarification obtained when chemicals are added to raw wastewater depends on the quantity of chemicals used and the care with which the process is monitored and controlled. With chemical coagulation-flocculation it is possible to remove 80 to 90 percent of TSS, 70 to 80 percent of BOD₅. Due to slowly settling rate of chemical floc particles, recommended surface-loading rates for various chemical suspensions to be used in the design of the sedimentation facilities given in the literatures range from 30 m³/m²/d to 60 m³/m²/d. This is an important consideration for chemically enhanced primary treatment of WWCS flows at the NEWPCC, because the existing primary clarifiers were designed and cperated at surface loading rates greatly exceeding these rates. For this study report, a surface-loading rate of 40 m³/m²/d was used for the chemically enhanced primary treatment process using ferric or alum.

Figure 1 - Primary Clarifier TSS Removal Efficiency

3.5 Determination of Oxygen Activated Sludge Process Requirement

Factors affected the performance of an oxygen activated sludge system include the followings:

- Wastewater characteristics.
- Wastewater temperature,
- Organic loading rate,
- F/Mv or SRT,
- Oxygen supply,
- Hydraulic detention time,
- Variations of organic loads,
- Variations of flows,
- Final clarifier performance
- Return sludge rate,
- Waste sludge rate.

The performance of the oxygen activated sludge system is preferably determined by full scale testing. However full scale testing is time consuming and is out of the scope of this study.

The design point of the existing oxygen activated sludge system was checked with the process design criteria published in a book entitled "The Use of High-Purity Oxygen in the Activated Sludge Process" 1978 CRC Press, Inc. A curve of the organic loading rate and the organic removal rate of the oxygen activated sludge system has been established by Union Carbide Corporation by using a collection of pilot plant data and full scale plant data. This curve is re-produced on Figure 2.

The design conditions of the oxygen activated sludge system at the NEWPCC match with the results obtained from this curve. It is certain that the oxygen activated sludge system at NEWPCC was designed for an effluent BOD_5 of 25 mg/L at a maximum BOD_5 load of 89,600 kg/d. At BOD_5 loads greater than the maximum design value, the system will produce an effluent BOD_5 of greater than 25 mg/L, exceeding the effluent requirement. This design point is also shown on the Functional Design Report.

The requirement of the oxygen activated sludge system for treatment of the WWCS flows is determined by the computer model with the following boundary for the process parameters:

Figure 2 - Specific BOD5 removal rate vs specific BOD5 loading rate (Courtesy of Union Carbide Corporation)

Parameters	BOD ₅ Removal	Nitrification
MLSS	\leq 5000 mg/L	\leq 3600 mg/L
HRT	≥1 hour	\geq 3 hours
SOR	$\leq 50 \text{ m}^3/\text{m}^2.\text{d}$	\leq 29.5 m ³ /m ² .d
Solids Load	\leq 240 kg/m ² .d	≤ 120 kg/m².d

3.6 Determination of Sludge Digestion Requirement

The sludge dry solids production for treatment of WWCS flows at the NEWPCC is estimated from four sources including primary sludge, secondary sludge, chemical sludge, and sludge from SEWPCC/WEWPCC.

The projected primary sludge dry solids production is calculated as the product of the flow and the difference between the raw wastewater and the primary effluent total suspended solids concentrations. Test results of the raw wastewater suspended solids indicate a volatile content of 76.5%. A similar volatile content is assumed for the primary sludge.

The secondary sludge dry solids production is calculated as the sum of the non-volatile and volatile solids component of the waste activated sludge (WAS) stream. The non-volatile suspended solids component of the WAS is calculated as the product of the flow and the non-volatile component of the primary effluent total suspended solids. The non-volatile component found in the raw wastewater suspended solids is assumed applicable to the primary effluent and is approximately 23.5% of the primary effluent total solids. The volatile suspended solids yield is calculated as a result of the mass of BOD₅ removed in the secondary treatment process by the computer model. It is assumed that the volatile suspended solids contains 5% of non-biodegradable product.

A third sludge stream contributing to the sludge production is chemical sludge from the chemically enhanced primary treatment alternatives. The chemical sludge solids are calculated based on chemical requirement for suspended solids removal of 61% as reported in the EPA Design Manual "Suspended Solids Removal". The required chemicals are FeCl₃ at 37 mg/L and polymer at 0.08 mg/L. The projected chemical sludge solids is 32.25 mg/L and is non-volatile.

A fourth sludge stream contributing to the sludge production at the NEWPCC is the SEWPCC/WEWPCC sludge which is hauled to the NEWPCC on a daily basis. 1996 annual average SEWPCC/WEWPCC sludge was 12,094 kg/d with VSS content of 7,484 kg/d.

All sludge solids are stabilized by an anaerobic sludge digestion process. A solids detention time of 10 days was used for determination of sludge digester requirement. This design parameter was also used for determination of the current digesters in the Sludge Expansion

3-6

Functional Design Report. A volatile solids reduction of 45% is assumed in the digestion process.

3.7 Determination of Digested Sludge Dewatering Requirement

The existing sludge dewatering facility includes six centrifuges, model PM76000, manufactured and supplied by Sharples. Each machine has a capacity of sludge flow of 1210 m^3/d and solids load of 36,288 kg/d at 3% solids or 48,384 kg/d at 4% solids. Currently the facility is operated 24 hours per day and 7 days per week. Based on the current operation the facility has the following capacity:

	<u>Volume</u>	<u>Sludge</u> <u>Load</u>	<u>Sludge</u> <u>Load</u>
	<u>m7a</u>	<u>at 3%, kg/d</u>	<u>at 4%, kg/d</u>
Installed Capacity	7,257	217,700	290,300
Firm Capacity*	6,048	181,400	241,900

*Firm capacity is assumed for one unit in stand-by duty.

1996 plant operating data indicate that the digesters were operated at solids concentrations of approximately 3% or lower. Most likely the digested sludge has a similar solids concentrations. The solids concentration of 3% was used for establishing the existing centrifuge capacity. Since the treatment of WWCS flow will be an intermittent operation and short duration, the installed capacity of 7,257 m³/d and 217,700 kg/d can be fully used for treatment. Additional facility will be required only when the digested sludge quantity exceeds the installed capacity.

3.8 Determination of Chlorination and Dechlorination Requirement

The WWCS flows exceeding the secondary treatment capacity will receive primary treatment and disinfection. Due to the primary treatment effluent quality and the intermittent treatment of the WWCS flows chlorination using sodium hypochlorite was considered for the effluent disinfection. In order to produce a non-toxic effluent, dechlorination using sodium bisulfite was also included. The plant secondary effluent disinfection was not included in this study.

SECTION 4

TREATMENT OF WWCS FLOWS

د

Section 4 - Treatment of WWCS Flows

Three flow rate options, 600 ML/d, 830 ML/d, and 1060 ML/d, of the collected and stored WWCS flows at the NEWPCC have been identified. The impacts of these flows on the NEWPCC and the plant upgrade requirement to treat these flows were investigated.

4.1 Impact of WWCS Flows

The existing plant was designed for a peak flow of 830 ML/d for the primary treatment and a peak flow of 589 ML/d for the secondary treatment. The secondary treatment system was also designed for an effluent BOD₅ of 25 mg/L at a maximum BOD₅ load of 89,600 kg/d. The corresponding BOD₅ concentration at the design peak flow was 152 mg/L. The 1996 plant operating records show that peak flow rate up to the primary treatment design condition occurred only in two events. During the peak flow period by-passing facilities at the plant were not used and the plant did not collect wastewater quality data. The annual average flow and BOD₅ load to the secondary in 1996 were about 78.2% and 88% of the plant design respectively.

The impacts of WWCS flow of 600 ML/d and 830 ML/d on the NEWPCC were assessed using the basic criteria described in the previous section of this report. It is certain that the plant cannot handle the WWCS flow of 1060 ML/d without upgrading because this flow rate is higher than the design flows for both primary and secondary treatment facilities. The impacts of WWCS flow of 600 ML/d and 830 ML/d were calculated and the results are summarized in Table 4.1.

Table 4.1 - Impact of WWCS Flows

WWCS flow, ML/d		600	830
Primary clarifier area, m²		6503.7	6503.7
Surface overflow rate, m³/m².d		92.3	127.6
Estimated primary removal efficiency*	BOD₅%	21	17
	TSS %	40	32
Estimated primary effluent BOD5, mg/	L	167	176
Estimated primary effluent TSS, mg/L		150	170
BOD₅ load to secondary**, kg/d		100,200	105,600
Max. design BOD5 load for secondary, l	kg/d	89,600	89,600

Note: * Efficiency is estimated from curves on Figure 1, BOD₅ is assumed at 53% of TSS.

**BOD₅ load is based on max. flow of 600 ML/d.

Under these two WWCS flow conditions the secondary treatment system is overloaded and the plant effluent quality will be detrimentally affected.

4.2 Plant Upgrading Requirements

Treatment of the WWCS flows to meet the effluent criteria requires plant upgrading. Several alternatives of plant upgrading have been investigated. These include expansion of primary treatment facility with or without chemically enhanced treatment, expansion of secondary treatment facility, and expansion of sludge treatment capacity. Conceptual construction costs for the plant upgrading were also developed. Process design calculations for the plant upgrading requirements were carried out using a computer model supplemented with manual calculations for sludge treatment and dewatering requirements. Computer outputs are included in Appendix 2. Calculation of sludge production is shown in Appendix 3. A brief description of each alternative for treatment of the WWCS flows is provided in the following sections.

4.2.1 WWCS Flow of 600 ML/d

Three alternatives of plant upgrading plus one plant design for producing a nitrified effluent were considered:

Alternative 1 - Expansion of Final Clarifiers

The 600 ML/d WWCS flow is treated in the existing primary and secondary treatment facilities with an expansion of final clarifiers. The existing primary tanks are operated at an overflow rate of 92.3 m³/m².d. It is expected that operation at this overflow rate for extended periods of time will reduce the primary removal efficiency to approximately 21% for BOD₅ and 40% for TSS. Under this condition, a BOD₅ load of 100,200 kg/d will discharge to the secondary treatment facility. Computer model calculated that the existing oxygenation reactors are able to handle this BOD₅ load with an increase in MLSS to 4800 mg/L, however, final clarifier needs expansion due to high solids loading. An additional final clarifier area of 3,923 m² is required.

This treatment alternative will generate a total sludge solids of 181,819 kg/d with a volatile solids content of 76%. To stabilize the sludge, an additional primary digester volume of 7,600 m³ is required. It is estimated that the anaerobic sludge digestion process will reduce the total sludge solids to 99,528 kg/d, less than the installed capacity of the existing sludge dewatering equipment.

The effluent quality of the Alternative 1 design is able to meet the effluent criteria.

Alternative 2 - Chemically Enhanced Primary Treatment for Entire Flow

This alternative is to provide chemically enhanced primary treatment for the WWCS flow. The objective is to increase primary removal efficiency and to reduce organic load to the existing secondary treatment system. The current primary clarifiers were designed and are operated at an overflow rate not suitable for separation of chemically precipitated particles. These particles settle slowly and require a low surface overflow rate for effective separation from liquid. Therefore expansion of the primary treatment is required.

An additional primary clarifier area of $8,500 \text{ m}^2$ plus a chemical dosing and mixing system is required. A BOD₅ load to the secondary treatment system is expected to reduce to 66,000 kg/d. Expansion of the secondary treatment system is not required. The plant effluent quality is able to meet the effluent criteria.

This treatment alternative will generate a total sludge solids of 200,000 kg/d with a volatile solids content of 69.4%. To stabilize the sludge, an additional primary digester volume of 12,860 m³ is required. It is estimated that the anaerobic digestion process will reduce the total sludge solids to 137,610 kg/d. Expansion of the existing sludge dewatering facility is not required.

Alternative 3 - Expansion of Primary Clarifiers

This treatment alternative is similar to the Alternative 1 to treat the WWCS flow in the existing primary and secondary treatment facilities with an expansion of primary clarifiers. To increase the primary treatment efficiency for 50% removal of TSS and reduce the BOD₅ load to the secondary an additional primary clarifier area of 6,262 m² is required. A BOD₅ load of 90,000 kg/d will be treated in the secondary facility. Expansion of the secondary treatment facility is not required. The plant effluent quality is able to meet the effluent criteria.

This alternative will generate a total sludge solids of 176,534 kg/d with a volatile solids content of 75.5%. An additional primary digester volume of 6,070 m³ is required to stabilize the sludge solids. It is estimated that the anaerobic digestion process will reduce the sludge solids to 116,564 kg/d. Expansion of the existing sludge dewatering facility is not required.

Alternative 4 - Expansion of Secondary Treatment to Produce A Nitrified Effluent

This alternative is to expand the secondary treatment system using a single-sludge nitrification process to produce a nitrified effluent. Expansion of both oxygenation reactors and final clarifiers is required.

Flow pattern of the single-sludge nitrification system is identical to that of the carbonaceous oxygen-activated sludge design, but the system is required to remove carbonaceous BOD as well as ammonia (NH₃). This is done by providing in the system the proper conditions to cultivate nitrifying bacteria among the more prevalent carbonaceous bacteria in the biomass. Since the nitrifiers grow much more slowly than the carbonaceous micro-organisms, maintenance of the proper conditions consists primarily of assuring that the time which the biomass spends in the reactor system, the sludge retention time (SRT), is at least long enough to provide time for the nitrifiers in the biomass to grow. Single-sludge oxygen nitrification system will typically have 2.5- to 6.0-hr retention times compared with standard design oxygen-activated sludge systems for carbonaceous removal only having 1.0- to 2.5- hr retention times. Therefore the design of the oxygenation reactors for single-sludge nitrification system at the NEWPCC is to provide a retention time of 3.6-hr. An additional reactor volume of 60,088 m³ is required.

The settling rate of nitrifying biomass is slower than that of carbonaceous biomass. Final clarifier design requires a surface overflow rate lower than that for carbonaceous biomass for effective solid separation. Therefore the final clarifier design is based on a surface overflow rate of $29.5 \text{ m}^3/\text{m}^2$.d. An additional final clarifier area of $6,074 \text{ m}^2$ is required.

This alternative will generate a total sludge solids of 166,510 kg/d with a volatile solids content of 73.9%. An additional primary digester volume of 3,186 m³ is required to stabilize the sludge. It is estimated that the anaerobic digestion process will reduce the sludge solids to 166,510 kg/d. Expansion of the existing sludge dewatering facility is not required.

This alternative is able to meet the design effluent criteria.

4.2.2 WWCS Flow of 830 ML/d

Alternative 5 - Expansion of Primary Clarifiers for Treatment of 830 ML/d

From the result of treatment alternative evaluation for the WWCS flow of 600 ML/d it is obvious that expansion of the existing primary treatment facility is the only cost-effective alternative for treatment of the WWCS flow. The expanded primary treatment facility was designed for a removal efficiency of 30% BOD₅ and 50% TSS. An additional primary clarifier area of 11,156 m² is required.

The primary effluent of 600 ML/d will be further treated in the existing secondary treatment facility. The remaining flow of 230 ML/d will be disinfected and bypassed the secondary facility. The BOD₅ load and the operating conditions of the secondary treatment facility are similar to the Alternative 3 and the expansion of the facility is not required.

This alternative will generate a total sludge solids of 207,124 kg/d with a volatile solids content of 75.6%. To stabilize the sludge, an additional primary digester volume of 14,890 m³ is required. It is estimated that the anaerobic digestion process will reduce the sludge solids to 136,623 kg/d. Expansion of the dewatering facility is not required.

4.2.3 WWCS Flow of 1060 ML/d

Alternative 6 - Expansion of Primary Clarifiers for Treatment of 1060 ML/d

This alternative is similar to the Alternative 5 to expand the existing primary treatment facility to treat the WWCS flow. The expanded primary treatment facility was designed for a removal efficiency of 30% BOD₅ and 50% TSS. An additional primary clarifier area of 16,049 m^2 is required.

The primary effluent of 600 ML/d will be further treated in the existing secondary treatment facility. The remaining flow of 460 ML/d will be disinfected and bypassed the secondary treatment facility. The BOD₅ load and the operating conditions of the secondary treatment facility are similar to the Alternative 3. Expansion of the existing secondary treatment facility is not required.

This alternative will generate a total sludge solids of 247,714 kg/d with a volatile solids content of 72.7%. To stabilize the sludge an additional primary digester volume of 26,587 m³

is required. It is estimated that the anaerobic digestion process will reduce the sludge solids to 166,682 kg/d. Expansion of the sludge dewatering facility is not required.

4.2.4 Summary of Plant Upgrading Requirement

The additional facilities for plant upgrading for treatment of the WWCS flows are summarized in the Table 4.2. It is assumed that the existing headwork has a sufficient capacity for the WWCS flows, upgrading of the plant headwork is not included. Estimated effluent quality for meeting the effluent criteria for each alternative is also shown in the table.

4.3 Capital Cost Estimate

Conceptual capital costs for the plant upgrading were estimated with reference to the most recent contracts completed by CH2M Gore & Storrie Limited. In order to facilitate cost calculations for this study, unit costs for various unit processes were first established using the construction contract price for the unit processes. The unit costs were then brought up to January 1998 cost using ENR Construction Cost Index and included an allowance of 11% for engineering and construction supervision. However the unit costs do not include land costs, taxes, and piling foundation costs if required. The development of the unit costs is included in Appendix 4. A summary of the unit costs used for the study is listed in Table 4.3.

Table 4.3 - Unit Capital Costs

Unit Process	<u>Unit Cost, \$</u>
Primary Clarifier, per m ² of tank area	1,328.00
Flash Mix & Floc Tank, per m³ of flow	6.20
Chemical Facility, per m ³ of flow	6.70
Oxygenation Reactor, per m ² of tank area	1,328.00
Final Clarifier, per m² of tank area	1,328.00
Chlorination & Dechlorination, per m ³ of flow	4.00
Sludge Digester, per m³ of tank volume*	686.50
Dewatering, per kg/d of digested sludge**	878.50

* The unit cost includes control building,

** The unit cost includes building for housing the dewatering equipment

The estimated capital cost for the plant upgrading in each alternative is calculated as the sum of the product of the unit process requirement and the unit cost. A summary of the estimated capital costs for the alternatives investigated is listed in Table 4.4.

Additional Facility		600 ML/d			830 ML/d	1060 ML/d
	Alternative	Alternative	Alternative	Alternative	Alternative	Alternative
Requirement	1	2	3	4	5	6
Primary Clarifier						
Area, m²	-	8,500	6,262	-	11,156	16,049
Volume, m ³	-	30,600	22,543	-	40,162	69,011
Oxygen Reactor						
Area, m²	-	-	-	13,974	-	-
Volume, m3	-	-	-	60,088	-	-
Final Clarifier						
Area, m ²	3,923	-	-	6,074	<u>-</u>	-
Volume, m3	14,123	-	-	21,866	-	-
Digester						
Volume, m3	7,600	12,860	6,070	3,186	14,890	26,578
Dewatering						
Digested Sludge, kg/d	-	-	-	-	-	-
Meeting Effluent						
Requirement	Yes	Yes	Yes	Yes	Yes	Yes

Table 4.2 - Plant Upgrading Requirements

		600 ML/d			830 ML/d	1060 ML/d
Additional Facilities	Alternative	Alternative	Alternative	Alternative	Alternative	Alternative
	1	2	3	4	5	6
Primary Clarifiers	-	11,288,000	8,316,000	-	14,815,000	21,313,000
Oxygen Reactors	-	-	-	18,557,000	-	- ``
Fianl Clarifiers	5,210,000	-	-	8,066,000	-	· _
Flash Mix & Floc Tanks	-	3,720,000	-	-	-	-
Chemcial System	-	4,020,000		-	-	-
Disinfection*	-	-	-	-	920,000	1,840,000
Sludge Digestion	5,217,000	8,828,000	4,167,000	2,187,000	10,222,000	18,246,000
Sludge Dewatering	-	-	-	-	-	-
Total Estimated Cost, \$	10,427,000	27,856,000	12,483,000	28,810,000	25,957,000	41,399,000

Table 4.4 - Estimated Capital Costs For Plant Upgrading Requirements

Note *Disinfection includes chlorination and dechlorination for secondary bypass flow only

SECTION 5

CONCLUSIONS AND RECOMMENDATIONS

Section 5 - Conclusions and Recommendations

5.1 Conclusions

Based on the results of process evaluation for treatment of the WWCS flow at the NEWPCC, the following conclusions can be drawn:

- 1. The secondary treatment system of the NEWPCC is overloaded under all three flow rates, 600 ML/d, 830 ML/d, and 1060 ML/d. The plant can not produce a secondary effluent quality meeting the effluent criteria of 25 mg/L BOD₅ and 30 mg/L TSS.
- 2. Three alternatives for treatment of the WWCS flow of 600 ML/d were evaluated. Alternative 1 is the lowest cost alternative and is recommended for consideration. This alternative requires an expansion of the final clarifiers to handle high mixed liquor solids load from the reactors. Expansion of the sludge digestion facility is also required. Total estimated capital cost is \$10,427,000.
- 3. From the result of treatment alternative evaluation for the 600 ML/d flow it is understood that expansion of the primary treatment facility is the only cost-effective alternative for treatment of the WWCS flow of 830 ML/d and 1060 ML/d. Flow exceeding the existing secondary treatment capacity of 600 ML/d will be chlorinated and dechlorinated prior to discharge. Increase of sludge loads due to treatment of the WWCS flows requires an expansion of the sludge digestion facility. Expansion of the sludge dewatering facility is not required.

Total estimated capital cost for treatment of 830 ML/d is \$25,957,000.

Total estimated capital cost for treatment of 1060 ML/d is \$41,399,000

- 4. To treat the WWCS flow of 600 ML/d for meeting the nitrified effluent criteria of 25 mg/L BOD₅, 30 mg/L TSS and 5 mg/L NH₃-N, the plant requires an expansion of the secondary treatment and sludge digestion facilities. Total estimated capital cost is \$28,810,000.
- 5. Based on the accuracy of the cost estimate and the small difference in flows between the current design and the WWCS flow of 600 ML/d, the estimated cost of \$28,810,000 can be applied for upgrade of the existing facility to achieve nitrification.

The above estimated capital costs include an allowance of 11% for engineering and construction supervision but exclude land costs, taxes, and piling foundation if required.

5.2 Recommendations

In 1996, the plant received an average flow and an average BOD₅ load to the secondary treatment facility of 78% and 88.6% of the design respectively. However, secondary effluent

BOD₅ concentrations were consistently over 50 mg/L, greater than the plant design of 25 mg/L. It is recommended that a plant audit be carried out to investigate the cause of the high BOD₅ concentration in the effluent.

APPENDIX 1

KINETIC AND STOICHIOMETRIC PARAMETERS (common all alternatives)

_

. . .

coeff

REPORT

SCENARIO - ALT1

 $\{i_1,\ldots,i_{n-1}\}$

Barren ar

1

 $\{ f_{i}^{(m)} \in \mathbb{R}^{n} : i \in \mathbb{R}^{n} \}$

.

Label: SYSTEM	
time	
stopping time	0 d
communication interval	0.05 d
(1)date and time at t=0	1994 yr,m,d,h
(2)date and time at t=0	11 yr,m,d,h
(3)date and time at t=0	1 yr,m,d,h
(4)date and time at t=0	0 yr,m,d,h
(5)date and time at t=0	0 y r,m,d, h
(6)date and time at t=0	0 yr,m,d,h
initial time	0 d
round seconds to full minutes	.false.
round minutes to quarter hours	.false.
repeat runs	
number of reruns	0
input files	
input file extension (in offline mode)	dat
Plant #1 name (for data file)	blank
Plant #2 name (for data file)	blank
Plant #3 name (for data file)	blank
Plant #4 name (for data file)	blank
Plant #5 name (for data file)	blank
Plant #6 name (for data file)	blank
Plant #7 name (for data file)	blank
Plant #8 name (for data file)	blank
Plant #9 name (for data file)	blank
Plant #10 name (for data file)	blank
output files	
Use global alarm file	.false.
Alarm file name	blank
oxygen solubility (if global settings are used)	
Use global physical values	.false.
tank depth	4.3 m
liquid temperature	13 C
air temperature	20 C
oxygen fraction in air	0.21 -
elevation above sea level	0 m
barometric pressure at sea level	1 atm
base temperature	20 C
acceleration of gravity	9.80665 m/s2
Energy price	0.07 \$/kWh
std parameters	
iterate for steady-state	.false.
number of retries on iteration	0
error limit on individual variables	1.00E-10
iteration termination criteria	10
contract constant	0.982

coeff

Page 2

expand constant	1.003
maximum step size in one iteration	0.5
damping factor on final approach	· 1
initial perturbation	0.05
convergence output interval	200
std loop counter initial value	0
maximum number of iterations	20000
maximum number of unsuccessful iterations	5000
trim parameters	
print value of dsum	1.00E+10 d
display improved iterations only	.true.
iteration output interval in trim	50000
static	
optimizer control	.false.
objective function based on time series data	.true.
number of optimized parameters	2
number of data points (at least 2)	3
parameter tolerance	1.00E-03
objective function tolerance	1.00E-06
termination value for objective function	. 0.1
maximum number of optimizer iterations	100
step size in initial guess	0.2
reflection constant	0.95
contraction constant	0.45
expansion constant	1.9
shrink constant	0.5
DPE	
dynamic parameter estimator	.false.
DPE timewindow	1.00E+10 d
on-line run	
On-line run	.false.
Wait for all data to synchronize	.false.
data transfer	
send data to simulator module	.false.
max number of control and output variables	100
max number of datapoints	100
AUF	
max number of ADF coefficients	128
Sampling rate from date base	GPS-X
Sampling rate from data base	60 s
Communication mode	4.1
ge communication mode	.Taise.
de input mode	22041
gix input mode	.taise.
gix ouiput mode	.talse.
yix nics ill FC IUIIIal Output into Matlah format	.taise.
send warnings to log window	.talse.
send ontimizer status to los window	.true.
send DPE status to log window	.true.
bounding	.true.
oongleg	

- -

terrent test (the second second

÷.

number of iterations in IMPL operator error bound in IMPL operator bottom bound on flows top bound on flows bottom bound on initial concentrations top bound on initial concentrations bottom bound on concentrations top bound on concentrations bottom bound on derivatives top bound on derivatives bottom bound on volumes ignore dilution rate below this volume ignore dilution rate below this layer thickness top bound on volumes bottom bound on parameters top bound on parameters top bound on integers protect against division by zero top bound on exponential (xmin) speed low concentration approximate integration .false. relative derivative limit low concentration limit damping on negative derivative approximate anoxic DO limit smooth pump discharge at discontinuities .false. smoothing period smooth factor (logistic parameter) smooth at flow changes larger than general pi controller sampling time controller damping in steady-state SVI correlation constants cc1 cc2 cc3 cc4 cc5 cc6 cc7 **cc8** cc9 system variables numerical solver initial number of integration steps minimum integration step size 1.00E-30 days maximum integration step size 1.00E-01 days

1.00E-06 -1.00E-10 m3/d 1.00E+10 m3/d 1.00E-06 g/m3 1.00E+10 g/m3 0 g/m3 1.00E+10 g/m3 -1.00E+33 g/m3/d 1.00E+33 a/m3/d 1.00E-10 m3 1.00E-01 m3 1.00E-03 m 1.00E+10 m3 1.00E-10 1.00E+10 999999 1.00E-10 1.00E+03 g/m3 200 g/m3/d 0.03 g/m3 0.001 0 g/m3 1.00E-05 d 15 -50 % 3.14159265 999 d 1000 d 709.7 -4.67 0.018 2.66E-04 -2.85E-06 2.50E-08 -1.62E-04 0.004897 6.47E-04 Runge-Kutt -50 -

30 -

Label: USER

1.000

ż

Page 3

Label: (11,18)	
Label: (13,18)	
Label: (16,18)	
Label: (14,17)	
Label: (12,17)	
fractions [R1]particulate COD to VSS ratio	1.42 aCOD/aVS
[R1]VSS/TSS ratio	0.8 gVSS/gTS
[R1]BOD5 to BODultimate ratio	0.66 -
heterotrophs	
[R1]Yield	0.666 -
[R1]N content of active mass	0.068 gN/gCOD
[R1]N content of endogenous mass	0.068 gN/gCOD
[R1]P content of active mass	0.021 gP/COD
[R1]P content of endogenous mass	
In ljendogenous fraction	0.08 -
[R1]Yield	0.15 -
[R1]N content of active mass	0.068 gN/gCOD
[R1]N content of endogenous mass	0.068 gN/gCOD
[R1]P content of active mass	0.021 gP/COD
[R1]P content of endogenous mass	0.021 gP/COD
[R1]Endogenous fraction	0.08 -
[R1]particulate COD to VSS ratio	1.42 gCOD/gVS
poly-p organisms	
[H1]Yield [D1]N content of active mass	0.639 -
In I jin content of active mass	
In the content of soluble unblock COD	
[R1]P content of active mass not PP	
[R1]P content of endogenous mass	
[R1]endogenous fraction	0.021 gF/00D
	0.20 -
[R1]soluble unbiod, fraction	02-

coeff

[R1]P uptake/COD utilized, anoxic [R1]P release/fatty acid uptake [R1]particulate COD to VSS ratio

/ kinetic /

(the set

зú

「「

Sec. 1

à

1

ų. Nerios

heterotrophs [R1]Maximum specific growth rate 3.2 1/d [R1]Half saturation coefficient 5 gCOD/m3 [R1]Organism decay rate 0.62 1/d [R1]Anoxic hydrolysis factor 0.6 -[R1]Anoxic growth factor 0.8 -[R1]Maximum spec. hydrolysis rate 2.81 1/d [R1]Hydrolysis half saturation 0.15 -[R1]Ammonification rate 0.016 m3/gCOD/ autotrophs [R1]Maximum specific growth rate 0.467 1/d [R1]Half saturation coefficient 1 aN/m3 [R1]Organism decay rate 0.05 1/d poly-p organisms [R1]Max. spec. growth rate, no P limit 0.9 1/d [R1]Max. spec. growth rate, P limit 0.42 1/d [R1]Half saturation coeff., no P limit 0.18 -[R1]Half saturation coeff., P limit 0.18 -[R1]Organism decay rate 0.04 1/d 0.03 1/d [R1]PP cleavage for maintenance [R1]Lower fatty acid sequestration rate 6 1/d [R1]Conversion rate of ss to slf 0.04 1/d [R1]Anoxic growth factor 1 switching functions [R1]Aerobic/anoxic growth 0.2 gO2/m3 [R1]Ammonia limit 0.05 gN/m3 [R1]Nitrate limit 1 gN/m3 [R1]Soluble phosphorus limit 5 gP/m3 [R1]Poly-P limit 1 aP/m3[R1]Lower fatty acids limit 1 gCOD/m3 temperature [R1]Temperature coefficient for muh 1.035 -[R1]Temperature coefficient for bh 1.035 -[R1]Temperature coefficient for mua 1.11 -[R1]Temperature coefficient for ba 1.029 -[R1]Temperature coefficient for ka 1.029 -[R1]Temperature coefficient for kh 1.072 -[R1]Temperature coefficient for mup 1.123 -[R1]Temperature coefficient for bp 1.029 -

coeff

0.2 gP/COD

1.42 gCOD/gVS

0.48 gP/COD

Label: (15,16)

APPENDIX 2

COMPUTER OUTPUTS

1

1

.

.

				1		GPS-X Influe	nt .
Vastew	eter Component	Symbols	CPSY	Units	From Pro2D	CODbased	State Variables
itandar	d Analysis		Gran				
:800,	Total		1	mg (22/L	167		
	Particulate	·	1	mg 02/L	63		
~~~	Filtale		COD		368	368	
~~	Particulate Bio			mg CODA	108		
	Particulate Non-Bio		1	mg CODIL	61		
	Total Particulate COD		XCOD	mg CODA.	169	197.6	
	Filtrate Bio	1	ļ	mg CODL	174		
	Total Strate COD	1	scop	mg CODA	198	170	
SS	Total	1	TSS	mg TSSA.	150	176	
	Biodegradable	1	ł	mg TSS/L	91		
	Non-Biodegradable	1	Lee	mg TSS/L	58	133 5	
55	l otal Riodeoradable	1	V35	ma VSS/L	73	100.0	
	Non-Biodegradable	[	1	mg VSS/L	41		
KN	•	1	TKN	mg N/L	26	26	
нз		1	snh	mg N/L	21		
PO4		l		mg P/L	5	-	
thoPC	4 Mahlan	ł	sp	mg P/L	3	3	
ate Va	viables nd Components	1		}	)		
ISSOIV		ls	50	mg C2/1-	{	0	
aguitye Aguitye	Rinden Soluble Substrate	IS-	35	ma COD/1		139	139
Jacity	entropy. Juliume Jubst alle	IS.	eff	ma CODA			
	ation Products (acetale)	5	3H		21	20.7	20 7
mmoni	<b>.</b>	0				20.7	10.7
nrate/ħ	NUTION .	3403	300	mg IVL		24	
nosphi	RB, - blods bondable	SPO4	sp	mg P/L	3	3.4	0.4 14
ert, No	n-piozegradable organics	Salk	-	mole HC03-	256	-	31
		S.	<b> </b> _	mg N/L			
articul	ate Components	1	1				
ert, No	n-biodegradable organics	X,	xi	mg CODA	61	54.3	54.3
nbio, p	articulates from cell decay	ŀ	xu	mg COD/L		0	0
owly b	iodegradable substrate	X ₈	XS	mg CODAL		143.3	143.3
sterotr	ophic biomass	X,	xon	mg CODA	1,49	0	0
hospha	nus accumulating organisms	Xmo	хор	mg COD/L		0	0
ored p	olyphosphate of PAO	Xee	XPP	mg PA		0	0
genic	storage products of PAO	Xmu	xbt	mg CODA		0	0
- .totroc	hic nitrifying biomass	Xaut	xba	mg COOAL	0.05	0	0
articula	te biodeg. Org N		xnd	mg N/L	2.92	3.9	3.9
elduic	biodeg. Org N	-	snd	mg NL	-0,6	1.3	1.3
amic hy	droxide	Xuuch	ŀ	mg TSS/L			
arric pl	rosphate	مىي×	<b> -</b>	mg TSS/L			
Inticula	te material	XTEE	ſ	mg TSSAL		176	
ert No	n Organic Particulates	L	xdii	mg TSS/L		42.2	42.2
hecks	for COD balance		1	1		85.3	
OD bid	degradable		[	[		283	
hecks	for TSS balance						
			}				
	ions for X calculation	85%		L	of filtrate bi	odegradable C	OD that is re
sump	tions for X ₇₅₅ calculation	85%		L	of filtrate bi	odegraciable C	OD that is re
ssump toichic	tions for X ₇₅₅ calculation metry for GPS-X CODbase	85% 20% d influent	Model	L	of filtrate bi	odegradable C	COD that is re
toichic SS/TS	tions for X ₇₃₅ calculation metry for GPS-X CODbase S	85% 20% d influent	Model ivt	I	of filtrate bi	0.760	COD that is re
toichic SS/TS Inticula	tions for X ₇₅₅ calculation metry for GPS-X CODbase S Me COD/VSS CD	85% 20% d influent	Model ivt icv		of filtrate bi	0.760 0.453	COD that is re
ssump toichik SS/TS articula DD5/C DD204	tions for X ₇₅₅ calculation metry for GPS-X CODbase S Me COD/VSS OD BOOS	85% 20% d influent	Model ivt icv fbodcod fbod		of filtrate bi	0.760 0.760 1.480 0.453 1.696	OD that is re
ssump ssump ss/TS articula DD5/C DD20// H3/TK	tions for X ₇₅₅ calculation meetry for GPS-X CODbase S Me COD/VSS OD BODS N	85% 20% d influent	Model ivt icv fbodcod fbod fnh		of filtrate bi	0.760 0.760 1.480 0.453 1.696 0.799	OD that is re 0.590
olchik SS/TS aticula DD5/C DD20/ H3/TK aticula	tions for X ₇₅₅ calculation meetry for GPS-X CODbase S Ma COD/VSS OD BOD5 N N Ma Org N/Total Org N	85% 20% d influent	Model ivt icv fbodcod fbod fnh fxn		of filtrate bi	0.760 1.480 0.453 1.696 0.799 0.750	OD that is re 0.590
ssump toichic SS/TS articula DD5/C DD20/ H3/TK articula inetic	tions for X ₇₅₅ calculation metry for GPS-X CODbase S COD BODS N te Org N/Total Org N and Stoichiometric Coeffic	85% 20% d influent	Model ivt icv fbodcod fbod fnh tan		of filtrate bi	0.760 1.480 0.453 1.696 0.799 0.750	0.590
olchic SS/TS articula DD5/C DD20/ H3/TK articula netic sterot	tions for X ₇₅₅ calculation whethy for GPS-X CODbase the COD/VSS OD BODS N the Org N/Total Org N and Stoichiometric Coeffic rophs: paratic provide mite	85% 20% d influent ents PRO2D	Model ivt icv fbodcod fbod fnh fxn		of filtrate bi	0.760 1.480 0.453 1.696 0.799 0.750 General Mode 3.20	OD that is re 0.590
olchic SS/TS articula DD5/C DD20/ rticula netic sterot bimus umax	tions for X ₇₅₅ calculation metry for GPS-X CODbase S CODVSS OD BODS N ta Org N/Total Org N and Stoichiometric Coeffic ropha: n specific growth rate amp. cor. coeff.	85% 20% d influent ents PRO2D mumax	Model ivt icv fbodcod fbod fnh fbon muh theta		6.00 1.035	0.760 1.480 0.453 1.696 0.799 0.750 General Mode 3.20 1.035	OD that is re 0.590
olchic SS/TS Inticula DD5/C DD20/ H3/TK Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula Inticula	tions for X ₇₅₅ calculation metry for GPS-X CODbase S the COD/VSS OD BODS N the Org N/Total Org N and Stoichiometric Coeffic rophs: n specific growth rate tamp, corr. coeff. ration COD	85% 20% d influent ents PRO2D mumax	Model icv fbodcod fbod fbn fbn theta ksh		6.00 6.00 6.00	0.760 1.480 0.453 1.696 0.799 0.750 General Mode 3.20 1.035 5.00	OD that is re 0.590
sump solchic SS/TS articula DD5/C DD2/C H3/TK articula netic staroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti ateroti a	tions for X ₇₃₅ calculation metry for GPS-X CODbase S the COD/VSS OD BODS N the Org N/Total Org N and Stoichiometric Coeffic rophs: n specific growth rate tamp. corr. coeff. ration COD n decay rate	85% 20% d influent ents PRO2D murnex	Model ivt icv fbodod fbod fbn fbn muh theta ksh bh		6.00 1.035 6.0.00 0.24	0.760 0.760 1.480 0.485 1.696 0.799 0.750 General Mode 3.20 1.035 5.00 0.62	0.590
isump isump isump isump isticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticula inticu	tions for X ₇₅₅ calculation metry for GPS-X CODbase S the COD/VSS COD BOD5 N the Org N/Total Org N and Stoichiometric Coeffic ropha: m specific growth rate termp, corr. coeff. ration COD n decay rate te temp, corr. coeff.	85% 20% d influent ents PRO2D mumax	Model ivt icv fbodcod fbod fbn fbn muh theta ksh bh		6.00 6.00 1.035 60.00 0.24 1.035	0.760 0.760 1.480 0.453 1.696 0.799 0.750 General Mode 3.20 1.035 5.00 0.62 1.035	OD that is re 0.590
olchic SS/TS rticula DDS/C DD20// ts/TKI DD5/C DD20// ts/TKI statu amax i if satu amax i artisra cay fa oxic h	tions for X ₇₅₈ calculation whethy for GPS-X CODbase S the COD/VSS OD BOD5 N and Stoichiometric Coeffic rophs: ango, corr. coeff. ration COD n decay rate te temp, corr. coeff. ydrolysis factor	85% 20% d influent ents PRO2D mumax	Model ivt icv fbodcod fnh fbn fbn theta ksh bh etah		6.00 1.035 60.00 0.24 1.035	0.760 0.760 1.480 0.453 1.696 0.799 0.750 General Mode 3.20 1.035 5.00 0.62 1.035	OD that is re 0.590
olchic ssump olchic ssrtsus DD5/C H3/TKI anetic steroto aximus amax i steroto aximus anax i steroto aximus anax i steroto aximus anax i steroto aximus anisa amax i steroto aximus anisa amax i steroto aximus anisa aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus aximus	tions for X ₇₃₈ calculation whetry for GPS-X CODbase S the COD/VSS OD BOD5 N the Org N/Total Org N and Stoichlometric Coeffic rophs: amp, corr. coeff. ration COD n decay rate to temp, corr. coeff. ydrolysis factor rowth factor rowth factor	85% 20% d influent ents PRC2D murnax	Model ivt icv fbodcod fnh fbn fbn theta ksh bh etah etah etag yh		6.00 1.035 60.00 0.24 1.035	0.760 0.760 1.480 0.453 1.696 0.799 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 0.62 0.656	0.590
olchic ssump olchic ssrtsus DDS/C DD20/ H3/TKI anetic steroto aximus amax i steroto ganisa cay ra hoxic g covic g	tions for X ₇₃₅ calculation smetry for GPS-X CODbase S the COD/VSS OD BOD5 N the Org N/Total Org N and Stoichiometric Coeffic rophs: n specific growth rate tamp, cor. coeff. ration COD n decay rate te temp, corr. coeff. ydrolysis factor rowth factor which corganism yield S	85% 20% d influent PRO2D mumax	Model ivt icv fbodcod fbod fbod fbod fbod fbod fbod fbod fb	gCOD/COD	6.00 1.035 60.00 0.24 1.035 - - 0.666 1.42	0.760 1.480 0.453 1.696 0.799 0.750 General Mode 3.20 1.035 5.00 0.622 1.035 0.68 0.686 0.88 0.666 1.42	OD that is re 0.590
toichic SS/TS: articula OD5/C OD20// H3/TKC articula inetic eteroto aximulu umax i articula aximulu umax i articula aximulu umax i articula aximulu ganism icay ra theroto OD/VS OD/VS	tions for X ₇₅₅ calculation metry for GPS-X CODbase Second Second Sec	85% 20% d influent PRO2D mumax	Model ivt icv fbodcod fbod fbod fbod fbod fbod fbod fbod fb	gCOD/COD	6.00 6.00 1.035 60.00 0.24 1.035 - 0.6665 1.42 0.201	0.760 1.480 0.453 1.696 0.799 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 5.00 0.62 1.035 5.00 0.62 1.035 5.00 0.62 1.035 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68	0.590
ssump toichic SS/TS: mticula DD5/C DD20// H3/TKC anticula inetic ateroto ganism umax i ateroto ganism cay ra steroto DD/S DD/S DD/S DD/S DD/S DD/S DD/S S dd/S ateroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto steroto	tions for X ₇₃₅ calculation metry for GPS-X CODbase the COD/VSS OD BODS N and Stoichiometric Coeffic rophs: n specific growth rate amp.corr.coeff. ration COD n decay rate te temp, corr.coeff. ydrolysis factor rowth factor rowth factor rowth factor phic organism yield S ous fraction ration O2	85% 20% d influent ents PRO2D mumax	Model ivt icv fbodcod fbod fnh fbr theta ksh bh etah etah etah etah fuh koh	gCOD/COD mg O2/L	6.00 1.035 60.00 0.24 1.035 - 0.666 1.42 0.20	0.760 0.760 1.480 0.483 1.696 0.799 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 5.00 0.62 1.035 0.68 0.686 0.88 0.6666 1.42 0.08 0.2	0.590
ssump tolchik SS/TS articula DOS/C DO20// H3/TK0 Inetic articula inetic articula inetic articula inetic articula ganism ganism cay ra satu ganism cay ra terotro DO/S D/VS doger if satu stotro torotro	tions for X ₇₅₈ calculation metry for GPS-X CODbase S the COD/VSS OD - BOD5 N the Org N/Total Org N and Stoichiometric Coeffic ropha: m specific growth rate armp. corr. coeff. ration COD - n decay rate the temp, corr. coeff. ydrolysis factor rowth factor phic organism yield S ous fraction ration C2 phs:	85% 20% d influent ents PRC2D mumax	Model ivt icv fbodcod fbod fonh fbod fonh fbod fonh fbod theta ksh bh etah etab etag yh fuh koh	gCOD/COD mg O2/L	6.00 1.035 60.00 0.24 1.035 - 0.666 1.42 0.20 -	0.760 0.760 1.480 0.4853 1.696 0.799 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 0.68 0.686 1.42 0.08 0.2	0.590
ssump toichic SS/TSI articula inetic teroto aximuu umax i alf satu ganisra umax i alf satu ganisra umax i alf satu ganisra terotro ODVS vidoger lif satu aximut aximut	tions for X ₇₅₈ calculation whetry for GPS-X CODbase S the COD/VSS OD BOD5 N the Crg N/Total Org N and Stoichiometric Coeffic rophs: n specific growth rate te temp, corr. coeff. ration COD n decay rate te temp, corr. coeff. ydrolysis factor rowth factor phic organism yield S ous fraction ration O2 phs: n specific growth rate	85% 20% d influent ents PRO2D mumax	Model ivt icv fbodcod fbod fod fnh fbn that ksh bh etah etag yh fuh koh mua	gCOD/COD mg Q2/L	6.00 1.035 6.00 1.035 60.00 0.24 1.035 - - 0.666 1.42 0.20 - 0.70	0.760 0.760 1.480 0.453 1.696 0.799 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 5.00 0.62 1.035 0.65 0.8 0.88 0.566 1.42 0.08 0.2 0.467	0.590
toichic SS/TS: articula SS/TS: articula inetica avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionus avionu	tions for X ₇₃₃ calculation whetry for GPS-X CODbase S the COD/VSS OD BOD5 N the Org N/Total Org N and Stoichlometric Coeffic rophs: amp, corr. coeff. ration COD in decay rate te temp, corr. coeff. ydrolysis factor rowth factor sphic organism yield S ious fraction ration O2 phs: in specific growth rate emp corr. coeff.	85% 20% d influent ents PRC2D mumax	Model ivt icv fbodcod fnh fbn fbn theta ksh bh etah etah etah tuh koh	gCODICOD mg Q2/L	6.00 1.035 60.00 1.035 60.00 0.24 1.035 - 0.666 1.42 0.20 - 0.70 1.011	0.760 0.760 1.480 0.453 1.696 0.799 0.750 6.675 1.035 5.00 0.62 1.035 5.00 0.62 1.035 6.08 0.656 1.42 0.08 0.2 0.467 1.011	0.590
tolchik SS/TS: Maricula ODS/C OD20/ H3/TK Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic Inetic In	tions for X ₇₃₃ calculation metry for GPS-X CODbase S the COD/VSS OD BOD5 N the Org N/Total Org N and Stoichiometric Coeffic rophs: n specific growth rate temp, corr. coeff. ydrolysis factor rowth factor sphic organism yield S ous fraction ration O2 phs: n specific growth rate emp corr. coeff. ration O2 phs: n specific growth rate emp corr. coeff. ration O2 phs: n specific growth rate emp corr. coeff.	85% 20% d influent PRC2D mumax	Model ivt icv fbodcod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod	gCOD/COD mg O2/L	6.00 1.035 60.00 1.035 60.00 0.24 1.035 - 0.666 1.42 0.20 - 0.70 1.011 1.300 1.011	0.760 1.480 0.453 1.696 0.799 0.759 0.759 0.759 0.759 0.759 1.035 5.00 0.62 1.035 5.00 0.62 1.035 5.00 0.66 1.42 0.08 0.467 1.011 0.2	OD that is re 0.590 For DO setp Cannot char
ssump tolchik SS/TS: SS/TS: COD2(V) H3/TK inetic aximul umax 1 articul atorno dogr therotro Doyof hatoric dogr therotro Doyof hatoric dogr therotro Doyof hatoric dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr therotro dogr dogr therotro dogr therotro dogr therotro dogr dogr therotro dogr dogr therotro dogr dogr dogr dogr dogr dogr dogr do	tions for X ₇₃₃ calculation smetry for GPS-X CODbase S the COD/VSS OD BOD5 N the Org N/Total Org N and Stoichiometric Coeffic rophs: m specific growth rate temp, corr. coeff. ration COD in decay rate te temp, corr. coeff. ydrolysis factor rowth factor sphic organism yield S nous fraction ration O2 phs: m specific growth rate smp corr. coeff. ration O2 ration NH3 odecay rate	85% 20% d influent PRC2D mumax	Model ivt icv fbodcod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod	gCOD/COD mg O2/L	6.00 1.035 60.00 0.24 1.035 60.00 0.24 1.035 - 0.666 1.42 0.20 - 0.70 1.011 1.300 1.011 1.300 1.00 0.05	0.760 1.480 0.453 1.696 0.799 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 5.00 0.62 1.035 0.68 0.686 1.42 0.08 0.467 1.011 0.2 1.001	0.590 For DO setp Cannot char
tolchik SS/TS: articula SS/TS: DOS/C OD2/C H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK H3/TK	tions for X ₇₂₈ calculation metry for GPS-X CODbase S the COD/VSS OD BOD5 N the Op N/Total Org N and Stoichiometric Coeffic rophs: In specific growth rate te temp, corr. coeff. ration COD n decay rate te temp, corr. coeff. ydrolysis factor rowth factor sphic organism yield S tous fraction ration O2 phs: In specific growth rate smp corr. coeff. ration O2 phs: n specific growth rate smp corr. coeff. ration O2 phs: n specific growth rate smp corr. coeff. ration O2 phs: n specific growth rate smp corr. coeff. ration O2 ration NH3 n decay rate hic organism yield	85% 20% d influent ents PRO2D mumax	Model ivt icv fbodcod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod fbod	gCOD/COD mg Q2/L	6.00 1.035 60.00 0.24 1.035 60.00 0.24 1.035 - 0.666 1.42 0.20 - 0.70 1.011 1.300 1.00 0.05 0.15	0.760 0.760 1.480 0.483 1.696 0.799 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 0.68 0.686 1.42 0.08 0.566 1.42 0.08 0.2 0.467 1.011 0.2 1.001 0.2 0.05 0.151	OD that is re 0.590

10000

#### GPSX Influent - 55% TSS Removal

	water Component	Symboli		Units	From	Calculated	ASM2	CODbased	State	
		ASM2	GPSX	1	Pro2D	Values	Values	Model	Variables	
Standa	rd Analysis									
C800,	Total	1	1	mg O2/L	150					
	Particulate			mg O2/L	52					
	Tatel	{	COD	mg OZL	312			312		
	Particulate Ric		Jan 1	ma COD/L	84			•		
	Particulate Non-Bio	1	1	mg COD/L	47					
	Total Particulate COD	1	XCOD	mg COD/L	131			157.0		
	Filtrate Bio		1	mg CODA	157				-	
	Filtrate Non-Bio			mg COD/L	23					
	Total filtrate COD	1	SCOD	mg COD/L	180			155		
TSS	Total		TSS	mg TSS/L	117			139		
	Biodegradable			mg TSS/L						
	Non-Biogegradable		VSS	mg task.				106.1		
	Biodeoradable	1		ma VSS/L	57					
	Non-Biodegradable	1		mg VSSA	32					
'KN	• • • • • •	}	TKN	mg NL	25			25		
IH3		1	snh	mg N/L	21					
PO4		1		mg P/L	4					
nthoPC	04	]	sp	mg P/L	3			3		
state V	/ariables		· ·	-						
)issolv	red Components	l	1	1						
issolv	ed Oxygen	Sa	so	mg O2/L			-	0	0	
eadily	Biodeg, Soluble Substrate	S,	55	mg COD/L		133	133	124	124	
emen	station Products (acetate)	S.	sif	mg CODA				0	0	
		6	enh	ma N#	21		21	21.0	21.0	
unmon		0	and 1		<u>اء</u>					
utrate/1	Nitrite .	SINCS	sno	mg N/L	0		U U	0		
hosph	ate	SPOA	sp	mg P/L	3		3.4	3.4	3.4	
nert, No	on-biodegradable organics	Si	si	mg COD/L	23		23	31	31	
licarbo	nate alkalinity	Salk	·	mole HCO3-	257		257	•		
litroger	n	S _{M2}	r	mg N/L						
articul	late Components	L.	1.							
nert, No	on-biodegradable organics	X	xi	mg COD/L	47	1	47	39.6	39.6	
jnbio, p	particulates from cell decay	-	xu	mg COD/L			•	0	0	
iowly t	biodegradable substrate	Xa	xs	mg CODAL		108	107.6	117.4	117.4	
leterotr	rophic biomass	X _H	xbh		0.99	}	1.0	0	0	
hosoh	iorus accumulating organisms	XPHO	хор				-	0	0	
anned r	colvohosohata of PAO	Xaa	200	ma P/L		1	- 1	0	0	
		Y	-		e <b>1</b>	1		a	် ဂါ	
Jigenic	storage products of PAO	CHIA			0.00		0		0	
utorop	phic nitritying biomass	AUT	xoa	mg COU/L	0.04	1	Ŭ	2.1		
articula	ate biodeg. Org N	-	xnd	mg N/L	2,28	1		1.0	1.0	
OUDIE	Diodeg. Urg N		sing .	mg rvų	-0.8					
emc h	iydraxo <b>de</b>	X-MeOH	-	mg TSS/L						
erric pl	hosphate	Xuur	-	mg T\$\$/L	1	1				
Particuli	late material	X _{TSS}		mg TSS/L		139	139	139		
nert No	on Organic Particulates		xii	mg TSS/L				32.8	32.8	
hecks	for COD balance					1		-		
;00 un	nbiodegradable	1					70.6	70.6		
:00 ын	iodegradable				1		242	242		
						{				
hecks	for TSS balance		1 1	1						
thecks	for TSS Delance									
hecks	tions for Y calculation	85%			of filtrate bio	degradable	COD that is rea	dily biodegrad	able	
thecks ssump	tion TSS balance	85%			of filtrate bio	degradable	COD that is rea	dily biodegrad	able	
ssump	s for TSS balance bions for X _{TSS} calculation cometry for GPS-X CODbase	85% 20% d influent i	Wodel		of filtrate bic of ISS	odegradable (	COD that is rea	dily biodegrad	able	
toichik	otions for X _{TSS} calculation otions for X _{TSS} calculation ometry for GPS-X CODbase	85% 20% d influent i	Wodel ivt	1	of filtrate bic of ISS	odegradable (	COD that is rea	dily biodegrad 0.764	able	
toichie SS/TS	ations for X ₇₃₅ calculation connetry for GPS-X CODbase SS ate COD/VSS	85% 20% d influent i	Model ivt icv		of filtrate bio	odegradable (	COD that is rea	dily biodegrad 0.764 1.480	able	
thecks stoichie SS/TS articuli	tions for X ₇₃₅ calculation metry for GPS-X CODbase SS ate COD/VSS COD	85% 20% d influent i	Model ivt icv fbodcod		of filtrate bio	odegradable (	COD that is rea	dily biodegrad 0.764 1.480 0.479	able	
toichik Ssump Koichik SS/TS articula 1005/C 10020/	tions for X ₇₂₈ Calculation cometry for GPS-X CODbase Siste COD/VSS COD /BOO5	85% 20% d Influent	Model ivt icv fbodcod fbod		of filtrate bio of ISS	odegradable (	COD that is rea	0.764 0.764 1.480 0.479 1.615	able 	1.
thecks source stoichle SS/TS Particula 005/C 0020/ uH3/TK	a for TSS balance beions for X res calculation ometry for GPS-X CODbase SS late COD/VSS COD /BOD5 (N	85% 20% d Influent	Model ivt icv fbodcod fbod fnh		of filtrate bid of ISS	odegradable (	COD that is rea	diiy biodegrad 0.764 1.480 0.479 1.615 0.835	able 0.619	1
toichia SS/TS articula 005/C 0020/ H3/TK articula	s for TSS balance bions for X _{TSS} calculation ometry for GPS-X CODbase is S ate COD/VSS COD PBOD5 (N inte Org N/Total Org N	85% 20% d influent	Model ivt icv fbodcod fbod fnh fxn		of filtrate bio	odegradable (	COD that is rea	0.764 1.480 0.479 1.615 0.835 0.750	able 0.619	1
toichia stoichia SS/TS articula 005/C 0020/ 1H3/TK articula	ations for X ₇₃₈ calculation connetry for GPS-X CODbase is ate COD/VSS COD /BOD5 (N ate Org N/Total Org N and Stoichiometric Coeffic	85% 20% d influent	Model ivt icv fbodcod fbod fnh fxn		of filtrate bio of ISS	odegradable (	COD that is rea	0.764 0.764 1.480 0.479 1.615 0.835 0.750 General Mode	able 0.619	1
toichia SS/TS articula 005/C 0020/ H3/TK articula inetic leterot	tions for X ₇₃₅ calculation ometry for GPS-X CODbase Siste COD/VSS COD ROD5 N and Stoichiometric Coeffic trophs:	85% 20% d Influent I PRO2D	Model ivt fbodcod fbod fbn fnh fbn		of filtrate bio	odegradable (	COD that is rea	0.764 0.764 1.480 0.479 1.615 0.835 0.750 General Mode 3.20	able 0.619	1
inecks Issump Stoichie SS/TS Particula 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 005/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 0055/C 005/C 005/C 005/C 005/C 005/C 005/	tions for X ₇₃₅ calculation ometry for GPS-X CODbase S ate COD/VSS COD /BOD5 N and Stoichiometric Coeffic trophs: m specific growth rate term core coeffic	85% 20% d Influent I ents PRO2D mumax	Model ivt icv fbodcod fnh fxn muh theta		6.00	odegradable (	COD that is rea	diiy biodegrad 0.764 1.480 0.479 1.615 0.835 0.750 General Mode 3.20 1.035	able 0.619	1
itecks Issump itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik itoichik i itoichik i itoichik i i i i i i i i i i i i i i i i i i	tions for X ₇₃₅ calculation ometry for GPS-X CODbase Sate COD/VSS COD /BOD5 (N and Stoichiometric Coeffic trophs: Im specific growth rate temp. corr. coeff. Itamp. COD	85% 20% d influent ents PRO2D mumax	Model ivt icv fbodcod fbod fbh fbn muh theta ksh		6.00 1.035 6.00	odegradable (	COD that is rea	diiy biodegrad 0.764 1.480 0.479 1.615 0.835 0.750 0.750 General Mode 3.20 1.035 5.00	able 0.619	1
koichle SS/TS articula 005/C 0020/ 1H3/TK articula Unetic leterot habimu humax aff sata	tions for X _{TSE} calculation ometry for GPS-X CODbase S late COD/VSS COD 49005 (N late Org N/Total Org N and Stoichiometric Coeffic trophs: imspecific growth rate immp. corr. coeff. uration COD m decay rate	85% 20% d Influent I PRO2D mumax	Model ivt icv fbodcod fhh fbn muh theta ksh bh		6.00 0.24	odegradable (	COD that is rea	dily biodegrad 0.764 1.480 0.479 1.615 0.835 0.750 General Mode 3.20 1.035 5.00 0.62	able 0.619	1
koichle SS/TS articula OD5/C OD20/ H3/TK articula Unetic leterot habimu humax aff satur ecav ra	ations for X _{TSE} calculation connetry for GPS-X CODbase is ate COD/VSS COD PBOD5 (N ate Org N/Total Org N and Stoichiometric Coeffic trophs: m specific growth rate temp. corr. coeff. uration COD m decay rate ate temp. corr. coeff.	85% 20% d Influent ents PRO2D mumax	Model ivt icv fbodcod fbod fhn fxn fxn muh theta ksh bh		6.00 1.035 6.00 0.24 1.035	odegradable (	COD that is rea	dily biodegrad 0.764 1.480 0.479 1.616 0.835 0.750 General Mode 3.20 1.035 5.00 0.62 1.035	able 0.619	1
toichli ssump soichli ssricula ioD5/0/ iH3/TK articula inetic leterot soimu sumax alf satu rganisr ecay ri noxic fi	ations for X ₇₃₅ calculation ometry for GPS-X CODbase SS sate COD/VSS COD ROOD5 (N and Stoichiometric Coeffic trophs: um specific growth rate temp. corr. coeff. uration COD m decay rate ate temp. corr. coeff. hydrolysis factor	ents PRO2D mumax	Model ivt icv foodcod fbod fnh fxn theta ksh bh theta ksh		6.00 1.035 6.00 1.035 60.00 0.24 1.035	odegradable (	COD that is rea	dily biodegrad 0.764 1.480 0.479 1.615 0.835 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 0.62	able 0.619	1
itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla itoichla ito	tions for X ₇₃₅ calculation ometry for GPS-X CODbase SS site COD/VSS COD ROD5 N and Stoichiometric Coeffic trophs: Imp. corr. coeff. Imption: COD m decay rate ate temp. corr. coeff. hydrolysis factor growth factor	85% 20% d influent ents PRO2D mumax	Model ivt icv fbodcod finh fbr muh theta ksh bh etah etah		6.00 1.035 60.00 0.24 1.035 -	odegradable (	COD that is rea	diiy biodegrad 0.764 1.480 0.479 1.615 0.835 0.750 3.20 1.035 5.00 0.62 1.035 5.00 0.62 1.035 0.6	able 0.619	1
ssump solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik solchik	ations for X _{TSE} calculation connetry for GPS-X CODbase S late COD/VSS COD ABOD5 N and Stoichiometric Coeffic trophs: temp. corr. coeff. temp. corr. coeff. temp. corr. coeff. trophsis factor growth factor growth factor cophic organism yield	85% 20% d influent i ents PRO2D mumax	Model ivt icv fbodcod fhh fkn muh theta ksh bh etah etah etah yh	gcob/coo	6.00 1.035 6.00 1.035 6.00 0.24 1.035 - - 0.666	odegradable (	COD that is rea	dily biodegrad 0.764 1.480 0.479 1.615 0.835 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 5.00 0.62 1.035 0.66	able 0.619	1
ssump stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolchik stolch	ations for X _{T38} calculation connetry for GPS-X CODbase S iste COD/VSS COD r9OD5 N and Stoichiometric Coeffic trophs: m specific growth rate temp. corr. coeff. uration COD m decay rate ate temp. corr. coeff. hydrolysis factor growth factor rophic organism yield SS	85% 20% d Influent ents PRO2D mumax	Model ivt icv fbodcod fbod fnh fkn theta ksh bh theta ksh bh etah etag yh		6.00 1.035 6.00 1.035 60.00 0.24 1.035 - - 0.666 1.42	bdegradable (	COD that is rea	dily biodegrad 0.764 1.480 0.479 1.615 0.835 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 0.62 1.035 0.66 0.8 0.666 1.42	able 0.619	1
thecks toichi stoichi SS/TS articuli SS/TS articuli SS/TS articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli articuli	ations for X _{T28} calculation connetry for GPS-X CODbase S ste COD/VSS COD POD5 (N and Stoichiometric Coeffic trophs: un specific growth rate temp. corr. coeff. uration COD m decay rate ate temp. corr. coeff. hydrolysis factor growth factor growth factor rophic organism yield SS incus fraction	85% 20% d Influent PRO2D mumax	Model ivt icv fbodcood fbod fhn fxn theta ksh bh stah etag yh fuh	gcodicod	6.00 1.035 6.00 1.035 60.00 0.24 1.035 - - 0.666 1.42 0.20	odegradable (	COD that is rea	dily biodegrad 0.764 1.480 0.479 1.616 0.835 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 0.66 0.88 0.666 0.88 0.666 0.88	able 0.619	1
thecks toichild ssump ssump ssump ssump ssump ssump ssump ssump ssump sear satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur satur sat	ations for X ₇₃₅ calculation ometry for GPS-X CODbase State COD/VSS COD ROD5 RN and Stoichiometric Coeffic trophs: Im specific growth rate temp. corr. coeff. uration COD m decay rate ate temp. corr. coeff. hydrolysis factor growth factor rophic organism yield SS mous fraction uration C2	85% 20% d influent ents PRO2D mumax	Model ivt icv fbodcod finh fbri muh theta ksh bh etah etah etah etah thi koh	gcoD/COD mg O2/L	6.00 1.035 60.00 0.24 1.035 - - 0.666 1.42 0.20	odegradable (	COD that is rea	dily biodegrad 0.764 1.480 0.479 1.615 0.835 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 5.00 0.62 1.035 0.66 0.68 0.666 0.88 0.666 0.42 0.08 0.08 0.02	able 0.619	1
thecks toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toichil toic	ate org N/Total Org N and Stoichiometric Coeffic trophics and the temp. and Stoichiometric Coeffic trophics the temp. corr. coeff. the temp. coeff. the temp. coeff. the temp. coeff. the temp. coeff. the tem	85% 20% d Influent PRO2D mumax	Model ivt icv fbodcod fnh fxn muh theta ksh bh etap etap etap tuh koh	gCOD/COD mg O2/L	6.00 1.035 6.00 1.035 6.000 0.24 1.035 - - 0.666 1.42 0.20 -	xdegradable (	COD that is rea	dily biodegrad 0.764 1.480 0.479 1.615 0.835 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 5.00 0.62 1.035 0.66 0.8 0.666 1.42 0.08 0.2	2019 0.619	1
storecks storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking storecking st	s for TSS balance bions for X _{TSS} calculation connetry for GPS-X CODbase S late COD/VSS COD rBOD5 (N and Stoichiometric Coeffic trophs: m specific growth rate memp. corr. coeff. hydrolysis factor growth factor rophic organism yield SS mous fraction uration C2 xphs: m specific growth rate	85% 20% d Influent ents PRO2D mumex	Model ivt icv fbodcod fnh fbn fbn theta ksh bh etah etah etah tuh koh mua	gcob/coo mg O2/L	6.00 1.035 6.00 1.035 60.00 0.24 1.035 - 0.666 1.42 0.20 - 0.70	odegradable (	COD that is rea	dily biodegrad 0.784 1.480 0.479 1.615 0.835 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 0.62 1.035 0.66 0.88 0.666 1.42 0.08 0.2 0.467	o.619	1 = 2m
stochi stochi SS/SS SS/SS SS/SS SS/SS SS/SS SS SS SS	ations for X _{T28} calculation connetry for GPS-X CODbase S ste COD/VSS COD POOD5 (N and Stoichiometric Coeffic trophs: maspecific growth rate temp. corr. coeff. trution COD m decay rate ate temp. corr. coeff. hydrolysis factor growth factor cophis: sciences and stoichiometric termphic organism yield SS inclus fraction uration O2 ophs: m specific growth rate temp corr. coeff.	85% 20% d Influent PRO2D mumax	Model ivt icv fbodcod fhh fbod fhh fbod fhh fbod fhh theta ksh bh etah etag yh fuh koh mua	gCOD/COD mg C2/L	6.00 1.035 60.00 1.035 60.00 0.24 1.035 60.00 0.24 1.035 60.00 0.24 1.035 0.666 1.42 0.20 -	odegradable (	COD that is rea	dily biodegrad 0.764 1.480 0.479 1.616 0.835 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 0.66 0.88 0.666 1.42 0.08 0.2 0.467 1.011	o.619	1 = 2mj
ssump stolchi SS/IS Variculu SS/IS Variculu SS/IS Variculu SS/IS Variculu SS/IS Variculu VS/IS Variculu VS/V VS/V VS/V VS/V VS/V VS/V VS/V VS/	ations for X ₇₃₅ calculation orientry for GPS-X CODbase S site COD/VSS COD ROOD ROOD ROOD and Stoichiometric Coeffic trophs: and Stoichiometric Coeffic trophs: and Stoichiometric Coeffic trophs: and Stoichiometric Coeffic trophs: and stoichiometric Coeffic trophs: and stoichiometric Coeffic trophs: and stoichiometric growth factor rophic organism yield SS incous fraction uration O2 sphs: an specific growth rate temp corr. coeff. trophs: an specific growth rate temp corr. coeff. uration O2 sphs: uration O2	85% 20% d influent PRO2D mumax	Model ivt icv fbodcod finh fbr muh theta ksh bh etah etag yh fuh koh mua koh	gCOD/COD mg O2/L	6.00 1.035 6.00 1.035 60.00 0.24 1.035 1.42 0.20 - 0.70 1.011 1.300	odegradable (	COD that is rea	dily biodegrad 0.764 1.480 0.479 1.615 0.835 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 0.62 1.035 0.62 1.035 0.62 1.035 0.62 1.035 0.62 1.035 0.62 1.035 0.62 1.035 0.62 1.035	o.619	1 = 2mg
ssump tolchi SS/TS varicula SS/TS varicula SS/TS varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula varicula	ate org N/Total Org N and Stoichiometric Coeffic trophs: and Stoichiometric Coeffic trophs: am specific growth rate temp. corr. coeff. uration COD growth factor ophic organism yield SS nous fraction uration O2 popts: am specific growth rate temp. corr. coeff. uration O2 popts: am specific growth rate temp corr. coeff. uration O2 popts: am specific growth rate temp corr. coeff. uration O2 popts:	85% 20% d influent PRO2D mumax	Model ivt icv fbodcod fnh fxn muh theta ksh bh stah etag yh fuh koh fuh koh koh	gcob/cob mg O2/L	6.00 1.035 6.00 1.035 6.000 0.24 1.035 - 0.666 1.42 0.20 - 0.70 1.011 1.300 1.001	xdegradable (	COD that is rea	dily biodegrad 0.764 1.480 0.479 1.615 0.835 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 5.00 0.62 1.035 0.666 1.42 0.08 0.666 1.42 0.08 0.2 0.467 1.011 0.2 0.467	o.619	= 2my ge this
ssump stolchii SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS/TS SS SS/TS SS/TS SS SS/TS SSS SS	a for TSS balance bions for X _{TSS} calculation connetry for GPS-X CODbase S late COD/VSS COD repOD5 (N late Org N/Total Org N and Stoichiometric Coeffic trophs: m specific growth rate lamp, corr. coeff. hydrolysis factor growth factor rophic organism yield SS nous fraction uration O2 spits: lam specific growth rate temp corr. coeff. hydrolysis factor growth factor rophic organism yield SS nous fraction uration O2 spits: lam specific growth rate temp corr. coeff. uration O2 uration NH3 m decay rate	85% 20% d Influent ents PRO2D mumax	Model ivt icv fbodcod fhh fbn theta ksh bh etah etah etah etah koh koh koh	9COD/COD mg C2/L	6.00 1.035 6.00 1.035 60.00 0.24 1.035 - 0.666 1.42 0.20 - 0.70 1.011 1.300 1.00 0.05	xdegradable (	COD that is rea	dily biodegrad 0.764 1.480 0.479 1.615 0.835 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 5.00 0.62 1.035 0.66 0.88 0.666 1.42 0.08 0.2 0.467 1.011 0.2 1.00 0.05 0.15	able 0.619 For DO setpt Cannot chan	1 = 2mq ge this
ssump ssump ssump ssump ssump ssump ssump ssump ssump ssump source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source sourc	a for TSS balance bions for X _{TSS} calculation connetry for GPS-X CODbase IS iate COD/VSS COD rBOD5 (N and Crg N/Total Crg N and Stoichiometric Coeffic trophs: m specific growth rate temp. corr. coeff. hydrolysis factor growth factor rophic organism yield SS nous fraction uration C2 ophs: m specific growth rate temp corr. coeff. turation C2 ophs: m specific growth rate temp corr. coeff. turation C2 uration C2 uration NH3 m deCay rate phic organism yield	85% 20% d Influent PRO2D mumax	Model ivt icv fbodcod fhod fhh fkn theta ksh bh etah etah etah etah thh koh koh koh koh koa ba ya	gcob/coc mg C2/L	6.00 1.035 60.00 1.035 60.00 0.24 1.035 0.666 1.42 0.20 - 0.70 1.011 1.300 0.05 0.05 0.05 0.15	odegradable (	COD that is rea	dily biodegrad 0.784 1.480 0.479 1.615 0.835 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 0.66 0.88 0.666 1.42 0.08 0.2 0.457 1.011 0.2 1.00 0.457 1.011	able 0.619 For DO setpt Cannot chan	= 2mq
Stochi Stochi Stochi SSUS Saticul SSUS Saticul SSUS Saticul SSUS Saticul SSUS SSUS SSUS SSUS SSUS SSUS SSUS SS	a for TSS balance bions for X _{TSS} calculation conetry for GPS-X CODbase S sate COD/VSS COD POD5 (N and Stoichiometric Coeffic trophs: un specific growth rate temp. corr. coeff. uration COD m decay rate ate temp. corr. coeff. hydrolysis factor growth factor	85% 20% d influent PRO2D mumax	Model ivt icv fbodcod finh fbod finh theta ksh bh etah etah etag yh fuh koh koh koh koa ba ya	gCODICOD mg O2/L	6.00 1.035 60.00 0.24 1.035 60.00 0.24 1.035 60.00 0.24 1.035 0.666 1.42 0.20 - 0.70 1.011 1.300 1.00 1.011 1.300 1.005 0.15 1.42	xdegradable (	COD that is rea	dily biodegrad 0.764 1.480 0.479 1.616 0.835 0.750 (General Mode 3.20 1.035 5.00 0.62 1.035 5.00 0.62 1.035 0.666 0.88 0.666 0.88 0.666 0.88 0.666 0.88 0.666 0.88 0.666 0.88 0.666 0.88 0.666 0.88 0.666 0.88 0.666 0.88 0.666 0.88 0.666 0.88 0.666 0.88 0.666 0.88 0.666 0.88 0.666 0.88 0.666 0.88 0.666 0.88 0.666 0.88 0.666 0.88 0.666 0.68 0.08 0.0	able 0.619 For DO setpt Cannot chan	= 2mg

100

#### GPSX Influent - 80% TSS Removal

aiue

AASSEA	mine Com	e		<b></b>		GPS-X Influe		-
	were Component	ASM2	GPSX		Pro2D	Mode	Variables	
Standa	rd Analysis	1		1	1			1
CBODs	Total	1	1	mg C2/L	110	1	ł	
	Particulate			mg O2/L	21			
000	ratal	1	COD	mg O2/L	88			1
	Particulate Bio				41		'	
	Particulate Non-Bio			mg CODA	15	1		
	Total Particulate COD		xcoo	mg CODAL	56	79.3		
	Filtrate Bio	1		mg COD/L	145			
	Filuate Non-Bio		6000	mg CODAL	187	144	ļ	
TSS	Total	ļ	TSS	mg COOL	49	67		
	Biodegradable	1	1	mg TSSA	35			
	Non-Biodegradable			mg T\$S/L	14			ł i
vss	Total	1	vss	mg VSS/L	38	53.6		
	Non-Rindegradable	ł	1	mg VSS/L ma VSS/L	10			
TKN			TKN	mg N/L	23	23		
NH3		1	snh	mg N/L	22	1		
TPO₄			[	mg P/L	4			
orthoPO	4	1	sp	mg P/L	4	4		
State Va	riables							
Dissolv	ed Components							l
Dissolve	ed Oxygen	Sœ	50	mg O2/L		0	•	
Readily	Biodeg. Soluble Substrate	S,	55	mg COD/L	1	113	113	
Ferment	ation Products (acetate)	SA	slf	mg COD/L		0	0	
Ammoni	3	Smil	snh	mg N/L	22	22.0	22.0	1
Nitrate/N	litrite	SNOO	sno	mg N/L	0	0	0	
Phospha	ite	Sece	sp	mg P/L	4	3.5	3.5	
inert, No	n-biodegradable organics	Si	si	mg COD/L	22	31	31	
Bicarbor	hate alkalinity	Salk	ŀ	mole HCO3-	259	-		
Nitrogen	1	S _{N2}	-	mg N/L				
Particul	ate Components		L.					
inert, No	n-biodegradable organics	X4	xi	mg COD/L	15	5.9	5.9	
U <b>nbio</b> . p	articulates from cell decay	-	xu	mg CODAL		0	0	
Slowly b	iodegradable substrate	Xs	XS	mg CODAL		73.4	<b>73</b> .4	
Heterotri	ophic biomass	Х <mark>н</mark>	xbh	mg CODA.	0.26	0	0	
Phospho	rus accumulating organisms	X _{PMO}	xop			0	0	
Stored p	olyphosphate of PAO	Xee	хфр	mg P/L		0	0	
Organic	storage products of PAO	Хли	xbt	mg COD/L		0	0	
Nutotropi	hic nitrifying biomass	Халт	xba	mg CODAL	0.01	0	0	
Particula	te biodeg. Org N	.	xnd	mg N/L	0.62	1.1	1.1	
Soluble I	biodeg. Org N	-	snd	mg N/L	-0.6	0.4	0.4	
Ferric hy	droxide	Xuucu	-	mg TSSA,				
Ferric ph	osphate	Xuue	•	mg TSS/L				
Particula	te material	X _{TSS}		mg TSS/L		67		
nert Nor	Organic Particulates		xii	mg TSS/L		13.1	13.1	
Checks	for COD balance							
						187		
	biodegradable					107		
COD bio COD bio	biodegradable degradable for TSS balance							
COD bio Checks	biodegradable degradable for TSS balance							
COD bio COD bio Checks	biodegradable degradable for TSS balance							
COD bio Checks	biodegradable idegradable for TSS balance ions for X ₇₂₂ calculation	85%			of filtrate bi	odegradable C	OD that is rea	adily t
COO bio Checks	biodegradable idegradable for TSS balance ions for X ₇₂₅ calculation	85% 20%			of filtrate bi of ISS	odegradable C	OD that is rea	adily t
COD bio Checks Assumpt	biodegradable degradable for TSS balance tions for X ₇₂₅ calculation metry for GPS-X CODbase	85% 20% d influent i	Model		of filtrate bid of ISS	odegradable C	OD that is rea	adiity t
COD bio Checks Assumpt Stoichio	biodegradable idegradable for TSS balance ions for X ₇₂₅ calculation metry for GPS-X CODbase 5 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	85% 20% d influent i	Model ivt		of filtrate bi of ISS	odegradable C 0.804 1.480	OD that is rea	adiity t
Assumpt Stoichio /SS/TSS Particula 3005/C	biodegradable degradable for TSS balance ions for X ₇₃₅ calculation metry for GPS-X CODbase be COD/VSS DD	85% 20% d influent l	Nodel ivt icv fbodcod		of filtrate bi of ISS	0.804 0.804 1.480 0.491	OD that is re-	adiiy t
Assumpt Stoichio /SS/TSS Particula 3005/CI 30020/E	biodegradable degradable for TSS balance ions for X ₇₂₅ calculation metry for GPS-X CODbase is COD/VSS DD DD JOD5	85% 20% d influent i	Model ivt icv fbodcod fbod		of filtrate bi of ISS	0.804 0.804 1.480 0.491 1.699	OD that is rea	ediity t
Stoichio /SS/TSS Particula 3005/03	biodegradable degradable for TSS balance tions for X ₇₂₅ calculation metry for GPS-X CODbase te COD/VSS OD SOD5 N	85% 20% d influent i	Model ivt icv fbodcod fbod fnh		of filtrate bi of ISS	0.804 0.804 1.480 0.491 1.699 0.938	OD that is rea	adiity t
Assumpt Stolchio /SS/TSS Particula 30D5/C 30D20/E HH3/TICh Particula	biodegradable degradable for TSS balance ions for X ₇₃₅ calculation metry for GPS-X CODbase 5 te COD/VSS DD 5005 4 te Crg N/Total Crg N	85% 20% d influent i	Model ivt icv fbodcod fbod fnh fon		of filtrate bi	0.804 0.804 1.480 0.491 1.699 0.538 0.750	OD that is rea 0.589	adiity t
Assumpt Stolchio /SS/TSS Particula 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D	biodegradable degradable for TSS balance ions for X ₇₃₂ calculation metry for GPS-X CODbase 5 te COD/VSS DD 5005 N te Org N/Total Org N and Stoichiometric Coeffici-	85% 20% d influent i	Model ivt icv fbodcod fbod fnh ftrn		of filtrate bi of ISS	0.804 0.804 1.480 0.491 1.699 0.538 0.750	OD that is rea 0.589	adiity t
Assumpt Stolchio /SS/TSS Particula 3005/Cl 30020/E NH3/TICh Particula Cinetic a leterotr	biodegradable degradable for TSS balance ions for X ₇₂₅ calculation metry for GPS-X CODbase to COD/VSS DD SOD5 N te Org N/Total Org N ind Stoichiometric Coeffici ophis: a search commit anti-	85% 20% d Influent I ents PR02D	Model ivt icv fbodcod fbod fmh fbn		of filtrate bio of ISS	0.804 0.804 1.480 0.491 1.699 0.938 0.750 General Mode	OD that is rea 0.589	adiity t
Assumpt Assumpt Stolchio /SS/TSS Particula 3005/Cl 30020/E HI3/TIC Particula Cinetic a leterotr maximum	biodegradable degradable for TSS balance ions for X ₇₂₅ calculation metry for GPS-X CODbase 5 to COD/VSS 0D 30D5 N to Crg N/Total Org N and Stoichiometric Coeffici ophs: n specific growth rate smp. corr. coeff	85% 20% d Influent I ents PRO2D mumax	Model ivt icv fbodcod fbod fmh fbn muh theta		of filtrate bi of ISS 6.00 1.035	0.804 0.804 1.480 0.491 1.699 0.538 0.750 General Mode 3.20 1.035	OD that is rea 0.589	adiity t
Assumpt Stolchio Stolchio Stolchio Stolchio SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C SOD5/C	biodegradable degradable for TSS balance ions for X ₇₂₅ calculation metry for GPS-X CODbase te COD/VSS DO BOD5 N te Crg N/Total Org N ind Stoichhometric Coeffici ophs: n specific growth rate amp. corr. coeff. taion COD	85% 20% d influent i ents PRO2D mumax	Model ivt icv fbodcod fbod fbn fbn fbn fbn muh theta ksh		6.00 1.035 60.00	0.804 0.804 1.480 0.491 1.699 0.538 0.750 General Mode 3.20 1.035 5.00	OD that is re 0.589	adiiy t
Assumpt Stolchio Stolchio Stolchio Stolchio SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SOD5/Cl SO	biodegradable degradable for TSS balance ions for X ₇₂₅ calculation metry for GPS-X CODbase be te COD/VSS OD SOD5 N te Org N/Total Org N ind Stoichiometric Coeffici ophs: n specific growth rate strip, cor. coeff. ration COD	85% 20% d influent i ents PRO2D mumax	Model int icv fbodcod fbod fnh fbn muh theta ksh bh		6.00 1.035 6.00 0.24	0.804 0.804 1.480 0.491 1.699 0.538 0.750 General Mode 3.20 1.035 5.00 0.62	OD that is re 0.589	adiity t
Stolchio Stolchio Stolchio Stolchio Stolchio SS/TSS Particula 30D5/CI 30D20/F H3/TICP 20D20/F H3/TICP 20D20/F H3/TICP 20D20/F H3/TICP 20D20/F H3/TICP 20D20/F 20D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI 30D5/CI	biodegradable degradable for TSS balance ions for X ₇₂₅ calculation metry for GPS-X CODbase to COD/SS DD DD DD DD DD DD DD DD DD	85% 20% d influent i PRO2D mumax	Model ivt icv fbodcod frod frih fon fon frih fon theta ksh bh		6.00 1.035 6.00 1.035 60.00 0.24 1.035	0.804 1.480 0.491 1.699 0.538 0.750 General Mode 3.20 1.035 5.00 0.62 1.035	OD that is rea 0.589	adiity t
Assumption of the second secon	biodegradable degradable for TSS balance ions for X ₇₂₅ calculation metry for GPS-X CODbase to COD/VSS OD SOD5 N te Crg N/Total Org N and Stoichiometric Coeffici ophs: n spocific growth rate emp. corr. coeff. ation COD 1 decay rate to temp. corr. coeff. ydrolysis factor	85% 20% d Influent I PRO2D mumax	Model ivt icv fbodcod fod fmh fxn theta ksh bh theta ksh		6.00 1.035 6.00 1.035 60.00 0.24 1.035	0.804 1.480 0.491 1.699 0.538 0.750 General Mode 3.20 1.035 5.00 0.62 1.035	OD that is rea	edity t
Assumpt Assumpt Stolchio /SS/TSS Particula 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20/Ci 30D20	biodegradable degradable for TSS balance tions for X ₇₂₅ calculation metry for GPS-X CODbase 5 COD/SSS DD 30D5 N te Org N/Total Org N ind Stoichiometric Coeffici ophs: a specific growth rate amp, corr, coeff. ration COD 1 decay rate to temp, corr, coeff. ydrolysis factor owth factor	85% 20% d Influent I PRO2D mumax	Model ivt icv fbodcod fnh fbod fnh fbr muh theta ksh bh etah etah etag vb		6.00 1.035 60.00 0.24 1.035	0.804 1.480 0.491 1.699 0.538 0.760 General Mode 3.20 1.035 5.00 0.62 1.035 0.62	OD that is rea	<b>adiiy t</b>
COD bill Checks i Assumpt Assumpt Stolchio /SS/TSS Particula 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3005/CI 3	biodegradable idegradable for TSS balance ions for X ₇₂₅ calculation metry for GPS-X CODbase 5 to COD/VSS 0D 30D5 1 to COD/VSS 0D 30D5 1 1 1 1 1 1 1 1 1 1 1 1 1	85% 20% d influent i ents PRO2D mumax	Model int icv fbodcod fbod fbod fbod fbod fbod fbod fbod fb	gCOD/COD	6,00 1.035 60.00 0.24 1.035	0.804 1.480 0.491 1.699 0.938 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 0.6 0.8 0.666 0.8 0.666	OD that is rea	<b>adiiy t</b>
Assumpt Assumpt Assumpt Assumpt Assumpt Assumpt Assumpt Assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt assumpt ass	biodegradable idegradable for TSS balance ions for X ₇₂₅ calculation metry for GPS-X CODbase to COD/VSS OD 30D5 N to Crg N/Total Org N and Stoichlometric Coeffici ophs: n specific growth rate amp. corr. coeff. ation CCD n decay rate to temp. corr. coeff. ydrolysis factor ophic organism yield S ous fraction	85% 20% d Influent I PRO2D mumax	Model ivt fbodcod fbod frah fbr muth theta ksh bh etah etah etag yh fuh	¢COD/COO	6.00 1.035 6.00 1.035 60.00 0.24 1.035 - - 0.666 1.42 0.20	0.804 0.804 1.480 0.491 1.699 0.538 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 5.00 0.62 1.035 0.68 0.68 0.68 0.68 0.68	OD that is rea	adiiy t
Assumpt Stolchio Stolchio VSS/TSS Particula SODS/CL SODS/CL SODS/CL BOD20/E NH3/TICK Particula Kinetic a Heterotro rearismum particula Riseterotro COOV/SS endogen antoxic hy interotro COOV/SS endogen	biodegradable degradable for TSS balance ions for X ₇₂₅ calculation metry for GPS-X CODbase be te COD/VSS OD 30D5 N te Org N/Total Org N ind Stoichiometric Coeffici ophs: n specific growth rate amp. cort. coeff. phic organism yield S ous fraction ation C2	85% 20% d influent i PRO2D mumax	Model int icv fbodcod fbod fbod fhh bh theta ksh bh etah etah etap yh fuh koh	gCODICOD mg Q2/L	6.00 1.035 60.00 0.24 1.035 - - 0.666 1.42 0.20	0.804 0.804 1.480 0.491 1.693 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 5.00 0.62 1.035 0.66 1.42 0.68 0.666 1.42 0.08 0.666 1.42 0.08	OD that is read	adiiy t
COD bill CDD bill CDD bill CDD bill CDD bill CDD bill CDDCCC SOCS/TSS Particula 3005/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C SOCS/C	biodegradable degradable for TSS balance ions for X ₇₂₅ calculation metry for GPS-X CODbase be COD/VSS DOD DOD DOD DOD DOD DOD DOD D	85% 20% d influent i PRO2D mumax	Model ivt icv fbodcod frod frih for with theta ksh bh etah etah etag yh fuh koh	gCOD/COD mg O2/L	6.00 1.035 6.00 1.035 60.00 0.24 1.035 - - - 0.666 1.42 0.20 -	0.804 1.480 0.491 1.699 0.538 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 0.62 1.035 0.66 0.88 0.666 1.42 0.08 0.2	OD that is rea	adiity t
Assumpt Assumpt Assumpt Stolchio /SS/TSS Particula 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D	biodegradable degradable for TSS balance ions for X ₇₂₅ calculation metry for GPS-X CODbase to COD/VSS OD SOD5 N te Crg N/Total Crg N ind Stoichiometric Coeffici ophs: n specific growth rate and, corr, coeff. ration COD to decay rate te temp, corr, coeff. drolysis factor owth factor phic organism yield S ous fraction ation 02 whs: n specific growth rate	85% 20% d Influent I PRO2D mumax	Model ivt icv fbodcod frod frih fran theta ksh bh etah etah etah etag yh fuh koh mua	gCODICOD mg O2/L	6.00 1.035 60.00 0.24 1.035 - - 0.666 1.42 0.20 - - 0.70	0.804 1.480 0.491 1.699 0.538 0.760 General Mode 3.20 1.035 5.00 0.62 1.035 0.66 0.88 0.666 0.88 0.666 1.42 0.08 0.2 0.457	OD that is rea 0.589	adiily t
COD bile Checks i Assumpt Assumpt Stolehio /SS/TSS Particular BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI BOD5/CI	biodegradable idegradable for TSS balance ions for X ₇₂₅ calculation metry for GPS-X CODbase is cOD/VSS OD ioCD5 is to COD/VSS is to COD/V	85% 20% d Influent I PRO2D mumax	Model ivt icv fbodcod food fmh fon theta ksh bh etah etag yh fuh koh mua	gCOD/COD mg O2/L	6.00 1.035 60.00 0.24 1.035 - - - 0.666 1.42 0.20 - - 0.70 1.011	0.804 1.480 0.491 1.699 0.538 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 0.66 0.8 0.666 1.42 0.08 0.2 0.457 1.011	OD that is rea 0.589	ediity t = 2m
COD bio Checks i Assumpt Assumpt Stolchio /SS/TSS Particula 3005/CL 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30020/c 30	blodegradable degradable for TSS balance ions for X ₇₂₅ calculation metry for GPS-X CODbase 5 to COD/VSS OD 30D5 1 to COD/VSS 0D 30D5 1 to Crg N/Total Crg N and Stoichiometric Coeffici ophs: n specific growth rate amp. corr. coeff. ation COD 1 decay rate te temp. corr. coeff. ation COD ous fraction ration C2 ths: n apecific growth rate smp. corr. coeff. ration C2 ths: n apecific growth rate smp. corr. coeff. ration C2 ths: n apecific growth rate smp. corr. coeff. ration C2	85% 20% d Influent I PRO2D mumax 1D	Model ivt icv fbodcod fbod fran fran muth theta ksh bh etah etab etah etag yh fuh koh mua	gCOD/COD mg O2/L	6.00 1.035 6.00 1.035 60.00 0.24 1.035 - - - 0.666 1.42 0.20 - - - 0.70 1.011 1.300	0.804 1.480 0.491 1.699 0.538 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 0.66 0.68 0.666 1.42 0.08 0.2 0.467 1.011 0.2	OD that is rea 0.589	edily t = 2m
COD bio Checks i Assumpt Assumpt Stolchio /SS/TSS Particula 30D5/CL 30D20/E %H3/TICh Particula 30D5/CL 30D20/E %H3/TICh Particula 30D5/CL 30D20/E %H3/TICh Particula 30D5/CL 30D20/E %H3/TICh Particula 30D5/CL 30D20/E %H3/TICh Particula 30D5/CL 30D20/E %H3/TICh Particula 30D5/CL 30D20/E %H3/TICh Particula 30D5/CL 30D20/E %H3/TICh Particula 30D5/CL 30D20/E %H3/TICh Particula 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL 30D5/CL	biodegradable degradable for TSS balance ions for X ₇₃₅ calculation metry for GPS-X CODbase te CODVSS OD 30D5 N te Crg N/Total Org N and Stoichhometric Coeffici ophs: n specific growth rate amp. corr. coeff. rision CCD n decay rate te temp. corr. coeff. rydrolysis factor owth factor phic organism yield S ous fraction ation O2 whs: n specific growth rate amp corr. coeff. ation O2 whs:	85% 20% d Influent I PRO2D mumax	Model int icv fbodcod fbod frah theta ksh bh etah etah etah etag yh fuh koh koh	gCODICOO mg O2/L	6.00 1.035 60.00 0.24 1.035 - - - - - 0.666 1.42 0.20 - - - 0.70 1.011 1.300 1.001 0.70	0.804 0.804 1.480 0.491 1.699 0.938 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 0.66 0.457 1.011 0.2 1.001 0.2	OD that is rea 0.589	adiity t = 2m ge thi:
Assumpt COD bio Checks i Assumpt Assumpt Stolchio /SS/TSS Particula 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL 3OD5/CL	biodegradable degradable for TSS balance ions for X ₇₂₅ calculation metry for GPS-X CODbase be COD/VSS OD SOD5 N te Org N/Total Org N ind Stoichiometric Coeffici ophs: n specific growth rate strip, cor. coeff. phic organism yield S ous fraction mition COD indecay rate te temp, cor. coeff. ydrolysis factor owth factor phic organism yield S ous fraction mition C2 whs: n specific growth rate strip cor. coeff. adjoint of 2 whs: n specific growth rate strip cor. coeff. adjoint of 2 whs: strip cor. coeff. adjoint of 2 strip cor. coeff.	85% 20% d Influent I PRO2D mumax	Model int icv fbodcod fbod fth bod theta ksh bh etah etah etag yh fuh koh kna ba ba koh	gCODICOD mg O2/L	6.00 1.035 60.00 0.24 1.035 - - - - - - 0.666 1.42 0.20 - - - - 0.70 1.011 1.300 1.001 0.05 0.15	0.804 1.480 0.491 1.699 0.538 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 0.66 0.88 0.666 1.42 0.08 0.467 1.011 0.2 1.00 0.2 1.00 0.55	OD that is re 0.589	= 2m ge thi:
COD bio Checks : Assumpt Stolchio /SS/TSS Particula 3OD5/CL 3OD2/C 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD20/E 3OD	biodegradable idegradable for TSS balance ions for X ₇₂₅ calculation metry for GPS-X CODbase is COD/VSS DOD DO DO DO DO DO DO DO DO D	85% 20% d influent i PRO2D mumax	Model ivt icv fbodcod fbod frih fbr muh theta ksh bh etap yh fuh koh koh kna ba ya	gCOD/COD mg O2/L	6.00 1.035 6.00 1.035 60.00 0.24 1.035 - - 0.666 1.42 0.20 - - 0.70 1.011 1.300 1.011 1.300 0.05 0.05 0.15 1.42	0.804 1.480 0.491 1.699 0.538 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 0.66 1.42 0.08 0.2 0.467 1.011 0.2 1.012 1.012 1.012 1.012 1.012 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 1.011 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	OD that is rea 0.589	adiity b = 2m; ge thi:
COD bio Checks i Assumpt Stolehio VSS/TSS Particula 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30D5/Cl 30	biodegradable degradable for TSS balance ions for X ₇₂₅ calculation metry for GPS-X CODbase to COD/VSS DOD SOD SOD SOD SOD SOD SOD S	85% 20% d Influent I PRO2D mumax	Model ivt icv fbodcod frod frih for with theta ksh bh etah etah etah etah fuh koh koh koh koa ba ya tua	gCOD/COD mg O2/L	6.00 1.035 60.00 1.035 60.00 0.24 1.035 - - 0.666 1.42 0.20 - 0.70 1.011 1.300 1.000 1.001 1.300 0.05 0.15 1.42	0.804 1.480 0.491 1.699 0.538 0.750 General Mode 3.20 1.035 5.00 0.62 1.035 0.66 0.88 0.666 1.42 0.08 0.2 0.457 1.011 0.2 1.001 0.2 1.021 0.08 0.55 0.65 0.151 1.42 0.08 0.55 0.05 0.152 0.05 0.152 0.05 0.152 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.0	OD that is rea 0.589	adiiy t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
REPORT SCENARIO - ALT1new

Label: SYSTEM	-
time	
tstop	0 d
	0.05 d
zume(1)	1994 yr,m,d,h
zume(2)	11 yr,m,d,h
Zune(S)	1 yr,m,d,n
Z(1)=(+)	U yr,m,d,n
	U yr,m,d,n
20178(0)	U yr,m,a,n
roundaria	0 d
roundaripute	.10150.
	.12150.
repeat runa reprim	•
input files	U I
extune	2
plantname1	blank
plantname2	blank
plantname3	blank
piantname4	blank
plantname5	blank
plantname6	blank
plantname7	blank
plantnameR	blank
plantname9	blank
plantname10	blank
output files	
diobalajamfile	.false.
ain	blank
oxygen solubility (if global settings are used)	
giobal	.false.
depth	4.3 m
temp	13 C
airtemp	20 C
pO2con	0.21 -
elev	Om
patm0	1 atm
tempb20	20 C
a	9.80665 m/s2
eprice	0.07 \$/kWh
std parameters	
steady	.false.
retry	0
eps	1.00E-10
sumeps	10
decr	0.982
, incr	1.003
maxstepcon	0.5
fdamping	1
pinit	0.05
prin	200
iloop	0
loopim	20000
chstop	5000
trim parameters	
printdsum	1.00E+10 d
primpronly	.true.
dskip	50000
static	
optmz	.false.
timeseries	.true.
ndimm	2
npts	3
peps	1.00E-03
opteps	1.00E-06

.

bestobj
itmax
optstep
optalph
ootbeta
optoem
opigain
DOE
DPE
dynpe
timewin
on-line ru
online
syncdat
data tran
datatrar
maxnva
maxdata
ADF
adisize
database
datahae
Galabas
rsampie
communi
g2
portno
gfxin
gfx
pc
matlab
warning
optwarni
doewarr
bounding
anim
manow
maxnow
minicon
maxicon
minconc
maxcon
minder
maxder
minvol
startvol
mintaver
maxvol
minner
maynar
maxpar
naxini addition
padoyz
maxexp
speed
lowconci
lowreide
lowconc
lowconce
approxed
smootho
pumndel
naremon
numete
pumpster
general

٦.

1

÷

bestobj	0.1
itmax	100
onteten	0.2
opisiep	0.2
optaipna	0.95
optbeta	0.45
opigamma	1.9
optdelta	0.5
DPE	0.0
	<b>1</b> -1
aynpe	.taise.
timewindow	1.00E+10 d
on-line run	
online	.false.
svordata	false
	.10156.
Gata transier	
datatransfer	.false.
maxnvars	100
maxdatapoints	100
ADE	
	100
adisize	128
database	
databasetype	1
rsample	60 s
nommunication	
CONTINUESCALIDAT	. Anton
94 <u>.</u>	.Taise.
portno	22041
gfxin	.false.
of x	false
910 910	foloo
pc	.(8)56.
matlab	.taise.
warnings	.true.
ontwarnings	.true.
doewaminge	true
hounding	
bounoing	
itnum	30 -
error	1.00E-06 -
minflow	1.00E-10 m3/d
moution	1.00E+10 m3/d
HIZANOW	
MINICONC	1.00E-06 g/m3
maxiconc	1.00E+10 g/m3
minconc	0 g/m3
maxconc	1.00E+10.0/m3
minder	-1.005.33 o/m3/d
milloer	
maxder	1.00E+33 g/m3/d
minvol	1.00E-10 m3
startvol	1.00E-01 m3
minipuer	1.00E-03 m
manayor	1.005.10 m2
maxvoi	
minpar	1.00E-10
maxpar	1.00E+10
maxint	999999
nadbyz	1.00F-10
	1 005-02 0/2
maxexp	1.002403 g/113
speed	
iowconcapprox	.false.
lowreider	200 a/m3/d
lowcosc	0.03 0/m3
	0.00 gmid
iowconcdamp	0.001
approxdo	0 g/m3
smoothourno	.false.
pumpdelav	1.00E-05 d
paremonth .	
paramoun	• 61
pumpstepiimit	50 %
general	
pi	3.14159265
samplintcon	999 d
nidetdiama	1000 d
prosociatio	1000 0
SVI correlation constants	
cc1	709.7
cc2	-4.67
	0.019
uu uu	0.010
CC4	2.66E-04

1 1

cc5	-2.85E-06
CC6	2.50E-08
cc7	-1.62E-04
603	0.004897
600	6.47E-04
system variables	
ialg	8 -
nstp	50 -
mint	1.00E-30 days
maxt	1.00E-01 days

# Label: USER

#### Label: (11,18)

/ operational /

loadtypepeff flowtypepeff

/ flow, composite and state variables /

apett	6.00E+05 m3/d 82 gO2/m3	
sbodpeff bodpeff		
	84.5 gO2/m3	
	167 gO2/m3	
bodupeff	282 gO2/m3	
scodpeff	170 gCOD/m3	
xcodpeff	198 gCOD/m3	
codpeff	368 gCOD/m3	
stknpeff	22 gN/m3	
tknpeff	25.9 gN/m3	
tnpeff	25.9 gN/m3	
xiipeff	42.2 g/m3	
vsspeff	134 g/m3	
xpeff	176 g/m3	
Label: (13,18)		
/ operational /		
ioadtypebypass	1	
flowtypebypass	1	
/ flow, composite and state variables /		
abuase	0 m3/d	
ehodhunges	84.8 gO2/m3	
xhodhypass	47.2 gO2/m3	
bodbypass	132 gO2/m3	
bodubypass	224 gO2/m3	
scodbypass	175 gCOD/m3	
xcodbypass	82.2 gCOD/m3	
codbypass	257 gCOD/m3	
stknbypass	22 gN/m3	
tknbypass	24.2 gN/m3	
tnbypass	24.2 gN/m3	
xiibypass	20.2 g/m3	
vssbypass	55.5 g/m3	
xbypass	75.8 g/m3	

Label: (16,18)

onito and state unsighted / / fie

j

1

•

/ now, composite and state variables /	
oFeli	5.95E+05 m3/d
sbodFeff	1.58 gO2/m3
xbodFeff	12.4 gO2/m3
bodFeff	14 gO2/m3
boduFeff	21.2 gO2/m3
scodFeff	33.4 gCOD/m3
xcodrem	25.3 gCOD/m3
ettoFeff	15 gN/m3
tknFeff	15.1 aN/m3
tnFeff	15.1 gN/m3
xiiFeff	4.46 g/m3
vssFeff	17.8 g/m3
xFeff	22.3 g/m3
cn states	04 - 000/0
SIFEI	31 g COD/m3
SSF011 Viea#	2.4 g COD/m3
veFeff	4 72 g COD/m3
xbhFeff	14 g COD/m3
xbaFeff	4.69E-09 g COD/m3
xuFeff	0.637 g COD/m3
soFeff	7.08 g O2/m3
snoFeff	1.00E-06 g N/m3
snhFeff	12 g N/m3
sndFeff	2.98 g N/m3
	0.192 g rvm3
p states	4 69E-09 a COD/m3
xbtFeff	4.67E-09 g COD/m3
xppFeff	4.67E-09 g P/m3
sifFeff	0.000727 g COD/m3
spFeff	0.565 g P/m3
Label: (14,17) / physical /	
real dimensions	
*aSeff	18188 m2
hmSeff	3.65 m
hfSeff	1.6 m
model dimensions	
nSeff	10
/ operational /	
underflow	
proprecSeff	.true.
cvarr	pett
rectracSelf	0.28 -
qconhas attible at	6/930 mard
cuidiank	.icuse. 1
controllerblank	3
cvars	blank
samplintconblankRAS	999 d
setpblank	1
gainblank	1
ticonblank	1 d
tdconblank	1 d
directblank	.true.
nokickolank emioBAS	.IBISE.
umunAS omavRAS	1000 maa 100000 m3/d
pumped flow	100000 mara
*gconWAS	5200 m3/d

decanterSeff	.false.
outputSeff(1)	0
outputSeff(2)	. 0
outputSeff(3)	8
outputSeff(4)	0
outputSeff(5)	0
outputSetf(6)	0
outputSelf(7)	0
outputSeff(8)	0
	0
outputSem(10)	1
Ctribiank	.iaise.
picrompiank	1
controllerolank	3 blank
	Diank 000 d
sampinicondiankvvAS	555 0
setpolank	1
gaindiank	1 6
ticonblank	10
toconblank dise states la	trio
directolank	.uue.
	.idise.
qminvvAS	0 m3/d
qmaxwas	10000 mara
model parameters	0000 -TEE/2
xtSeff	2000 gr 55/m3
hscritSeff	U.1 M
/ settling /	
double exponential parameters	100
SVIONSEIT	.irue.
svisen	
cianiSett	0.5 -
vondSeff	2/4 m/g
vmaxconSen	410 m/u
rhinconSett	0.0004 m3/g155
nioconSen	0.0025 marg1 55
InsSet	0.001 -
xminmaxSen	20 gi ss/ms
	100 m/d
vumisen	200 m/d
vumasem	300 11/4
/ flow, composite and state variables /	
	5 95F+05 m3/d
qSen shodfaff	1.58 aO2/m3
soucsen	1.00 g02/m3
	14 gO2/m3
bodySelf	21 2 cO2/m3
	33 A cCOD/m3
scocsen	25.3 cCOD/m3
	58.7 cCOD/m3
coosen	15 cN/m3
SKRSET	15 givins 15 1 chi/m3
	15.1 givino 15.1 chi/m3
INSER 1997	
XIISET	4.40 g/m3
VSSSen	
xSen	22.5 yms
Ch states	81 a COD/m8
SIJETT	
SSOUT	
xisen	5.91 g COD/M3
xsSeff	4./2 g COD/m3
xbhSett	14 g COD/m3
xbaSeff	4.69E-09 g COD/m3
xuSeff	0.637 g COD/m3
soSeff	7.08 g O2/m3
snoSeff	1.00E-06 g N/m3
snhSeff	12 g N/m3

i

Ì

1

•

,

2.98 g N/m3 0.192 g N/m3

4.69E-09 g COD/m3 4.67E-09 g COD/m3 4.67E-09 g P/m3 0.000727 g COD/m3 0.565 g P/m3

sndSetf	
xndSeff	
p states	
xbpSetf	
xbtSeff	
xppSeff	
slfSeff	
spSeff	

# Label: (12,17)

/ physical /

teal dimensions	
nR1	4
vsetupR1	1
viconR1(1)	7533.15 m3
viconR1(2)	7533.15 m3
viconR1(3)	7533.15 m3
viconR1(4)	7533.15 m3
vmconR1	30132.6 m3
fvconR1(1)	0.25 -
fvconR1(2)	0.25 -
fvconR1(3)	0.25 -
fvconR1(4)	0.25 -
oxygen solubility (if individual settings	are used)
depthR1	4.3 m
tempR1	13 C
airtempR1	20 C
pO2conR1	0.21 -

aeration control	
ctrisolR1	.false.
pidformsolR1	1
controllersolR1	3
samplintconsolR1R1	999 d
setpsolR1(1)	2
setpsolR1(2)	2
setpsolR1(3)	. 2
setpsolR1(4)	2
gainsolR1	1
ticonsolR1	5 d
tdconsolR1	0.1 d
cellR1	0
directsolR1	.true.
nokicksolR1	.false.
Setup	
aermethodR1	2
alphaR1(1)	0.6 -
alphaR1(2)	0.7 -
alphaR1(3)	0.7 -
alphaR1(4)	0.8 -
betaR1	0.95 -
tidaR1	1.024 -
Kia	
klaconR1(1)	100 1/d
klaconR1(2)	100 1/d
klaconR1(3)	100 1/d
klaconR1(4)	100 1/d
klalminR1(1)	0 1/d
klalminR1(2)	0 1/d
klalminR1(3)	0 1/d
klalminR1(4)	0 1/d
kialmaxR1(1)	300 1/d
kialmaxR1(2)	300 1/d
kialmaxR1(3)	300 1/d
klalmaxR1(4)	300 1/d

.

Mechanical noutrinon P1(1)	607 O 1444
powerconR1(2)	627.2 KW 440 kW
powerconR1(3)	440 kW
powerconR1(4)	440 KW
etapowerR1	3.5 kgO2/kWh
fraimon B1(1)	0.25 -
frairconR1(2)	0.25 -
frairconR1(3)	0.25 -
frairconR1(4)	0.25 -
qairsumconR1 etasolB1	100000 m3/d
pumped flow control	0.07 -
qcon4	5200 m3/d
ctriblank	.faise.
pidformblank	1
Controllerolank	3 blank
samplintconblank4	999 d
setpblank	1
gainblank	1
ticonblank	1 d
directblank	i Ci true
nokickblank	.false.
qmin4	0 m3/d
qmax4	100 m3/d
Internal flow distribution	
input R1(2)	· [-
inputR1(3)	0 -
inputR1(4)	0 -
recinputR1(1)	1 -
recinput H1(2)	0 -
recinquin (0)	0 - 0 -
	•
/ flow, composite and state variables /	
qR1	7.68E+05 m3/d
sbodR1	1.58 gO2/m3
xbodR1	2.66E+03 gO2/m3
podri boduB1	2.66E+03 gO2/m3 4.03E+03 gO2/m3
scodR1	33.4 gCOD/m3
xcodR1	5.43E+03 gCOD/m3
codR1	5.46E+03 gCOD/m3
stknR1	15 gN/m3
trR1	56.1 grvm3
xiiR1	955 g/m3
vssR1	3.82E+03 g/m3
xR1	4.78E+03 g/m3
cn states	
sin i eeR1	2.4 g COD/m3
xiR1	1.27E+03 g COD/m3
xsR1	1.01E+03 g COD/m3
xbhR1	3.01E+03 g COD/m3
xbaR1	1.00E-06 g COD/m3
soB1	136 g COD/m3 7 08 a O2/m2
snoR1	1.00E-06 a N/m3
snhR1	12 g N/m3
sndR1	2.98 g N/m3
xndR1	41.2 g N/m3
p states	
xbtR1	1.00E-06 g COD/m3
xppR1	1.00E-06 g P/m3
	-

. . 1

0.000727 g COD/m3 0.565 g P/m3

10000 m3

4 m

20 C 20 C 0.21 -

slfR1 spR1

ĺ

# Label: (15,16)

# / physical / real dimensions vm26

oxygen solubility (if individual settings are used) depth26 temp26 airtemp26 pO2con26

#### / operational /

aeration control	
ctrlso26	.false.
pidformso26	1
controllerso26	3
samplintconso2626	999 d
setpso26	2
gainso26	1
ticonso26	5 d
tdconso26	0.1 d
directso26	, .true.
nokickso26	.false.
Setup	
aermethod26	1
alpha26	0.8 -
beta26	0.95 -
tkia26	1.024 -
Kla	
klacon26	100 1/d
klamin26	0 1/d
klamax26	300 1/d
Mechanical	
powercon26	0 kW
etapower26	1.3 kgO2/kWh
Diffused	
qaircon26	0 m3/d
etasol26	0.07 -
pumped flow control	
qcon27	5200 m3/d
ctribiank	.false.
pidformblank	1
controllerblank	3
cvarp	blank
samplintconblank27	999 d
setpblank	1
gainblank	1
ticonblank	1 d
tdconblank	1 d
directblank	.true.
nokickblank	.faise.
gmin27	0 m3/d
gmax27	100 m3/d
•	

/ flow, composite and state variables /

q26	5.20E+03 m3/d
sbod26	1.58 gO2/m3
xbod26	1.17E+04 gO2/m3
bod26	1.17E+04 gO2/m3
bodu26	1.78E+04 gO2/m3
scod26	33.4 gCOD/m3
xcod26	2.40E+04 gCOD/m3
cod26	2.40E+04 gCOD/m3

stkn26	15 gN/m3
tkn26	197 gN/m3
tn26	197 gN/m3
xii26	4.22E+03 g/m3
vss26	1.69E+04 g/m3
x26	2.11E+04 g/m3
cn states	
si26	31 g COD/m3
ss26	2.4 g COD/m3
xi26	5.59E+03 g COD/m3
xs26	4.47E+03 g COD/m3
xbh26	1.33E+04 g COD/m3
xba26	4.44E-06 g COD/m3
xu26	603 g COD/m3
so26	10.6 g O2/m3
sno26	1.00E-06 g N/m3
snh26	12 g N/m3
snd26	2.98 g N/m3
xnd26	182 g N/m3
p states	
xbp26	4.44E-06 g COD/m3
xbt26	4.42E-06 g COD/m3
xpp26	4.42E-06 g P/m3
slf26	0.000727 g COD/m3
sp26	0.565 g P/m3
•	

REPORT	
SCENARIO - ALT2	
Label: SYSTEM	
tstop	0 d
cint	0.05 d
ztime(1)	1994 yr,m,d,h
ztime(2) ztime(3)	11 yr,m,c,n 1 yr m d b
ztime(4)	0 yr,m,d,h
ztime(5)	0 yr,m,d,h
ztime(6)	0 yr,m,d,h
roundsec	.false.
roundminute	.false.
repeat runs	
rerun	0
extype	2
plantname1	blank
plantname2	blank
plantname3	blank
plantname4	blank
plantname6	blank
plantname7	blank
plantname8	blank
plantname9 plantname10	blank
output files	Diatin
globalalarmfile	.false.
afn	blank
oxygen solubility (if global settings are used)	false
depth	4.3 m
temp	13 C
airtemp	20 C
pO2con	0.21 -
elev patm0	1 atm
tempb20	20 C
g	9.80665 m/s2
eprice	0.07 \$/kWh
sto parameters steady	.false.
retry	0
eps	1.00E-10
sumeps	10
decr	1.003
maxstepcon	0.5
fdamping	1
pinit	0.05
prin iloop	200
loopim	20000
chstop	5000
trim parameters	
printdsum	1.00±+10 d
dskip	50000
static	
optmz	.false.
timeseries	.true.
noimm nots	2
peps	1.00E-03
opteps	1.00E-06

bestobi	0.1
itmax	100
ontstep	0.2
optolop	0.05
optapha	0.55
	0.45
opigamma	1.9
optdelta	0.5
DPE	
dynpe	.false.
timewindow	1.00E+10 d
on-line run	
online	.false.
syncdata	.false.
data transfer	
datatransfer	.false.
maxnvars	100
maxdatapoints	100
ADE	
adfsize	128
database	120
database	1
ualabasetype	50 0
rsample	60 S
communication	
g2	.talse.
portno	22041
gfxin	.false.
gfx	.false.
pc	.false.
matlab	.false.
warnings	.true.
optwarnings	.true.
dpewarnings	.true.
bounding	
itoum	30 -
	1 005-06 -
eno	1.005-10 m2/d
mintiow	1.005-10 maya
maxnow	1.00000000
miniconc	1.00E-06 g/m3
maxiconc	1.00E+10 g/m3
minconc	0 g/m3
maxconc	1.00E+10 g/m3
minder	-1.00E+33 g/m3/d
maxder	1.00E+33 g/m3/d
minvol	1.00E-10 m3
startvol	1.00E-01 m3
minlaver	1 00 <b>F-</b> 03 m
manufol	1 00E+10 m3
mianor	1.005-10
manpat	1.00E-10
maxpar	1.002+10
maxint	999999
padbyz	1.00E-10
maxexp	1.00E+03 g/m3
speed	
lowconcapprox	.false.
lowrelder	200 g/m3/d
lowconc	0.03 g/m3
lowconcdamp	0.001
approxdo	0 a/m3
smoothpump	.false.
numpdelav	1.00E-05 d
parsmooth	15 -
pumpetonlimit	50 %
panparpinn	55 /6
general	2 44E006E
PI	3.14139203
samplintcon	999 d
pidstddamp	1000 d
SVI correlation constants	
cc1	709.7
cc2	-4.67
cc3	0.018
cc4	2.66E-04

cc5	-2.85E-06
CC6	2.50E-08
cc7	-1.62E-04
cc8	0.004897
cc9	6.47E-04
system variables	
ialg	8 -
nstp	50 -
mint	1.00E-30 days
maxt	1.00E-01 days

-----

#### Label: USER

Label: (11,18)

# / operational /

loadtypepeff	1
flowtypepeff	1

#### / flow, composite and state variables /

qpeff	6.00E+05 m3/d
sbodpeff	66.6 gO2/m3
xbodpeff	43.2 gO2/m3
bodpeff	110 gO2/m3
bodupeff	186 gO2/m3
scodpeff	144 gCOD/m3
xcodpeff	79.3 gCOD/m3
codpeff	223 gCOD/m3
stknpeff	22.4 gN/m3
tknpeff	23.5 gN/m3
tnpeff	23.5 gN/m3
xiipeff	13.1 g/m3
vsspeff	53.6 g/m3
xpeff	66.6 g/m3

# Label: (13,18)

# / operational /

loadtypebypass	1
flowtypebypass	1

# / flow, composite and state variables /

qbypass	0 m3/d
sbodbypass	84.8 gO2/m3
xbodbypass	47.2 gO2/m3
bodbypass	132 gO2/m3
bodubypass	224 gO2/m3
scodbypass	175 gCOD/m3
xcodbypass	82.2 gCOD/m3
codbypass	257 gCOD/m3
stknbypass	22 gN/m3
tknbypass	24.2 gN/m3
tnbypass	24.2 gN/m3
xiibypass	20.2 g/m3
vssbvpass	55.5 g/m3
xbypass	75.8 g/m3

Label: (16,18)

,

/ flow, composite and state variables /

qFeff	5.96E+05 m3/d
sbodFeff	1.27 gO2/m3
xbodFeff	17.3 gO2/m3
bodFeff	18.6 gO2/m3
boduFeff	28.2 gO2/m3
scodFeff	32.9 gCOD/m3
xcodFeff	28.7 gCOD/m3
codFeff	61.6 gCOD/m3
stknFeff	16.4 gN/m3
tknFeff	16.5 gN/m3
tnFeff	16.5 gN/m3
xiiFeff	5.05 g/m3
vssFeff	20.2 g/m3
xFeff	25.2 g/m3
cn states	
siFeff	31 g COD/m3
ssFeff	1.92 g COD/m3
xiFeff	1.42 g COD/m3
xsFeff	4.44 g COD/m3
xbhFeff	21.8 g COD/m3
xbaFeff	1.05E-08 g COD/m3
xuFeff	0.978 g COD/m3
soFeff	8.93 g O2/m3
snoFeff	1.00E-06 g N/m3
snhFeff	14.5 g N/m3
sndFeff	1.91 g N/m3
xndFeff	0.162 g N/m3
p states	
xbpFeff	1.05E-08 g COD/m3
xbtFeff	1.04E-08 g COD/m3
xppFeff	1.05E-08 g P/m3
slfFeff	0.000465 g COD/m3
spFeff	1.51 g P/m3

Label: (14,17)

/ physical /

real dimensions	
aSeff	14264.8 m2
hmSeff	3.65 m
hfSeff	1.6 m
model dimensions nSeff	10

------

____

underflow	
proprecSeff	.true.
cvarr	peff
rectracSeff	0.28 -
aconBAS	67930 m3/d
ctriblank	.false.
pidformblank	1
controllerblank	3
cvars	blank
samplintconblankRAS	999 d
setoblank	1
oainblank	1
ticonblank	1 d
tdconblank	1 d
directblank	.true.
nokickblank	.false.
ominBAS	1000 m3/d
omaxBAS	100000 m3/d
oumped flow	
*anonWAS	4500 m3/d
quantico	

.

decanterSeff	false
outputSeff(1)	0
outputSeff(2)	0
outputSeff(3)	0
outputSeff(4)	0
outputSeff(5)	0
	0
outputSeff(?)	0
outputSeff(0)	0
outputSeff(10)	1
ctriblank	.false.
pidformblank	1
controlierblank	3
cvarp	blank
samplintconblankWAS	999 d
setpblank	1
gaindiank tioschlank	1
ticonplank	16
directblank	
nokickblank	false
aminWAS	0 m3/d
gmaxWAS	10000 m3/d
model parameters	
xtSeff	2000 gTSS/m3
hscritSeff	0.1 m
/ settling /	
double exponential parameters	
svionSeff	.true.
sviSeff	100 ml/g
clarifSeff	0.5 -
vbndSeff	274 m/d
vmaxconSeff	410 m/d
rhinconSeff	0.0004 m3/gTSS
rfloconSett	0.0025 m3/gTSS
	0.001 -
XminmaxSen flow distribution	20 gi 55/m3
vimiSeff	100 m/d
vumaSeff	300 m/d
/ flow, composite and state variables /	
-C-#	
yoen shodSeff	3.30E+03 M3/0 1 97 nO2/m3
xbodSeff	17.3 cO2/m3
bodSeff	18.6 gO2/m3
boduSeff	28.2 gO2/m3
scodSeff	32.9 gCOD/m3
xcodSeff	28.7 gCOD/m3
codSeff	61.6 gCOD/m3
stknSeff	16.4 gN/m3
tknSeff	16.5 gN/m3
tnSeff	16.5 gN/m3
xilSett	5.05 g/m3
VSSDell	20.2 g/m3 25.2 g/m3
cn states	20.2 yms
siSeff	31 a COD/m3
ssSeff	1.92 a COD/m3
xiSeff	1.42 g COD/m3
xsSeff	4.44 g COD/m3
xbhSeff	21.8 g COD/m3
xbaSeff	1.05E-08 g COD/m3
xuSeff	0.978 g COD/m3
soSeff	8.93 g O2/m3
snoSeff	1.00E-06 g N/m3
snhSeff	14.5 g N/m3

1.91 a N/m3
0.162 g N/m3
1.05E-08 g COD/m3
1.04E-08 g COD/m3
1.05E-08 g P/m3
0.000465 g COD/m3
1.51 g P/m3

# Label: (12,17)

/ physical /

real dimensions	
nR1	4
vsetupR1	1
viconR1(1)	7533.15 m3
viconR1(2)	7533.15 m3
viconR1(3)	7533.15 m3
viconR1(4)	7533.15 m3
vmconR1	30133 m3
fvconR1(1)	0.25 -
fvconR1(2)	0.25 -
fvconR1(3)	0.25 -
fvconR1(4)	0.25 -
oxygen solubility (if individual settings are used)	
depthR1	4.3 m
tempR1	13 C
airtempR1	20 C
pO2conR1	0.21 -

aeration control	
ctrisolR1	.false.
pidformsolR1	1
controliersolR1	3
samplintconsolR1R1	999 d
setpsolR1(1)	2
setpsolR1(2)	2
setpsolR1(3)	2
setpsolR1(4)	2
gainsolR1	1
ticonsolR1	5 d
tdconsolR1	0.1 d
cellR1	0
directsolR1	.true.
nokicksolR1	.false.
Setup	
aermethodR1	2
alphaR1(1)	0.6 -
alphaR1(2)	0.7 -
alphaR1(3)	0.7 -
aiphaR1(4)	0.8 -
betaR1	0.95 -
tklaR1	1.024 -
Kla	
klaconR1(1)	100 1/d
klaconR1(2)	100 1/d
klaconR1(3)	100 1/d
klaconR1(4)	100 1/d
klalminR1(1)	0 1/d
klalminR1(2)	0 1/d
klalminR1(3)	0 1/d
klalminR1(4)	0 1/d
klalmaxR1(1)	300 1/d
klaimaxR1(2)	· 300 1/d
klalmaxR1(3)	300 1/d
klalmaxR1(4)	300 1/d

Manhaniant		
Mechanical	607.0	2.3.47
powerconk I(1)	02/.2	KVV
powerconk I(2)	440	KW
powerconn ((3)	440	KVV I-NA/
powerconn I (4)	440	KVV
etapowerk i	3.5	KgO2/Kwin
fraireen P1(1)	0.05	
frairconP1(2)	0.25	-
fraircon P1(2)	0.25	-
fraircon P1(4)	0.25	-
nanconn (4)	100000	- m3/d
etasolB1	0.07	-
numbed flow control	0.07	
con4	4500	m3/d
ctrblank	faise	
oidformblank	.10.00.	
controllerblank	. 3	
CVarp	blank	
samplintconblank4	999	đ
setoblank	1	-
gainblank	1	
ticonblank	i	d
tdoonblank	1	d
directblank	true.	-
pokickblank	false	
omin4		m3/d
cmar4	100	m3/d
Internal flow distribution		
inputB1(1)	1	-
inputB1(2)	Ó	-
inputB1(3)	Ő	•
input B1(4)	Ő	-
recinputB1(1)	1	-
recinput R1(2)	o	-
recinoutB1(3)	Ō	-
recinput B1(4)	ō	-
(onipatiti(s)	-	
/ flow, composite and state variables /		
-D1	7 695+05	m3/d
qni shadQ1	1 27	aO2/m3
SDOUR I wheelP1	1 665+03	gO2/m3
	1.002+03	gO2/m3
boom i body P1	2 52E+03	oO2/m3
podQni podQ1	32 0	aCOD/m3
SCOUR I	2 755-03	gCOD/m3
xcoun i and P1	2.73E+03	oCOD/m3
ette P1	16.4	oN/m3
	31.0	oN/m3
toD1	31.0	oN/m3
uini viiD1	483	0/m3
	1 935-03	g/m3
vssn i vD1	2 42E+03	g/m3
	2.422100	g/mo
aiD1	31	a COD/m3
	1 92	g COD/m3
351 I viD1	136	a COD/m3
	130	g COD/m3
XSR1	9.005.03	g COD/m3
XDIIN I	1 005.06	g COD/m3
XDarki	1.002-00	g COD/m3
XUR1	93.0	g COD/ms
SON I	1.005.00	g Uz/m3
Short 1	1.00E-06	y iwma a N/ma
SNNK1	14.5	g N/m3
ShdH1	1.91	g N/m3
xnaH1	15.5	g N/m3
p states		
XOPH1	1.00E-06	g COD/m3
XDIHI	1.00E-06	g COD/m3
xppR1	1.00E-06	g P/m3

slfR1	0.000465 g COD/m3
spR1	1.51 g P/m3

# Label: (15,16)

/ physical /

real dimensions	
vm26	10000 m3
oxygen solubility (if individual settings are used)	
depth26	4 m
temp26	20 C
airtemp26	20 C
pO2con26	0.21 -

aeration control	
ctrlso26	.false.
pidformso26	1
controllerso26	3
samplintconso2626	999 d
setpso26	2
gainso26	1
ticonso26	5 d
tdconso26	0.1 d
directso26	.true.
nokickso26	.false.
Setup	
aermethod26	1
alpha26	0.8 -
beta26	0.95 -
tkia26	1.024 -
Kla	
klacon26	100 1/d
klamin26	0 1/d
klamax26	300 1/d
Mechanical	
powercon26	0 kW
etapower26	1.3 kgO2/kWh
Diffused	
qaircon26	0 m3/d
etasol26	0.07 -
pumped flow control	
qcon27	4500 m3/d
ctriblank	.talse.
pidformblank	1
controllerbiank	3
cvarp	Diank
samplintconblank27	999 0
setpblank	1
gainblank	1
ticonblank	10
tdconblank	10
directblank	.true.
nokickblank	.talse.
qmin27	0 m3/d
qmax27	100 m3/d
/ flow, composite and state variables /	

g26	4.50E+03 m3/d
sbod26	1.27 gO2/m3
xbod26	7.33E+03 gO2/m3
bod26	7.33E+03 gO2/m3
bodu26	1.11E+04 gO2/m3
scod26	32.9 gCOD/m3
xcod26	1.21E+04 gCOD/m3
cod26	1.22E+04 gCOD/m3

stkn26	16.4 gN/m3
tkn26	84.9 gN/m3
tn26	84.9 gN/m3
xii26	2.13E+03 g/m3
vss26	8.54E+03 g/m3
x26	1.07E+04 g/m3
cn states	
si26	31 g COD/m3
ss26	1.92 g COD/m3
xi26	600 g COD/m3
xs26	1.88E+03 g COD/m3
xbh26	9.23E+03 g COD/m3
xba26	4.44E-06 g COD/m3
xu26	414 g COD/m3
so26	10.6 g O2/m3
sno26	1.00E-06 g N/m3
snh26	14.5 g N/m3
snd26	1.91 g N/m3
xnd26	68.5 g N/m3
p states	
xbp26	4.44E-06 g COD/m3
xbt26	4.42E-06 g COD/m3
xpp26	4.43E-06 g P/m3
slf26	0.000465 g COD/m3
sp26	1.51 g P/m3

#### REPORT SCENARIO - ALT3new

Label: SYSTEM	
time	
tstop	0 d
	0.05 d
ztime(1)	1994 yr,m,d,h
Zume(2)	11 yr,m,d,n
2time(3)	i yr,m,a,n O yr m d b
ztime(5)	0 yr m d h
ztime(6)	0 vr.m.d.h
itcon	0 d
roundsec	.false.
roundminute	.false.
repeat runs	
rerun	0
nput files	
extype	2
plantname1	blank
plantname2	blank
plantname3	blank
plantname4	blank
plantname5	blank
	blank
	Diank
plantnameo	blank
plantnames	blank
plantiane to	Dialik
globalalarmfile	faise
afn	blank
xvoen solubility (if global settings are used)	bian
global	.false.
depth	4.3 m
temp	13 C
aintemp	20 C
pO2con	0.21 -
elev	0 m
patm0	1 atm
tempb20	20 C
9	9.80665 m/s2
eprice	0.07 \$/kWh
std parameters	
steady	.talse.
retry	0
eps	1.00E-10
sumeps	10
iner	0.982
maxstoncon	1.003
fdamping	0.5
ninit	0.05
print	200
iloop	200
loopim	20000
chstop	5000
rim parameters	5000
printdsum	1.00E+10 d
primpronly	true
dskip	50000
static	
optmz	.false.
timeseries	.true.
ndimm	2
npts	- 3
peps	1.00E-03
opteps	1.00E-06

bestobj	0.1
itmax	100
optstep	0.2
optalpha	0.95
optbeta	0.45
optgamma	1.9
optdelta	0.5
DPE	
dynpe	.false.
timewindow	1.00E+10 d
on-line run	
online	.faise.
syncdata	.false.
data transfer	
datatransfer	.false.
maxnvars	100
maxdatapoints	100
ADF	
adfsize	128
database	
databasetype	1
rsample	60 s
communication	
g2	.false.
portno	22041
gfxin	.false.
gfx	.false.
pc	.false.
matlab	.faise.
warnings	.true.
optwarnings	.true.
dpewarnings	.true.
bounding	
itnum	30 -
error	1.00E-06 -
minflow	1.00E-10 m3/d
maxflow	1.00E+10 m3/d
miniconc	1.00E-06 g/m3
maxiconc	1.00E+10 g/m3
minconc	0 g/m3
maxconc	1.00E+10 g/m3
minder	-1.00E+33 g/m3/d
maxder	1.00E+33 g/m3/d
minvol	1.00E-10 m3
startvol	1.00E-01 m3
minlayer	1.00E-03 m
maxvol	1.00E+10 m3
minpar	1.00E-10
maxpar	1.00E+10
maxint	999999
padbyz	1.00E-10
maxexp	1.00E+03 g/m3
speed	
lowconcapprox	.false.
lowrelder	200 g/m3/d
lowconc	0.03 g/m3
lowconcdamp	0.001
approxdo	0 g/m3
smoothpump	.false.
pumpdelay	1.00E-05 d
parsmooth	15 -
pumpsteplimit	50 %
general	
pi	3.14159265
samplintcon	999 d
pidstddamp	1000 d
SVI correlation constants	
cc1	709.7
cc2	-4.67
cc3	0.018
cc4	2.66E-04

cc5	-2.85E-06
CC6	2.50E-08
cc7	-1.62E-04
cc8	0.004897
cc9	6.47E-04
system variables	
ialg	8 -
nstp	50 -
mint	1.00E-30 days
maxt	1.00E-01 days

# Label: USER

**************************************	

# Label: (11,18)

/ operational /

loadtypepeff	1
flowtypepeff	1

/ flow, composite and state variables /

qpeff	6.00E+05 m3/d
sbodpeff	76.8 gO2/m3
xbodpeff	72.7 gO2/m3
bodpeff	149 gO2/m3
bodupeff	241 gO2/m3
scodpeff	155 gCOD/m3
xcodpeff	157 gCOD/m3
codpeff	312 gCOD/m3
stknpeff	22 gN/m3
tknpeff	25.1 gN/m3
tnpeff	25.1 gN/m3
xiipeff	32.8 g/m3
vsspeff	106 g/m3
xpeff	139 a/m3

# Label: (13,18)

/ operational /

loadtypebypass	1
flowtypebypass	1

/ flow, composite and state variables /

qbypass	0 m3/d
sbodbypass	84.8 gO2/m3
xbodbypass	47.2 gO2/m3
bodbypass	132 gO2/m3
bodubypass	224 gO2/m3
scodbypass	175 gCOD/m3
xcodbypass	82.2 gCOD/m3
codbypass	257 gCOD/m3
stknbypass	22 gN/m3
tknbypass	24.2 gN/m3
tnbypass	24.2 gN/m3
xiibypass	20.2 g/m3
vssbypass	55.5 g/m3
xbypass	75.8 g/m3

Label: (16,18)

.

/ flow, composite and state variables /

aFeff	5.95E+05 m3/d
sbodFeff	1.51 gO2/m3
xbodFeff	15.5 gO2/m3
bodFeff	17 gO2/m3
boduFeff	25.8 gO2/m3
scodFeff	33.3 gCOD/m3
xcodFeff	30.7 gCOD/m3
codFeff	64 gCOD/m3
stknFeff	15.7 gN/m3
tknFeff	16 gN/m3
tnFeff	16 gN/m3
xiiFeff	5.41 g/m3
vssFeff	21.6 g/m3
xFeff	27.1 g/m3
cn states	
siFeff	31 g COD/m3
ssFeff	2.28 g COD/m3
xiFeff	6.38 g COD/m3
xsFeff	5.39 g COD/m3
xbhFeff	18.2 g COD/m3
xbaFeff	7.09E-09 g COD/m3
xuFeff	0.806 g COD/m3
soFeff	7.88 g O2/m3
snoFeff	1.00E-06 g N/m3
snhFeff	13 g N/m3
sndFeff	2.75 g N/m3
xndFeff	0.218 g N/m3
p states	
xbpFeff	7.09E-09 g COD/m3
xbtFeff	7.06E-09 g COD/m3
xppFeff	7.07E-09 g P/m3
slfFeff	0.000623 g COD/m3
spFeff	0.927 g P/m3

# Label: (14,17)

/ physical /

real dimensions	
aSeff	14264.8 m2
hmSeff	3.65 m
hfSeff	1.6 m
model dimensions	
nSeff	10

underflow	
proprecSeff	.true.
cvarr	peff
recfracSeff	0.28 -
aconBAS	67930 m3/d
ctriblank	.false.
pidformblank	1
controllerblank	3
cvars	blank
samplintconblankRAS	999 d
setoblank	1 -
gainblank	1
ticonblank	1 d
tdconblank	1 d
directblank	.true.
nokickblank	.false.
ominBAS	1000 m3/d
omaxBAS	100000 m3/d
numped flow	
*aconWAS	5000 m3/d
YUUIIIIAU	5000 mora

decanterSeff	.false.
outputSeff(1)	0
outputSeff(2)	0
outputSeff(4)	0
outputSeff(5)	0
outputSeff(6)	õ
outputSeff(7)	0
outputSeff(8)	0
outputSeff(9)	0
ctdblank	1 false
pidfomblank	.12136.
controllerblank	3
cvarp	blank
samplintconblankWAS	999 d
selpolank	1
ticonblank	1
tdconblank	1 d
directblank	.true.
nokickblank	.false.
qminWAS	0 m3/d
qmaxWAS	10000 m3/d
vtSeff	2000 aTSS/m3
hscritSeff	0.1 m
/ settling /	
double exponential parameters	
svionSeff	.true.
svibell clarifSoff	100 m/g
vbndSeff	274 m/d
vmaxconSeff	410 m/d
rhinconSeff	0.0004 m3/gTSS
rfloconSeff	0.0025 m3/gTSS
fnsSeff	0.001 -
XmnmaxSen flow distribution	20 g1 SS/m3
vumiSeff	100 m/d
vumaSeff	300 m/d
/ flow, composite and state variables /	
qSeff	5.95E+05 m3/d
sbodSeff	1.51 gO2/m3
xbodSeff	15.5 gO2/m3
boduSeff	17 gO2/m3 25.8 gO2/m3
scodSeff	33.3 gCOD/m3
xcodSeff	30.7 gCOD/m3
codSeff	64 gCOD/m3
stknSeff	15.7 gN/m3
IKNSell InSelf	16 gN/m3 16 gN/m3
xiiSeff	5 41 g/m3
vssSeff	21.6 g/m3
xSeff	27.1 g/m3
cn states	-
siSeff	31 g COD/m3
SSOEII viSeff	2.28 g COD/m3
xsSeff	5.30 g COD/m3
xbhSeff	18.2 a COD/m3
xbaSeff	7.09E-09 g COD/m3
xuSeff	0.806 g COD/m3
soSeff	7.88 g O2/m3
snoSett	1.00E-06 g N/m3
snnoen	13 g N/m3

2 75 a N/m3
0.218 g N/m3
7.09E-09 g COD/m3
7.06E-09 g COD/m3
7.07E-09 g P/m3
0.000623 g COD/m3
0.927 g P/m3

....

# Label: (12,17)

/ physical /

real dimensions	
nR1	4
vsetupR1	1
viconR1(1)	7533.15 m3
viconR1(2)	7533.15 m3
viconR1(3)	7533.15 m3
viconR1(4)	7533.15 m3
vmconR1	30132.6 m3
fvconR1(1)	0.25 -
fvconR1(2)	0.25 -
fvconR1(3)	0.25 -
fvconR1(4)	0.25 -
oxygen solubility (if individual settings are used)	
depthR1	4.3 m
tempR1	13 C
airtempR1	20 C
pO2conR1	0.21 -

aeration control	
ctrisolR1	.false.
pidformsolR1	1
controllersolR1	3
samplintconsolR1R1	999 d
setpsolR1(1)	2
setpsolR1(2)	2
setpsolR1(3)	2
setpsolR1(4)	2
gainsolR1	1
ticonsolR1	5 d
tdconsolR1	0.1 d
cellR1	0
directsolR1	.true.
nokicksolR1	.false.
Setup	
aermethodR1	2
alphaR1(1)	0.6 -
alphaR1(2)	0.7 -
alphaR1(3)	0.7 -
alphaR1(4)	0.8 -
betaR1	0.95 -
tklaR1	1.024 -
Kla	
klaconR1(1)	100 1/d
klaconR1(2)	100 1/d
klaconR1(3)	100 1/d
klaconR1(4)	100 1/d
klalminR1(1)	0 1/d
klalminR1(2)	0 1/d
klalminR1(3)	0 1/d
klalminR1(4)	0 1/d
kialmaxR1(1)	300 1/d
kialmaxR1(2)	300 1/d
klaimaxR1(3)	300 1/d
klalmaxR1(4)	300 1/d

Mechanical	
powerconR1(1)	627.2 kW
powerconR1(2)	440 kW
powerconR1(3)	440 kW
powerconB1(4)	440 kW
etanowerP1	2 5 kg 02/ki/h
Diffused	3.5 KgOZ/KVVII
Dimused	
frairconR1(1)	0.25 -
frairconR1(2)	0.25 -
frairconB1(3)	0.25 -
fraircon B1(4)	0.25
nairconn (4)	0.25 -
qairsumconH i	100000 m3/d
etasolR1	0.07 -
pumped flow control	
gcon4	5000 m3/d
ctriblank	false
nidformhlank	1
pluiomblank	1
controllerblank	3
cvarp	blank
samplintconblank4	999 d
setoblank	1
scipbiant	
gambiank	1
ticondiank	10
tdconblank	1 d
directblank	.true.
nokickblank	false.
aminA	0 m3/d
	100
qmax4	100 m3/a
Internal flow distribution	
inputR1(1)	1-
inputR1(2)	0 -
inputB1(3)	0 -
	0
Inputh (4)	0-
recinputR1(1)	1-
recinputR1(2)	0 -
recinputR1(3)	0 -
recipout B1(4)	0.
	U ·
/ flow, composite and state variables /	
qR1	7.68E+05 m3/d
sbodR1	1.51 gO2/m3
xbodB1	2.20E+03 aO2/m3
hodP1	2 20E+03 cO2/m3
bourn hadaB4	
DODURT	3.34E+03 gU2/m3
scodR1	33.3 gCOD/m3
xcodR1	4.36E+03 gCOD/m3
codB1	4.39E+03 aCOD/m3
stknB1	15.7 gN/m3
Stein 11	
	46.7 givm3
tnR1	46.7 gN/m3
xiiR1	767 g/m3
vssR1	3.07E+03 g/m3
vB1	3 83E+03 0/m3
	0.002100 9110
ch states	
siR1	31 g COD/m3
ssR1	2.28 g COD/m3
xiB1	904 a COD/m3
veB1	763 n COD/m3
	0 EZE : 02 a COD/m2
	2.5/E+05 g COD/m3
XDAH1	1.00E-06 g COD/m3
xuR1	114 g COD/m3
soR1	7.88 a O2/m3
spoR1	1.00E-06 g N/m3
onb D1	1.00E-00 g 10/110
	13 g N/m3
SNOH1	2.75 g N/m3
xndR1	31 g N/m3
p states	-
xhoB1	1 00E-06 a COD/m3
	1.00E-00 g COD/m3
	1.00E-06 g COD/m3
хррні	1.00E-06 g P/m3

sifR1 spR1	0.000623 g COD/m3 0.927 g P/m3
Label: (15,16)	
/ physical /	
real dimensions	10000
oxvaen solubility (if individual settings are used)	10000 113
depth26	4 m
temp26	20 C
ainemp26 pO2con26	0.21 -
/ operational /	
aeration control	
ctrlso26	.false.
pidformso26	1
samplintconso2626	999 d
setpso26	2
gainso26	1
ticonso26	5 d 0 1 d
directso26	.true.
nokickso26	.false.
Setup	1
aememodzo alpha26	0.8 -
beta26	0.95 -
tkla26	1.024 -
Kia kiasas26	100 1/d
klamin26	0 1/d
klamax26	300 1/d
Mechanical	- 114
powercon26	0 KW 1 3 kaO2/kWb
Diffused	1.5 KgO2KM
qaircon26	0 m3/d
etasol26	0.07 -
pumped flow control	5000 m3/d
ctriblank	.false.
pidformblank	1
controllerblank	3 black
cvarp samplintconblank27	999 d
setpblank	1
gainblank	1
ticonblank	1 d
directblank	.true.
nokickblank	.false.
qmin27	0 m3/d
qmax27	100 m3/d
/ flow, composite and state variables /	
q26	5.00E+03 m3/d
sbod26	1.51 gO2/m3
xbod26	9.73E+03 gO2/m3
00020 bodu26	9.73E+03 gO2/m3 1.47E+04 aO2/m3
scod26	33.3 gCOD/m3
xcod26	1.92E+04 gCOD/m3
cod26	1.93E+04 gCOD/m3

stkn26
the DE
IKN20
tn26
xii26
vss26
x26
cn states
si26
3120
SS26
xi26
xs26
xbh26
xba26
xu26
2026
5020
sno26
snh26
snd26
xnd26
o states
vbo26
20020
XULZO
xpp26
slf26
sp26

15.7 gN/m3
152 gN/m3
152 gN/m3
3.39E+03 g/m3
1.35E+04 g/m3
1.69E+04 g/m3
31 g COD/m3
2.28 g COD/m3
3.99E+03 g COD/m3
3.37E+03 g COD/m3
1.14E+04 g COD/m3
4.44E-06 g COD/m3
504 g COD/m3
10.6 g O2/m3
1.00E-06 g N/m3
13 g N/m3
2.75 g N/m3
137 g N/m3
4.43E-06 g COD/m3
4.41E-06 g COD/m3
4.42E-06 g P/m3
0.000623 g COD/m3
0.927 g P/m3

.

.

	REPORT
SCENARIO -	ALT4second

tstop	0 d
cipt	0.05 d
ztime(1)	1994 vr.m.d.h
ztime(2)	11 yr,m,d,h
ztime(3)	1 yr,m,d,h
ztime(4)	0 yr,m,d,h
ztime(5)	0 yr,m,d,h
ztime(6)	0 yr,m,d,h
itcon	0 d
roundsec	.false.
roundminute	.false.
repeat runs	•
	U
input files	2
extype	2 blank
piantname i	blank
plantname3	blank
plantnamed	biank
plantname5	blank
plantname6	blank
plantname7	blank
plantname8	blank
plantname9	blank
plantname10	blank
output files	
globalalarmfile	.false.
afn	blank
oxygen solubility (if global settings are used)	falsa
global	.taise.
oeptn tomp	4.5 11
iemp sistemp	20 C
	0.21 -
elev	0 m
natm0	1 atm
tempb20	20 C
a	9.80665 m/s2
eprice	0.07 \$/kWh
std parameters	
steady	.false.
retry	0
eps	1.00E-10
sumeps	10
decr	0.982
incr	1.003
maxstepcon	0.5
fdamping	1
pinit	0.05
prin	200
loop	20000
obstep	5000
trim parameters	0000
orintdsum	1.00E+10 d
primecenni	.true.
dskip	50000
static	
optmz	.false.
timeseries	.true.
ndimm	2
npts	3
peps	1.00E-03
opteps	1.00E-06

0.1 100 0.2 0.95 0.45 1.9 0.5

.faise.

.false. .false. .false.

.faise.

.false. .false. .false. .false. .true. .true. .true.

.false.

.false.

1.00E-05 d 15 -50 %

3.14159265 999 d 1000 d 709.7 -4.67 0.018 2.66E-04

200 g/m3/d 0.03 g/m3 0.001 0 g/m3

1.00E+10 d

22041

30 -1.00E-06 -1.00E-10 m3/d 1.00E+10 m3/d 1.00E-06 g/m3 1.00E+10 g/m3 0 g/m3 1.00E+10 g/m3 -1.00E+33 g/m3/d 1.00E+33 g/m3/d 1.00E-10 m3 1.00E-01 m3 1.00E-03 m 1.00E+10 m3 1.00E-10 1.00E+10 999999 1.00E-10 1.00E+03 g/m3

bestobi	
itmax	
enteten	
opisiep	
optaipna	
optbeta	
optgamma	
optdelta	
DPE	
dynpe	
timowindow	
on-line run	
onine	
syncdata	
data transfer	
datatransfer	
maxnvars	
maxdatapoints	
ADE	
adisize	
database	
databasetype	
rsample	
communication	
~?	
yz	
portno	
gfxin	
gfx	
pc	
matiab	
wamings	
wannings	
optwarnings	
opewarnings	
bounding	
itnum	
error	
minflow	
marflow	
miniow	
miniconc	
maxiconc	
minconc	
maxconc	
minder	
maxder	
minual	
ina ivoi	
startvoi	
miniayer	
maxvo	
minpar	
maxpar	
maxint	
padburg	
padbyz	
maxexp	
speed	
lowconcapprox	
iowrelder	
lowconc	
lowconcdamp	
approvide	
approxide	
smootnpump	
pumpdelay	
parsmooth	
pumpsteplimit	
oeneral	
ni	
r'	
samplintcon	
pidstddamp	
SVI correlation constants	5
cc1	
ec2	
~~~	
CC4	

cc5	-2.85E-06
CC6	2.50E-08
cc7	-1.62E-04
cc8	0.004897
cc9	6.47E-04
system variables	
ialg	8 -
nstp	50 -
mint	1.00E-30 days
maxt	1.00E-01 days

_

Label: USER

Label: (11,18)

/ operational /

loadtypepeff	1
flowtypepeff	1

/ flow, composite and state variables /

qpeff	6.00E+05 m3/d
sbodpeff	82 gO2/m3
xbodpeff	90.4 gO2/m3
bodpeff	172 gO2/m3
bodupeff	292 gO2/m3
scodpeff	170 gCOD/m3
xcodpeff	208 gCOD/m3
codpeff	378 gCOD/m3
stknpeff	22 gN/m3
tknpeff	25.9 gN/m3
tnpeff	25.9 gN/m3
xiipeff	44.3 g/m3
vsspeff	140 g/m3
xpeff	185 g/m3

Label: (13,18)

/ operational /

loadtypebypass	1
flowtypebypass	1

/ flow, composite and state variables /

qbypass	0 m3/d
sbodbypass	84.8 gO2/m3
xbodbypass	47.2 gO2/m3
bodbypass	132 gO2/m3
bodubypass	224 gO2/m3
scodbypass	175 gCOD/m3
xcodbypass	82.2 gCOD/m3
codbypass	257 gCOD/m3
stknbypass	22 gN/m3
tknbypass	24.2 gN/m3
tnbypass	24.2 gN/m3
xiibypass	20.2 g/m3
vssbypass	55.5 g/m3
xbypass	75.8 g/m3

Label: (16,18)

/ flow, composite and state variables /

qFeff	5.91E+05 m3/d
sbodFeff	0.916 gO2/m3
xbodFeff	9.29 gO2/m3
bodFeff	10.2 gO2/m3
boduFeff	15.5 gO2/m3
scodFeff	32.4 gCOD/m3
xcodFeff	21.5 gCOD/m3
codFeff	53.9 gCOD/m3
stknFeff	3.08 gN/m3
tknFeff	3.16 gN/m3
tnFeff	10.2 gN/m3
xiiFeff	3.78 g/m3
vssFeff	15.1 g/m3
xFeff	18.9 g/m3
cn states	
siFeff	31 g COD/m3
ssFeff	1.39 g COD/m3
xiFeff	5.81 g COD/m3
xsFeff	1.47 g COD/m3
xbhFeff	11.5 g COD/m3
xbaFeff	1.15 g COD/m3
xuFeff	1.6 g COD/m3
soFeff	7.56 g O2/m3
snoFeff	7.06 g N/m3
snhFeff	0.133 g N/m3
sndFeff	2.95 g N/m3
xndFeff	0.0756 g N/m3
p states	
xbpFeff	5.64E-09 g COD/m3
xbtFeff	5.56E-09 g COD/m3
xppFeff	5.59E-09 g P/m3
slfFeff	4.90E-05 g COD/m3
spFeff	0.819 g P/m3

Label: (14,17)

/ physical /

real dimensions *aSeff hmSeff btSeff	20339 m2 3.65 m 1.6 m
model dimensions nSeff	10
/ operational /	

underflow

proprecSeff	.true.
cvarr	peff
rectracSett	0.45 -
gconRAS	67930 m3/d
ctriblank	.false.
pidformblank	1
controllerbiank	3
cvars	blank
samplintconblankRAS	999 d
setpblank	1
gainblank	1
ticonblank	1 d
tdconblank	1 d
directblank	.true.
nokickblank	.false.
gminRAS	1000 m3/d
gmaxRAS	100000 m3/d
pumped flow	
*gconWAS	9000 m3/d
•	

decanterSeff	.false.
outputSeff(1)	0
outputSeff(2)	0
outputSeff(3)	U
outputSeff(5)	0
outputSeff(6)	0
outputSeff(7)	ő
outputSeff(8)	ő
outputSeff(9)	ō
outputSeff(10)	1
ctribiank	.false.
pidformblank	1
controllerblank	3
cvarp	blank
samplintconblankWAS	999 d
setpblank	1
gainblank	1
ticonblank	1 d
tdconblank	1 d
directblank	.true.
nokickbiank	.taise.
qminwas	0 m3/d 10000 m3/d
qnaxwas	10000 1113/0
viSeff	2000 aTSS/m3
bscritSeff	0.1 m
nschoen	0.1111
/ settling /	
double exponential parameters	
svionSeff	.true.
sviSeff	100 ml/g
clarifSeff	0.5 -
vbndSeff	274 m/d
vmaxconSeff	410 m/d
rhinconSeff	0.0004 m3/gTSS
rfloconSeff	0.0025 m3/gTSS
fnsSeff	0.001 -
xminmaxSeff	20 g1 SS/m3
Now distribution	100
vumiSen	100 m/d
vumaSem	300 h/d
flow, composite and state variables /	
aSeff	5.91E+05 m3/d
sbodSeff	0,916 aO2/m3
xbodSeff	9.29 gO2/m3
bodSeff	10.2 gO2/m3
boduSeff	15.5 gO2/m3
scodSeff	32.4 gCOD/m3
xcodSeff	21.5 gCOD/m3
codSeff	53.9 gCOD/m3
stknSeff	3.08 gN/m3
tknSeff	3.16 gN/m3
tnSeff	10.2 gN/m3
xiiSeff	3.78 g/m3
vssSeff	15.1 g/m3
xSeff	18.9 g/m3
cn states	
siSeff	31 g COD/m3
ssSeff	1.39 g COD/m3
xiSeff	5.81 g COD/m3
xsSetf	1.47 g COD/m3
xbhSeff	11.5 g COD/m3
xbaSeff	1.15 g COD/m3
xuSeff	1.6 g COD/m3
soSeff	7.56 g O2/m3
snoSeff	7.06 g N/m3
snhSeff	0.133 g N/m3

sndSeff	2.95 g N/m3
xndSeff	0.0756 g N/m3
p states	
xbpSeff	5.64E-09 g COD/m3
xbtSeff	5.56E-09 g COD/m3
xppSeff	5.59E-09 g P/m3
slfSeff	4.90E-05 g COD/m3
spSeff	0.819 g P/m3

....

Label: (12,17)

...........

/ physical /

real dimensions	
nR1	4
vsetupR1	1
vlconR1(1)	7533.15 m3
viconR1(2)	7533.15 m3
viconR1(3)	7533.15 m3
viconR1(4)	7533.15 m3
*vmconR1	1.11E+05 m3
fvconR1(1)	0.25 -
fvconR1(2)	0.25 -
fvconR1(3)	0.25 -
fvconR1(4)	0.25 -
oxygen solubility (if individual settings are used)	
depthR1	4.3 m
tempR1	13 C
airtempR1	20 C
pO2conR1	0.21 -

aeration control	
ctrisolR1	.false.
pidformsolR1	1
controllersolR1	3
samplintconsolR1R1	999 d
setpsolR1(1)	2
setpsolR1(2)	2
setpsolR1(3)	2
setpsolR1(4)	2
gainsolR1	1
ticonsolR1	5 d
tdconsolR1	0.1 d
cellR1	0
directsolR1	.true.
nokicksolR1	.false.
Setup	
aermethodR1	2
alphaR1(1)	0.6 -
aiphaR1(2)	0.7 -
alphaR1(3)	0.7 -
aiphaR1(4)	0.8 -
betaR1	0.95 -
tklaR1	1.024 -
Kla	
klaconR1(1)	100 1/d
klaconR1(2)	100 1/d
klaconR1(3)	100 1/d
klaconR1(4)	100 1/d
klalminR1(1)	0 1/d
klalminR1(2)	0 1/d
klalminR1(3)	0 1/d
klalminR1(4)	0 1/d
klalmaxR1(1)	300 1/d
klalmaxR1(2)	300 1/d
klalmaxR1(3)	300 1/d
kialmaxR1(4)	300 1/d

Mechanical	
*powerconB1(1)	1200 2 1/14/
*powerconB1(2)	880 KW
*powerconR1(3)	880 kW
*powerconR1(4)	880 kW
etapowerR1	3.5 kgO2/kWh
Diffused	-
frairconR1(1)	0.25 -
frairconR1(2)	0.25 -
frairconR1(3)	0.25 -
trairconH1(4)	0.25 -
dairsumconH 1	100000 m3/d
pumped flow control	0.07 -
acon4	9000 m3/d
ctriblank	false
pidformblank	1
controllerblank	3
cvarp	blank
samplintconblank4	999 d
setpblank	1
gainblank	1
ticonblank	1 d
tdconblank	1 d
directblank	.true.
nokickblank	.false.
qmin4	0 m3/d
dinax4	100 m3/d
inputB1(1)	1.
inputB1(2)	0 -
inputR1(3)	0-
inputR1(4)	0 -
recinputR1(1)	1 -
recinputR1(2)	0 -
recinputR1(3)	0 -
recinputR1(4)	0 -
/ flow, composite and state variables /	
aP1	9 70E .05 m2/d
ebodB1	0.916 cO2/m3
xbodB1	1 67E+03 cO2/m3
bodB1	1.67E+03.gO2/m3
boduR1	2.53E+03 gO2/m3
scodR1	32.4 gCOD/m3
xcodR1	3.86E+03 gCOD/m3
codR1	3.89E+03 gCOD/m3
stknR1	3.08 gN/m3
tknR1	16.7 gN/m3
tnR1	23.7 gN/m3
xiiR1	680 g/m3
VSSH1	2.72E+03 g/m3
	3.40E+03 g/m3
ci States	31 a COD/m3
seR1	1 39 g COD/m3
xiB1	1.04E±03 g COD/m3
xsR1	264 g COD/m3
xbhR1	2.06E+03 g COD/m3
xbaR1	207 a COD/m3
xuR1	287 g COD/m3
soR1	7.56 g O2/m3
snoR1	7.06 g N/m3
snhR1	0.133 g N/m3
sndR1	2.95 g N/m3
xndR1	13.6 g N/m3
p states	-
xbpR1	1.01E-06 g COD/m3
xbtR1	1.00E-06 g COD/m3
xppR1	1.00E-06 g P/m3
Alt4new

slfR1 spR1	4.90E-05 g COD/m3 0.819 g P/m3
Label: (15,16)	
/ physical /	
real dimensions	
vmzo oxygen solubility (if individual settings are used)	10000 m3
temp26	4 m 20 C
airtemp26	20 C
pO2con26	0.21 -
/ operational /	
aeration control	
ctriso26 nidformso26	.taise. 1
controllerso26	3
samplintconso2626	999 d
setpso26	2
ticonso26	5 d
tdconso26	0.1 d
directso26	.true.
Setup	.iaise.
aermethod26	1
alpha26	0.8 -
beta26 tkla26	0.95 -
Kla	1.024
klacon26	100 1/d
klamin26	0 1/d
Mamazzo Mechanical	300 1/d
powercon26	0 kW
etapower26	1.3 kgO2/kWh
Diffused	0 m3/d
etasol26	0.07 -
pumped flow control	
qcon27	9000 m3/d
pidformblank	.iaise. 1
controllerblank	3
cvarp	blank
samplintcondiank27 setobiank	999 a 1
gainblank	1
ticonblank	1 d
toconblank directblank	1 d
nokickblank	.false.
qmin27	0 m3/d
qmax27	100 m3/d
/ flow, composite and state variables /	
q26	9.00E+03 m3/d
sbod26	0.915 gO2/m3
xbod26	5.19E+03 gO2/m3
boqu26	5.19E+03 gO2/m3 7 86E+03 cO2/m3
scod26	32.4 gCOD/m3
xcod26	1.20E+04 gCOD/m3
cod26	1.20E+04 gCOD/m3

Alt4new

stkn26	3.08 gN/m3
tkn26	45.3 gN/m3
tn26	52.4 gN/m3
xii26	2.11E+03 g/m3
vss26	8.45E+03 g/m3
x26	1.06E+04 g/m3
cn states	
si26	31 g COD/m3
ss26	1.39 g COD/m3
xi26	3.24E+03 g COD/m3
xs26	820 g COD/m3
xbh26	6.40E+03 g COD/m3
xba26	643 g COD/m3
xu26	892 g COD/m3
so26	10.6 g O2/m3
sno26	7.06 g N/m3
snh26	0.133 g N/m3
snd26	2.95 g N/m3
xnd26	42.2 g N/m3
p states	
xbp26	3.15E-06 g COD/m3
xbt26	3.11E-06 g COD/m3
xpp26	3.12E-06 g P/m3
slf26	4.90E-05 g COD/m3
sp26	0.819 g P/m3

-

	REPORT
SCENARIO - ALT5new	,

Label: SYSTEM	
teten	0.4
cint	b U
CIII(0.05 d
2000 (1)	1994 yr,m,d,n
2(1)(C(2))	11 yr,m,d,n
ztime(3)	i yr,m,d,n
ztime(4)	
ztime(5)	
zume(o)	0 yr,m,a,n
mundree	falsa
roundsec	.idise.
report runs	.iaise.
repeat runs	â
rerun	0
input lies	
extype	2
plantname1	Diank
plantname2	blank
plantname3	blank
plantname4	blank
plantname5	blank
plantname6	blank
plantname7	blank
plantname8	blank
plantname9	blank
plantname10	blank
output files	
globalalarmfile	.false.
afn	blank
oxygen solubility (if global settings are used)	
global	.false.
depth	4.3 m
temp	13 C
airtemp	20 C
pO2con	0.21 -
elev	0 m
natm0	1 atm
tempb20	20 C
0	9 80665 m/s2
y eprice	0.07 \$/k/Wb
etd parameters	0.07 \$
steady	falso
sicauy	.iaise.
ieuy opo	1 005 10
eps	1.00E-10
sumeps	10
decr	0.982
incr	1.003
maxstepcon	0.5
tdamping	1
pinit	0.05
prin	200
iloop	0
loopim	20000
chstop	5000
trim parameters	
printdsum	1.00E+10 d
primpronly	.true.
dskip	50000
static	
optmz	.false.
timeseries	.true.
ndimm	2
nots	-3
nens	1 00F-03
opteps	1.00E-06
	1.000-00

bestobj	0.1
itmax	100
optstep	0.2
optaloba	0.95
esthata	0.00
opideta	0.45
opigamma	1.9
optdelta	0.5
DPE	
dynpe	.false.
timewindow	1.00E+10 d
on-line run	
online	false
omme	false.
syncoata	.iaise.
data transfer	
datatransfer	.false.
maxiivars	100
maxdatapoints	100
ADE	
odfeize	128
	120
database	
databasetype	1
rsample	60 s
communication	
g2	.false.
	22041
portito	falso
gixin	.idise.
gfx	.talse.
pc	.false.
matlab	.false.
warnings	.true.
optwarnings	.true.
dowarnings	true
upewaningo hounding	
bounding	
itnum	
error	1.00E-06 -
minflow	1.00E-10 m3/d
maxflow	1.00E+10 m3/d
miniconc	1.00E-06 a/m3
maxicone	1 00E+10 g/m3
maxiconc	1.002+10 g/m3
minconc	U g/m3
maxconc	1.00E+10 g/m3
minder	-1.00E+33 g/m3/d
maxder	1.00E+33 g/m3/d
minvol	1.00E-10 m3
ctation	1.00E-01 m3
Stattvol	1.005-03 m
miniayer	1.002-05 m
maxvol	1.00E+10 m3
minpar	1.00E-10
maxpar	1.00E+10
maxint	999999
padbyz	1.00E-10
padoyz	1.005+03.0/m3
maxexp	1.00E+03 g/m3
speed	
lowconcapprox	.taise.
lowrelder	200 g/m3/d
lowconc	0.03 g/m3
lowconcdamp	0.001
enerovdo	0 0/m3
approxoo	felee
smoothpump	.idise.
pumpoelay	1.00E-05 d
parsmooth	15 -
pumpsteplimit	50 %
oeneral	
	3 14159265
pi empliateen	000 d
sampuntcon	999 U
pidstodamp	1000 a
SVI correlation constants	
cc1	709.7
cc2	-4.67
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.018
	2 66E M
004	2.000-04

cc5	-2.85E-06
cc6	2.50E-08
cc7	-1.62E-04
CC8	0.004897
cc9	6.47E-04
system variables	
ialq	8 -
nstp	50 -
mint	1.00E-30 days
maxt	1.00E-01 days

# Label: USER

-----

Label: (11,18)

### / operational /

loadtypepeff	1
flowtypepeff	1

#### / flow, composite and state variables /

qpeff	6.00E+05 m3/d
sbodpeff	76.8 gO2/m3
xbodpeff	72.7 gO2/m3
bodpeff	149 gO2/m3
bodupeff	241 gO2/m3
scodpeff	155 gCOD/m3
xcodpeff	157 gCOD/m3
codpeff	312 gCOD/m3
stknpeft	22 gN/m3
tknpeff	25.1 gN/m3
topeff	25.1 gN/m3
xiipeff	32.8 g/m3
vsspeff	106 a/m3
xpeff	139 g/m3

#### Label: (13,18)

/ operational /

loadtypebypass	1
flowtypebypass	1

#### / flow, composite and state variables /

obvpass	2.30E+05 m3/0	1
sbodbypass	76.8 gO2	/m3
xbodbypass	72.7 gO2	/m3
bodbypass	149 gO2	/m3
bodubypass	241 gO2	/m3
scodbypass	155 gCO	D/m3
xcodbypass	157 gCC	D/m3
codbypass	312 gCC	D/m3
stknbypass	22 gN/r	n3
tknbvpass	25.1 gN/r	n3
tobypass	25.1 gN/r	n3
xiibypass	32.8 g/m3	3
vssbypass	106 g/m3	3
xbypass	139 g/m3	3

-----

Label: (16,18)

/ flow, composite and state variables /

qFeff sbodFeff bodFeff bodFeff boduFeff scodFeff codFeff stknFeff tknFeff	8.25E+05 m3/d 22.7 gO2/m3 31.2 gO2/m3 54 gO2/m3 65.9 gO2/m3 65.9 gCOD/m3 133 gCOD/m3 17.5 gN/m3 18.5 gN/m3 18.5 gN/m3
	13 g/m3
	45.2 g/m3
xFeff cn states	58.2 g/m3
siFeff	31 g COD/m3
ssFeff	36.2 g COD/m3
xiFeff	15.6 g COD/m3
xsFeff	36.6 g COD/m3
xbhFeff	13.1 g COD/m3
xbaFeff	5.11E-09 g COD/m3
xuFeff	0.581 g COD/m3
soFeff	5.68 g O2/m3
snoFeff	7.21E-07 g N/m3
snhFeff	15.2 g N/m3
sndFeff	2.26 g N/m3
xndFeff	1.02 g N/m3
p states	
xbpFeff	5.11E-09 g COD/m3
xbtFeff	5.09E-09 g COD/m3
xppFeff	5.10E-09 g P/m3
slfFeff	0.000449 g COD/m3
spFeff	1.62 g P/m3
Label: (14,17)	

/ physical /

14264.8 m2
3.65 m
1.6 m
10

#### / operational /

underflow	
proprecSeff	.true.
cvarr	peff
rectracSeff	0.28 -
aconRAS	67930 m3/d
ctriblank	.false.
pidformblank	1
controllerblank	3
cvars	blank
samplintconblankRAS	999 d
setoblank	1
gainblank	1
ticonblank	1 d
tdoopblank	1 d
directblank	.true.
actionality	false.
aminDAS	1000 m3/d
qminnA3	100000 m3/d
qmaxmas	100000 maid
pumpea tiow	5000 m3/d
qconWAS	5000 maru

decanterSeff	.false.
outputSeff(1)	0
outputSeff(2)	0
outputSeff(3)	0
outputSetf(4)	0
	0
outputSeff(7)	0
outputSeff(8)	0
outputSeff(9)	ő
outputSeff(10)	1
ctriblank	.false.
pidformblank	1
controllerblank	3
cvarp	blank
samplintconblankWAS	999 d
setpblank	1
gainblank	1
ticonblank	10
tocondiank	1 d
directolank politickblopik	.true.
	.iaise. 0 m3/d
qminwAS gmaxWAS	10000 m3/d
model parameters	
viSeff	2000 aTSS/m3
hscritSeff	0.1 m
/ settling /	
double exponential parameters	
svionSeff	.true.
sviSeff	100 ml/g
clarifSeff	0.5 -
vbndSeff	274 m/d
vmaxconSeff	410 m/d
rhinconSeff	0.0004 m3/g1SS
rfloconSett	0.0025 m3/g1 55
thsSett	- 100.0 20 aTSS/m3
	20 g135/113
now distribution	100 m/d
vumaSeff	300 m/d
/ flow, composite and state variables /	· · · · · ·
	5.552+05 M3/0 1 51 cO2/m2
spodSell	15 5 cO2/m3
xD005en bodSoff	17 gO2/m3
boduSeff	25.8 gO2/m3
scodSeff	33.3 gCOD/m3
xcodSeff	30.7 gCOD/m3
codSeff	64 gCOD/m3
stknSeff	15.7 gN/m3
tknSeff	16 gN/m3
tnSeff	16 gN/m3
xiiSeff	5.41 g/m3
vssSeff	21.6 g/m3
xSeff	27.1 g/m3
cn states	
siSeff	31 g COD/m3
ssSeff	2.28 g COD/m3
xiSeff	6.38 g COD/m3
xsSeff	5.39 g COD/m3
xbhSeff	18.2 g COD/m3
xbaSeff	7.09E-09 g COD/m3
xuSeff	0.806 g COD/m3
soSett	7.88 g U2/m3
snoSeff	1.00E-06 g N/m3
snnSett	13 g N/m3

2.75 g N/m3
0.218 g N/m3
7.09E-09 g COD/m3
7.06E-09 g COD/m3
7.07E-09 g P/m3
0.000623 g COD/m3
0.927 g P/m3

#### Label: (12,17)

/ physical /

real dimensions	
nR1	4
vsetupR1	1
viconR1(1)	7533.15 m3
viconR1(2)	7533.15 m3
viconR1(3)	7533.15 m3
viconR1(4)	7533.15 m3
vmconR1	30132.6 m3
fvconR1(1)	0.25 -
fvconR1(2)	0.25 -
fvconR1(3)	0.25 -
fvconR1(4)	0.25 -
oxygen solubility (if individual settings are used)	
depthR1	4.3 m
tempR1	13 C
airtempR1	20 C
pO2conR1	0.21 -
/ operational /	,
aeration control	
ctrlsolR1	.false.

ctrisolR1	.taise.
pidformsolR1	1
controllersolR1	3
samplintconsolR1R1	999 d
setpsolR1(1)	2
setpsolR1(2)	2
setpsolR1(3)	2
setpsolR1(4)	2
gainsolR1	1
ticonsolR1	5 d
tdconsolR1	0.1 d
cellR1	0
directsolR1	.true.
nokicksolR1	.false.
Setup	
aermethodR1	2
alphaR1(1)	0.6 -
alphaR1(2)	0.7 -
alphaR1(3)	0.7 -
alphaR1(4)	0.8 -
betaR1	0.95 -
tkiaR1	1.024 -
Kla	
klaconR1(1)	100 1/d
klaconR1(2)	100 1/d
klaconR1(3)	100 1/d
klaconR1(4)	100 1/d
klalminR1(1)	0 1/d
klalminR1(2)	0 1/d
klalminR1(3)	0 1/d
kialminR1(4)	0 1/d
klalmaxR1(1)	300 1/d
klalmaxR1(2)	300 1/d
klalmaxR1(3)	300 1/d
klalmaxR1(4)	300 1/d

Mechanical	
powerconR1(1)	627.2 kW
powerconR1(2)	440 kW
powerconR1(3)	440 kW
powerconR1(4)	440 kW
etapowerH1	3.5 kgO2/kWh
Unitused (misses D1(1))	0.05
frairconR1(2)	0.25 -
frairconR1(3)	0.25 -
frairconB1(4)	0.25 -
oairsumconB1	100000 m3/d
etasolR1	0.07 -
pumped flow control	
qcon4	5000 m3/d
ctriblank	.false.
pidformblank	1
controllerblank	3
cvarp	blank
samplintconblank4	999 d
setpblank	1
gainblank	1
ticonblank	1 d
tdconblank	1.d
directblank	.true.
nokickblank	.talse.
qmin4	0 m3/d
qmax4	100 m3/d
Internal flow distribution	
	1-
	0-
inputR1(3)	0-
	0-
recipputh I(1)	1 - 0 -
recipput B1(3)	0.
recipput P1(4)	0-
	Ũ
/ flow, composite and state variables /	
gR1	7.68E+05 m3/d
sbodR1	1.51 gO2/m3
xbodR1	2.20E+03 gO2/m3
bodR1	2.20E+03 gO2/m3
boduR1	3.34E+03 gO2/m3
scodR1	33.3 gCOD/m3
xcodR1	4.36E+03 gCOD/m3
codR1	4.39E+03 gCOD/m3
stknR1	15.7 gN/m3
tknR1	46.7 gN/m3
tnR1	46.7 gN/m3
xiiR1	767 g/m3
vssR1	3.07E+03 g/m3
xH1	3.83E+03 g/m3
cn states	01 - 000/0
siR1	31 g COD/m3
ssR1	2.28 g COD/m3
xiR1	904 g COD/m3
xsR1	763 g COD/m3
xDnH1	2.57E+03 g COD/m3
XDart I	
xuni .	114 g COD/m3
	7.88 g U2/m3
siluri I ophR1	
siluri I endP1	13 g RV/m3 2 75 a N//m2
snuri i Ved P1	2./5 g IV/m3
	31 g tv/m3
y states	
vbtP1	
200 H	1 00E-06 g COD/110
Appin	1.00E-00 g i /illo

	0.927 g P/m3
Label: (15,16)	-
/ physical /	
real dimensions	
vm26	10000 m3
oxygen solubility (if individual settings are used)	
depth26	4 m
temp26	20 C
pO2con26	0.21 -
/ operational /	
aeration control	
ctriso26	alse
pidformso26	1
controllerso26	3
samplintconso2626	999 d
setpso26	2
gainso26	1
ticonso26	50
directso26 tr	U.I Q
nokickso26	alse.
Setup	
aermethod26	1
alpha26	0.8 -
beta26	0.95 -
tkla26	1.024 -
Kla klacon26	100 1/4
klamin26	0.1/d
klamax26	300 1/d
Mechanical	
powercon26	0 kW
etapower26	1.3 kgO2/kWh
Diffused	
qaircon26	0 m3/d
etasol26	0.07 -
acon27	5000 m3/d
ctribiank fa	alse.
pidformblank	1 [']
controllerblank	3
cvarp bia	ank
samplintconblank27	999 d
setpblank	1
gaindiank tisseblack	1
ucondiank tdeophlank	10
directblank **	
nokickblank fa	us. Ilse
amin27	0 m3/d
qmax27	100 m3/d .

/ flow, composite and state variables /

q26	5.00E+03 m3/d
sbod26	1.51 gO2/m3
xbod26	9.73E+03 gO2/m3
bod26	9.73E+03 gO2/m3
bodu26	1.47E+04 gO2/m3
scod26	33.3 gCOD/m3
xcod26	1.92E+04 gCOD/m3
cod26	1.93E+04 gCOD/m3
	•

stkn26	15.7 gN/m3
tkn26	152 gN/m3
tn26	152 gN/m3
xii26	3.39E+03 g/m3
vss26	1.35E+04 g/m3
x26	1.69E+04 g/m3
cn states	·
si26	31 g COD/m3
ss26	2.28 g COD/m3
xi26	3.99E+03 g COD/m3
xs26	3.37E+03 g COD/m3
xbh26	1.14E+04 g COD/m3
xba26	4.44E-06 g COD/m3
xu26	504 g COD/m3
so26	10.6 g O2/m3
sno26	1.00E-06 g N/m3
snh26	13 g N/m3
snd26	2.75 g N/m3
xnd26	137 g N/m3
p states	
xbp26	4.43E-06 g COD/m3
xbt26	4.41E-06 g COD/m3
xpp26	4.42E-06 g P/m3
slf26	0.000623 g COD/m3
sp26	0.927 g P/m3
	-

-----

	REPORT
SCENARIO - ALT6nev	v

.

Label: SYSTEM	
tston	b 0
cint	0.05 d
ztime(1)	1994 vr.m.d.h
ztime(2)	11 yr,m,d,h
ztime(3)	1 yr,m,d,h
ztime(4)	0 yr,m,d,h
ztime(5)	0 yr,m,d,h
ztime(6)	0 yr,m,d,h
itcon	0 d
roundsec	.false.
roundminute	.false.
repeat runs	_
rerun	0
input files	•
extype	2 blasti
	blank
plannamez	blank
plannames	blank
plantname5	biank
plantname6	blank
plantname7	blank
plantname8	blank
plantname9	blank
plantname10	blank
output files	
globalalarmfile	.false.
afn	blank
oxygen solubility (if global settings are used)	
global	.faise.
depth	4.3 m
temp	13 C
airtemp	20 C
pO2con	0.21 -
elev	Om
patmo	
tempb20	20 C
9	9.80005 m/s2
eprice	0.07 \$78941
sto parameters	falce
steady	.12156.
ens	1.00E-10
sumens	10
decr	0.982
incr	1.003
maxstepcon	0.5
fdamping	1
pinit	0.05
prin	200
iloop	0
loopim	20000
chstop	5000
trim parameters	
printdsum	1.00E+10 d
primpronly	.true.
dskip	50000
static	
optmz	.talse.
timeseries	.true.
naimm	2
npts	3
peps	1.00E-03
opteps	1.00E-06

bestobi	0.1
itmax	100
	100
optstep	0.2
optalpha	0.95
ontheta	0.45
ontramma	10
opiganima	1.5
optoeita	0.5
DPE	
dvnpe	.false.
timewindow	1.00E+10.d
linewindow	1.002410 0
on-line run	
online	.false.
syncriata	.false.
data transier	
datatransfer	.false.
maxovars	100
maydatapointe	100
	100
ADF	
adfsize	128
database	
deteboootupo	4
databasetype	1
rsample	60 s
communication	
c?	falso
yz ,	.12130.
portno	22041
afxin	.false.
at v	false
yix .	foloo
pc	.alse.
matiab	.false.
warnings	.true.
antuaningo	true
optwarnings	
dpewarnings	.true.
bounding	
itnum	30 -
	1.005-06
entor	1.002-00 -
minflow	1.00E-10 m3/d
maxflow	1.00E+10 m3/d
minicono	1.00E-06.0/m3
manconc	1.005 10 0/00
maxiconc	1.00E+10 g/m3
minconc	0 g/m3
maxconc	1.00E+10.0/m3
maxconc	1.00E, 10 gml
minder	-1.00E+33 g/m3/d
maxder	1.00E+33 g/m3/d
minvol	1.00E-10 m3
	1 005 01 m2
STATIVO	1.002-01 113
minlayer	1.00E-03 m
maxvol	1.00E+10 m3
minnor	1 00E-10
minpar	1.002-10
maxpar	1.00E+10
maxint	999999
nadhuz	1 00E-10
pauoyz	1 005-00 -/0
maxexp	1.00E+03 g/m3
speed	
lowconcanorox	false
lourselfer	200 c/m2/d
lowreider	200 g/m3/u
lowconc	0.03 g/m3
lowconcdamp	0.001
approvide	0 0/m3
appioxoo	(ala a
smoothpump	.taise.
pumpdelay	1.00E-05 d
parsmooth	15 -
numentanlimit	50 %
pumpstepiimit	<b>DU %</b>
general	
pi	3.14159265
samplintcon	h 000
Sampanoun	333 U
piastadamp	1000 a
SVI correlation constants	
cc1	709 7
	A 67
CC2	-4.07
cc3	0.018
cc4	2.66E-04
•••·	

1 1

cc5	-2.85E-06
CC6	2.50E-08
cc7	-1.62E-04
CC8	0.004897
cc9	6.47E-04
system variables	
ialg	8 -
nstp	50 -
mint	1.00E-30 days
maxt	1.00E-01 days

#### Label: USER

*******

#### Label: (11,18)

/ operational /

loadtypepeff		
flowtypepeff		

#### / flow, composite and state variables /

qpeff	6.00E+05 m3/d
sbodpeff	76.8 gO2/m3
xbodpeff	72.7 gO2/m3
bodpeff	149 gO2/m3
bodupeff	241 gO2/m3
scodpeff	155 gCOD/m3
xcodpeff	157 gCOD/m3
codpeff	312 gCOD/m3
stknpeff	22 gN/m3
tknpeff	25.1 gN/m3
tnpeff	25.1 gN/m3
xiipeff	32.8 g/m3
vsspeff	106 g/m3
xpeff	139 g/m3

#### Label: (13,18)

/ operational /

loadtypebypass	1
flowtypebypass	1

#### / flow, composite and state variables /

------

qbypass	4.60E+05 m3/d
sbodbypass	76.8 gO2/m3
xbodbypass	72.7 gO2/m3
bodbypass	149 gO2/m3
bodubypass	241 gO2/m3
scodbypass	155 gCOD/m3
xcodbypass	157 gCOD/m3
codbypass	312 gCOD/m3
stknbypass	22 gN/m3
tknbypass	25.1 gN/m3
tnbypass	25.1 gN/m3
xiibypass	32.8 g/m3
vssbypass	106 g/m3
xbypass	139 g/m3

Label: (16,18)

/ flow, composite and state variables /

.

qFeff	1.06E+06 m3/d
sbodFeff	34.5 gO2/m3
xbodFeff	40.2 gO2/m3
bodFeff	74.8 gO2/m3
boduFeff	120 gO2/m3
scodFeff	86.4 gCOD/m3
xcodFeff	85.8 gCOD/m3
codFeff	172 gCOD/m3
stknFeff	18.5 gN/m3
tknFeff	19.9 gN/m3
tnFeff	19.9 gN/m3
xiiFeff	17.3 g/m3
vssFeff	58.5 g/m3
xFeff	75.8 g/m3
cn states	
siFeff	31 g COD/m3
ssFeff	55.4 g COD/m3
xiFeff	20.9 g COD/m3
xsFeff	54.2 g COD/m3
xbhFeff	10.2 g COD/m3
xbaFeff	4.00E-09 g COD/m3
xuFeff	0.454 g COD/m3
soFeff	4.44 g O2/m3
snoFeff	5.64E-07 g N/m3
snhFeff	16.5 g N/m3
sndFeff	1.98 g N/m3
xndFeff	1.47 g N/m3
p states	
xbpFeff	4.00E-09 g COD/m3
xbtFeff	3.98E-09 g COD/m3
xppFeff	3.99E-09 g P/m3
sifFeff	0.000351 g COD/m3
spFeff	2.01 g P/m3

Label: (14,17)

/ physical /

real dimensions	
aSeff	14264.8 m2
hmSeff	3.65 m
hfSeff	1.6 m
model dimensions	
nSeff	10
/ operational /	
underflow	

proprecSeff	.true.
cvarr	peff
rectracSeff	0.28 -
gconRAS	67930 m3/d
ctriblank	.false.
pidformblank	1
controllerblank	3
cvars	blank
samplintconblankRAS	999 d
setpblank	1
gainblank	1
ticonblank	1 d
tdconblank	1 d
directblank	.true.
nokickblank	.faise.
qminRAS	1000 m3/d
qmaxRAS	100000 m3/d
pumped flow	
qconWAS	5000 m3/d

decanterSeff	.false.
outputSeff(1)	0
outputSeff(2)	0
outputSeff(3)	0
outputSeff(4)	0
outputSem(5)	0
	0
outputSeff(7)	0
outputSeff(0)	0
outputSeff(10)	1
ctribiank	.false.
pidformblank	1
controllerblank	3
cvarp	blank
samplintconblankWAS	999 d
setpblank	1
gainblank	1
ticonblank	10
tdconblank	10
directbiank	.true.
	Jaise.
amax/MAS	10000 m3/d
model parameters	10000 113/6
vtSeff	2000 aTSS/m3
hscritSeff	0.1 m
/ setting /	
double exponential parameters	
svionSett	.true.
sviSeti	100 m/g
cianisen	0.5 -
vondsen	2/4 m/d
rhinconSeff	0.0004 m3/oTSS
rfloconSeff	0.0025 m3/aTSS
fnsSeff	0.001 -
xminmaxSeff	20 gTSS/m3
flow distribution	-
vumiSeff	100 m/d
vumaSeff	300 m/d
/ flow, composite and state variables /	
aSeff	5.95E+05 m3/d
sbodSeff	1.51 gO2/m3
xbodSeff	15.5 gO2/m3
bodSeff	17 gO2/m3
boduSeff	25.8 gO2/m3
scodSeff	33.3 gCOD/m3
xcodSeff	30.7 gCOD/m3
codSeff	64 gCOD/m3
stknSeff	15.7 gN/m3
tknSeff	16 gN/m3
	16 gN/m3
	5.41 g/m3
VSSOEII 	21.0 g/m3
	21.1 g/m3
cil siaits	31 a COD/m3
ssSeff	2.28 a COD/m3
xiSeff	6.38 a COD/m3
xsSeff	5.39 a COD/m3
xbhSeff	18.2 g COD/m3
xbaSeff	7.09E-09 g COD/m3
xuSeff	0.806 g COD/m3
soSeff	7.88 g O2/m3
snoSeff	1.00E-06 g N/m3
snhSeff	13 g N/m3

sndSeff	2.75 g N/m3
xndSeff	0.218 g N/m3
p states	
xbpSeff	7.09E-09 g COD/m3
xbtSeff	7.06E-09 g COD/m3
xppSeff	7.07E-09 g P/m3
slfSeff	0.000623 g COD/m3
spSeff	0.927 g P/m3

#### Label: (12,17)

#### / physical /

real dimensions	
nR1	4
vsetupR1	1
viconR1(1)	7533.15 m3
viconR1(2)	7533.15 m3
viconR1(3)	7533.15 m3
viconR1(4)	7533.15 m3
vmconR1	30132.6 m3
fvconR1(1)	0.25 -
fvconR1(2)	0.25 -
fvconR1(3)	0.25 -
fvconR1(4)	0.25 -
oxygen solubility (if individual settings are used)	
depthR1	4.3 m
tempR1	13 C
airtempR1	20 C
pO2conR1	0.21 -

#### / operational /

aeration control	
ctrisolR1	.false.
pidformsoIR1	1
controllersolR1	3
samplintconsolR1R1	999 d
setpsolR1(1)	2
setpsolR1(2)	2
setpsolR1(3)	2
setpsolR1(4)	2
gainsolR1	1
ticonsolR1	5 d
tdconsolR1	0.1 d
cellR1	0
directsolR1	.true.
nokicksolR1	.false.
Setup	
aermethodR1	2
alphaR1(1)	0.6 -
alphaR1(2)	0.7 -
alphaR1(3)	0.7 -
alphaR1(4)	0.8 -
betaR1	0.95 -
tklaR1	1.024 -
Kla	
kiaconR1(1)	100 1/d
klaconR1(2)	100 1/d
klaconR1(3)	100 1/d
klaconR1(4)	100 1/d
klalminR1(1)	0 1/d
klalminR1(2)	0 1/d
kialminR1(3)	0 1/d
klalminR1(4)	0 1/d
klalmaxR1(1)	300 1/d
klalmaxR1(2)	300 1/d
klalmaxR1(3)	300 1/d
klalmaxR1(4)	300 1/d

Mechanical	
powerconB1(1)	627 2 KM
powerconB1(2)	
	440 KW
powerconn ((3)	440 KW
powerconR1(4)	440 kW
etapowerR1	3.5 kgO2/kWh
Diffused	-
frairconB1(1)	0.25 •
frairconB1(2)	0.25
frainconn (1(2)	0.25 -
frairconn 1(3)	0.25 -
frairconR1(4)	0.25 -
qairsumconR1	100000 m3/d
etasolR1	0 07 -
numped flow control	0.07
QC014	5000 m3/d
ctriblank	.false.
pidformblank	1
controllerblank	3
cvarp	blank
compliateenblack4	
samplineonblank4	aaa q
setpblank	1
gainblank	1
ticonbiank	1 d
tricophlank	1.4
directblank	10
direcipiank	.true.
nokickblank	.false.
qmin4	0 m3/d
gmax4	100 m3/d
Internal flow distribution	
inoutB1(1)	
	1-
inputra (2)	0 -
inputR1(3)	0 -
inputR1(4)	0 -
recinputR1(1)	1-
reciprut B1(2)	0 -
	0-
recinputer (S)	0-
recinputR1(4)	0 -
/ flow, composite and state variables /	
<b>q</b> н1	7.68E+05 m3/d
sbodR1	1.51 gO2/m3
xbodR1	2.20E+03 gO2/m3
bodB1	2 20E+03 aO2/m3
boduP1	2.24E+00 g02m0
	3.34E+03 902/113
SCOOR1	33.3 gCOD/m3
xcodR1	4.36E+03 gCOD/m3
codR1	4.39E+03 aCOD/m3
stknB1	15.7 oN/m3
tknB1	46.7 gN/m2
INTER An Off	40.7 giving
(NA )	46.7 gN/m3
xiiR1	767 g/m3
vssR1	3.07E+03 a/m3
xB1	3 83E+03 0/m3
en states	0.002+00 grillo
-: D1	
SIM	31 g COD/m3
ssR1	2.28 g COD/m3
xiR1	904 g COD/m3
xsR1	763 g COD/m3
vbbB1	2 57E+03 a COD/m3
who D1	
XDami	1.00E-06 g COD/m3
xuR1	114 g COD/m3
soR1	7.88 a O2/m3
snoR1	1.00F-06 g N/m3
enhB1	10 a N/0
onin ra	
SNOKI	2.75 g N/m3
xndR1	31 g N/m3
p states	-
xbpB1	1 00F-06 a COD/m3
vbtB1	
xppri i	1.00E-06 g P/m3

•

slfR1 spR1	0.000623 g COD/m3 0.927 g P/m3
Label: (15,16)	******
/ physical /	
real dimensions	
vm20 oxygen solubility (if individual settings are used) depth26	10000 m3
temp26	4 m 20 C
airtemp26	20 C
pO2con26	0.21 -
/ operational /	
aeration control	
ctriso26	.false.
platormso26	1
samplintconso2626	999 d
setpso26	2
gainso26	1
ticonso26	5 d
tdconso26	0.1 d
directso26	.true.
Setup	.laise.
aermethod26	1
alpha26	0.8 -
beta26	0.95 -
tkla26	1.024 -
Na klacon26	100 1/d
klamin26	0 1/d
klamax26	300 1/d
Mechanical	
powercon26	0 kW
etapower26	1.3 kgO2/kWh
Dimused naircon26	0
etasol26	0.07 -
pumped flow control	
qcon27	5000 m3/d
ctriblank	.false.
pidformblank	1
CVARD	blank
samplintconblank27	999 d
setpblank	1
gainblank	1
ticonblank	1 d
toconblank directhlank	1 d
onecidiank	.true.
amin27	.1213E. 0 m3/d
qmax27	100 m3/d
/ flow, composite and state variables /	
<b>a</b> 26	5 ME . 02 - 2/4
sbod26	1.51 aO2/m3
xbod26	9.73E+03 aO2/m3
bod26	9.73E+03 gO2/m3
bodu26	1.47E+04 gO2/m3
scod26	33.3 gCOD/m3
xcod26	1.92E+04 gCOD/m3
0020	1.93E+04 gCOD/m3

stkn26	15.7 gN/m3
tkn26	152 gN/m3
tn26	152 gN/m3
xii26	3.39E+03 g/m3
vss26	1.35E+04 g/m3
x26	1.69E+04 g/m3
cn states	
si26	31 g COD/m3
ss26	2.28 g COD/m3
xi26	3.99E+03 g COD/m3
xs26	3.37E+03 g COD/m3
xbh26	1.14E+04 g COD/m3
xba26	4.44E-06 g COD/m3
xu26	504 g COD/m3
so26	10.6 g O2/m3
sno26	1.00E-06 g N/m3
snh26	13 g N/m3
snd26	2.75 g N/m3
xnd26	137 g N/m3
p states	
xbp26	4.43E-06 g COD/m3
xbt26	4.41E-06 g COD/m3
xpp26	4.42E-06 g P/m3
slf26	0.000623 g COD/m3
sp26	0.927 g P/m3

### **APPENDIX 3**

## **SLUDGE PRODUCTIONS**

э

3

an an an an an an an an Arran. 1. 600 MUL (Attennative 1) EDD = 212 mg/c T35 = 250 Mg/C TKN = 27 719/ NH3 = 18 11/2/2 Pt = 3.5 mg/c Secondary effluent requirements : BD = 25 mg/c T55 = 30 mg/c Primary clarifier area = 6503.7 m² 50R = <u>600,000</u> = 92.3 m³/m².2 _____ Primary efficient quality = BOD = 167 MAR T55 = 150 mg/e BOD load to secondary = 167× 600 = 100 200 "Ald By increasing the MLSS from 4000 mg/c to 4780 mg/c and maintaining SRT = 1.31, HRT = 1.2 hrs, the axisting axygenation reacters are able to treat HIC BCD load Madel calculates that final clarifier needs expansion, Additional final clarifier area regid = 3923 m² Secondary offluent quality: BOD = 13.9 mg/C T55 = 22.4 mg/c NH3 = 12.0 Mg/C

2. <u> Aludge Production</u> _____ Primary sludge solids = 600 x (250-150) = 60,000 "Ad Secondary sludge setiels: a) Inert schiels = beox(1-0.765)× 160 = 21,150 Kg/d b) V35 of WA5 = 21101×5.2-21,150 = 88,575 Kg/d Chemical sludge selids = 0 5EW pcc/WEW pcc sludge selicis = 12,09,4 Kg/L V35 = 7,484 Kg/L Total Audge Achids = 60,000 + 21,150 + 88,575 + 12094 = 181,819 Kg/d Total Audge V35 = 60,000 × 0.765 + 88,575 × 0.95 + 7484 = 137,530 Kg/d Annual average new studge  $T_{55} = 3.47.7_{\circ}$  (plant seconds) Total studge volume =  $\frac{181.819}{3.47\times10} = 5.240 \frac{m^3}{d}$ Design SRT = 10 days, and allow 3RT = HRT ( no supernating) Digester volume reg'd = 5240 × 10 = 52400 m³ Existing digester volume = 44.800 m³ Additional digester volume = 52400-44.800 = <u>7600 m³</u> <u> Figeoter Aludge</u> Assume volatile solids reduction = 45% Volatile Acticles remaining = 137,530×0.55 = 75,642 Inest solids = 181,818-157,841 23,878 99.528 Kg/d - 217.700 g/d

3. 2. 600 ML/d (Alternative 2) Increase primary removal efficiency is achieved by chemically enhanced premary treatment for the entire flow. Current primary surface overflow rate is too high for setting of chemically treated pasticles which are lighter than now sludge school and setting relacity is slower they require a lower surface overflow rate therefore the primary clarifier need expansion. Based on max surface even flow nate = 40 m³/m².d Primary clarifies area seguired = <u>600000</u> = 15,000 m² 40 Additional primary clarifies area = 15,000-6530.7 = 8496 m2 Primary effluent quality : BOD = 110 mg/c T35 = 49 mg/ Bod load to secondary = 110×600 = 66,000 KAL ML55 = 24, 7 mg/c 5RT = 1.51 days HRT = 1.2 hrs Secondary effluent quality: BOD = 18.6 Mg/C T55 = 25.2 Mg/C NH3 = 14.5 mg/c

4 Shudge Production Primary shidge solids = 600× (250-49) = 120,000 Secondary studge solids: a) mest solids = 600 × (1-0.765) × 49 = 6909 47/d b) V55 cf WAS = 10.673 × 4.5-6909 = 41,100 47/d Chemical sludge solids = 600×32.25 = 19,350 Kg/d  $\frac{3EWpcc/WEWpcc}{V} \frac{84}{2} \frac{12,094}{V} \frac{84}{2} \frac{12,094}{V} \frac{84}{2} \frac{12,094}{V} \frac{12}{2} \frac{12,094}{V} \frac{12}{2} \frac$ Total Aludge Noticle = 120,600 + 6309 + 41,120 + 19,350 + 12,094 = 200,073 KHd Total Aludge × 55 = 120 600 × 0.765 + 41,20 × 0.95 + 7484 = 138,807 KHd Total Aludge Velume =  $\frac{200,073}{3.47 \times 10}$  = 5765.8 m³/d Additional digester volume = 5765.8×10-44.800=12858 m3 Digested. Aludge Volatile Aplils remaining = 138807 × 0.55 = 76,344 Inert Achiels = 200,073-138807 = 61,266 137.610 4/2 < 217.700 4/2

5. 3. 600 Mid (Atternative 3) The primary Incontinent facility is expanded to achieve a removal of 30% BOD and 50% Tos and to reduce BOD load to secondary. Expansion of secondary is not required Additional primary darifier regid = <u>boo 000</u> - b503.7 = <u>b262</u> m² 47 Primary effluent quality: 1800 = 180 mg/c T65 = 117 mg/c 1200 load to secondary = 150 × 600 = 90,000 Kg/d Model predicts reactor operating conditions and effluent-quality: ML35 = 3834 MA/C 5KT = 1.37 days HRT = 1.2 hrs. Secondary effluent quality: BDD = 17 M3/C T55 = 27 Mg/C NH3 = 13 MHC.

6. Sludge Production Primary studge solids = 600 x (230 - 117) = 79.800 "3/e Secondary sludge schiels: a) ment solids = 600×(1-0.765)×117 = 16,497 Kg/d b) V55 of WAS = 16928×5-16497 = 68,143 Kg/d Chemical shudge solids = 0  $\frac{5 \varepsilon_{W} \rho_{cc}}{W \varepsilon_{W} \rho_{cc}} \frac{M_{H} d_{g} \varepsilon_{S}}{M_{H} d_{g} \varepsilon_{S}} = 12.094 \frac{\kappa_{H}}{4}$   $\frac{12.094 \frac{\kappa_{H}}{4}}{V_{23}} = 7.484 \frac{\kappa_{H}}{4}$ Total Andge solids = 7.9.800 + 16497 + 68.143 + 12.094 = 176.534 * <math>7/2Total Andge V\$\$ = 79.800 × 0.765 +  $68.143 \times 0.95$ +7.484 = 133.267 * 7/2Total Aludge Volume = 176,534 = 6087.4 m/2 3.47 × 10 Additional digester volume = 3087.4 x 10 - 44,800 = bo7.4 m3 Bigested Sludge Volatile Aduids nemaining = 133 267 × 0.55 = 73,297 Inert setide = 176 334-133267 <u>= 43.267</u> Bigested sludge selids = 116,564 Kgd < 217,700 Kgd

Nitrification Process 4. boo Myd (Alternative 4) Flow = 600,000 mld BOD = 212 mg/e T35 = 250 Mg/e TKN = 27 mg/c  $NH_3 = 18$  Mg/e  $P_{t} = 3.5 \text{ mg/e}$ Secondary offluent requisements: BOD = 25 mg/ T32 = 30 Mg/C  $NH_3 = 5 \frac{mg}{\ell}$ Primary clasifier area = 6503.7 m² 50R = <u>600,000</u> = 92.3 m³/m². L 6503.7 Primary effluent quality: BOD = 167 mg/c T35 = 150 mg/c BOD load to secondary = 167 × 600 = 100,200 tol Model calculates additional tankage: Additional oxygenation acactor = 90,398-30312.6 = 60,086 m³ Additional final clasifier = 20,339-14,264.8 = 6074 m2 ML 35 = 3580 mg/e SRT = 3.4 days HRT = 3.6 hrs.

8. Predicted efficient quality: 1200 = U.2 MAC T55 = 19.0 mg/c NH3 = 0.16 Mg/c Sludge Production Primary studge solids = 600 × (250 - 150) = 60000 4 Secondary sludge selids : a) Inert solids = 600 × (1-0.765) × 150 = 21,150 KAL b) V55 e/ WAS = 15736×6-21,150 = 73,266 KAL Chemical sludge solids = 0 SENPCC/WENPCC studge selids = 12.094 Kgd V35 = 7,484 Kg/L  $Total sludge volume = \frac{166510}{3.47\times10} = 4798.6 \frac{m^3}{d}$ Additional digester volume = 4798.6×10-44800 = 3186 m3 Digested Sludge Volatile solids remaining = 122, 987 × 0.55 = 67643 Iment solids = 166510 - 67643 *= 98,8*67 156,510 \$1/2 - 217,700 \$1/2

9. 5. 830 ML/d (Alternative 5) The primary treatment facility is expanded to achieve a removal of 30% BODS and 50% Tos for the entire flow. Primary effluent flow of 600 mydel is further treated in the existing secondary treatment facility. Additional primary clarifier regid = \$30000 - 65037 = 1156 m2 Primary effluent quelity: BOD,= 150 mg/c T55 = 117 mg/c BOD load to scondary = 150 x bee = 90,000 Kg/2 Model predicts reactor operating conditions and effluent quality. ML 55 = 3834 mg/c 5RT = 1.37 days HRT = 1.2 hrs Secondary efficient quality. 1300 = 17 mg/ 133 = 27 mge NH3 = 13 Mg/C Combined final effuent quality: BOD = 54 mg/c T35 = 58,2 mg/c NH3 = 15.2 mg/c

Studge Production Primary Sludge Solies = 830×(250-117) = 110,390 Kg/2 Secondary studge settils: a) [ment volids =  $boox(1-0.765) \times 117 = 16.497$  KHd b)  $V_{55} v_{f} WAs = 16,928 \times 5 - 16,497 = 68,143$  KHd Chemical studge soliels = 0 SEWPCC/WEWPCC Studge solids = 12,094 491 V55 = 7484 Kg/d Total sludge selids = 40,390 + 16497 + 68,443 + 12,094 = 207,124 Kg/d Total sludge x55 = 110390×0.765 + 68,143×0.95 + 7484 = 156,668 Kg/d Total sludge volume = <u>207124</u> = 5969 m³/2 3.47 ×10 Additional digester volume = 5969 × 10 - 44 800 = 14.890 m3 Degested Studge Volatile solids nemaining = 156,668 × 0.55 = 86,167 Inert solids = 207124-156,668 = 50,456 136,623 " #d < 217,700 " #d

U. 6. 1060 Myd (Alternative 6) This actemptive is similar to Alternative 5 Additional primary clarifier reg'd = 1060000 -6503.7 = 16,049 m Primary effluent quality : 18005 = 150 ****/e T&\$ = 117 ****/c Bod load to secondary = 150 × 600 = 90,000 Kg/d Model predicts scactor operating conditions and effluent quality:  $ML55 = 3834 \frac{mq}{c}$   $BRT = 1.37 \frac{days}{HRT} = 1.2 \frac{hys}{hys}$ Secondary effluent quality: 1300 = 17 mg/ T35 = 27 mg/c  $HH_3 = 13 M_{10}^{19}$ Combined final effluent quality: BDD = 74.8 mg/c T55 = 75.6 mg/e NH3 = 16.5 mg/c
12. Studge Production Primary effluent notids = 1060 x (250 - 117) = 140,980 Kg/d Secondary Audge Solids: a) Inert solids = 600 × (1-0.765) × 117 = 16.497 KHZ b) V55 of WAS = 16,908×5-16,497 = 68,143 KHZ Chanical sludge solids = 0 SEW PCC/WEWPCC Shudge Solids = 12,094 Kg/d V55 = 7.484 Kg/L Total Aludge Notids = 140,980 + 16,497 + 68,143 + 12,094 = 247,714 Kg/d Total Aludge V46 = 140,980×0765 + 68143×0.95 + 7484 = 180,070 Kg/d Total sludge volume = <u>247.714</u> = 7138.7 ^m/d Additional digester volume = 7138.7×10-44800 = 26587 m3 Bigested Aludge _____ Volgtile solids remaining = 180070 × 0.55 = 99,038 Inert solids = 247,714-180070 = 67,644 = 67,644 166,682 × 3/d < 217.700 Kg/d 

## **APPENDIX 4**

## **DEVELOPMENT OF UNIT COSTS**

. .

# Appendix 4 - Development of Unit Costs

### **DEVELOPMENT OF FACILITY UNIT COST**

Unit cost of treatment facility was developed with reference to the most recently contracts completed by CH2M Gore & Storrie Limited. Unit cost of various unit processes was first established using the construction contract price for the unit processes. Then the unit cost was brought up to January 1998 cost using ENR Construction Cost Index. The unit cost includes 11% for engineering but excludes land cost, tax and piling.

#### 1. Final Clarifiers

Plant A located in the city north of Toronto was upgraded and expanded in March 1996. The construction work included covered final clarifiers, rotating biological contractors, flash & floc tanks, tertiary filters, and upgrades of various unit processes throughout the plant. Prior to request for tender, quantities were taken off from the design drawings for cost estimate. The cost estimate for the final clarifier of the project is shown in the following:

	<u>Est. Cost, \$</u>
Final clarifiers	3,070,663.00
Return sludge pump gallery	153,146.00
Instrumentation, admin. building, 0.187%	6,028.52
Site works, 0.161%	5,190.33
General requirements including bonds, insurance, contractor's overhead & profit,	
mobilization/demobilization and	
temporary facilities, 7.7%	248,233.00
Construction contingency, 3.6%	116,057.12
Total	3,599,317.97

Structural area of the final clarifiers is 2481 m². Estimated cost is therefore  $1450.75/m^2$  excluding tax.

The construction tender was opened in March 1996. Contract price was 22% lower than the estimated cost. The above unit cost is adjusted accordingly. The unit cost is further adjusted using ENR Construction Cost Index and brought up to present cost and includes 11% for engineering and supervision but excludes tax.

The present unit cost for clarifier construction is calculated as follows:

Unit cost =  $1450.75 \times 0.78 \times 5852 / 5537 \times 1.11 =$   $327.52/m^2$ . Say,  $328/m^2$  of structure area.

#### 2. Flash & Floc Tanks

The above project includes three flash mix & floc tanks for chemical treatment of wastewater for high phosphorus removal. The cost estimate for this facility of the project is shown in the following:

	Est. Cost, \$
Concrete tank & equipment	639,294.00
Instrumentation, admin. building, 0.187%	1,195.50
Site works, 0.161%	1,029.30
General requirements including bonds, insurance, contractor's overhead & profit,	
mobilization/demobilization and	
temporary facilities, 7.7%	49,225.60
Construction contingency, 3.6%	23,014.60
Total	713,756.00

The flash mix & floc tanks were designed to treat a peak flow of  $106,000 \text{ m}^3/\text{d}$ . Estimated unit cost is calculated  $6.733/\text{m}^3$ . The contract was signed in March 1996 with a contract price of 22% lower than the estimated cost. The unit cost is adjusted and brought up to present cost using ENR Construction Cost Index and includes 11% for engineering and supervision but excludes tax.

The present unit cost for construction of flash mix and floc tanks is calculated as follows:

Unit cost =  $6.733 \times 0.78 \times 5852$  /  $5537 \times 1.11 =$   $(-16)^{-1}$ . Say,  $(-20)^{-1}$  of flow.

#### 3. Chemical Facility

Plant B located in the city northeast of Toronto was upgraded its chemical facility in October 1996. The project includes storage and dosing facilities for alum and for polymer. The chemical facility was designed to treat an average flow of 54,000 m³/d and a peak flow of 100,000 m³/d. Prior to the request for tender capital cost of the project was estimated from quantity taken off from the design drawings. The estimated capital cost of the facility applicable to this CSO project is listed in the following:

	<u>Est. Cost, \$</u>
Yard works	56,820.00
Process equipment	145,041.00
Electrical	68,000.00
ICC	40,000.00
Structural	55,230.00
Architectural	200,000.00
HVAC	13,000.00
Chemical resistant coatings	<u>7,440.00</u>
Sub-total	585,531.00
General Requirements:	
Bonds, 1.5%	8,783.00
Insurance, 1.5%	8,873.00
Contractor's overhead/profit, 10%	58,553.00
Mobilization/demobilization (see note)	
Temporary facilities (see note)	
Total	661,650.00

Note: It is assumed that the chemical facility will be constructed simultaneously with the expansion of primary treatment in NEWPCC. The two items will be included in the major expansion works.

Unit cost =  $661,650 / 100,000 = $6.617 / m^3$ .

The construction tender was opened in October 1996. Contract price was 11% lower than the estimated cost. The above unit cost is adjusted accordingly. The unit cost is further updated using ENR Construction Cost Index and includes 11% for engineering and supervision but excludes tax.

The present unit cost is calculated as follows:

Unit cost =  $6.617 \times 0.89 \times 5852 / 5719 \times 1.11 =$  \$6.69/m³. Say, \$6.70/m³ of flow.

#### 4. Oxygen Activated Sludge Reactors

There is no good reference for the construction cost of oxygenation reactors. Available information in the office is more than 20 year old and is considered not suitable for use. Since the oxygenation reactor is 1.5 m deeper than the final clarifier but no in-tank equipment. It is believed that the unit cost of final clarifier is applicable to oxygenation reactor.

#### 5. Sludge Digesters

Plant C located in the city northeast of Toronto was expanded its sludge digestion facility in December 1989. The construction work included four digesters, one control building, and all necessary equipment for the sludge digestion. The sizes of the structures are listed as follows:

	Volume, m ³
Digester, 4 - 33.5ø x 11.46	40,404.00
Control building, 55 x 16.5 x 8.45	7,668.40
Tunnel, 5.5 x 4 x 87.03	1,914.66
Total	49,987.06

The construction contract of the facility was \$20,000,000 excluding tax in December 1989. Unit cost in term of the digester volume was calculated \$495/m³. The unit cost is adjusted using ENR Construction Cost Index and brought up to present cost and includes 11% for engineering and construction supervision but excludes tax.

The present unit cost for the sludge digestion facility is calculated as follows:

Unit cost =  $495 \times 5852 / 4685 \times 1.11 = \frac{686.32}{m^3}$ , Say  $\frac{686.5}{m^3}$  of digester volume.

#### 6. Sludge Thickening and Dewatering Facility

Plant C also constructed a waste sludge thickening facility and a digested sludge dewatering facility in March 1990. The waste sludge thickening facility was designed for a waste sludge flow of 6,730 m³/d and solid load of 35,420 kg/d. The digested sludge dewatering facility was designed for a digested sludge flow of 1,860 m³/d and solid load of 56,080 kg/d. The two facilities were combined into one contract. The contract price for the project are listed as follows:

	<u>Cost, \$</u>
Building construction	23,145,000.00
Equipment	12,431,000.00
Total	35,576,000.00

The contract price did not include tax. Unit cost in term of digested sludge solid load is calculated \$634.38/kg. The unit cost is adjusted using ENR Construction Cost Index and brought up to present cost and includes 11% for engineering and construction supervision but excludes tax.

The present unit cost for the waste sludge thickening and digested sludge dewatering facility is calculated as follows:

Unit cost = 634.38 x 5852 / 4691 x 1.11 = \$878.44/kg. Say \$878.50/kg of digested sludge solids.

#### 7. Chlorination and Dechlorination Facility

Capital costs for chlorination and dechlorination using sodium hypochlorite and sodium bisulfite are estimated as follows:

1. Chlorination Using Sodium Hypochlorite

-

Based on secondary by-pass flow of 230 ML/d

Assuming chlorine dosage = 10 mg/L

Chlorine required =  $230 \times 10 = 2300 \text{ kg/d}$ 

Sodium hypochlorite solution 12%

. . . . . . . .

Sodium hypochlorite solution required = 230000/120 = 1,916.7 L/d

One truck load is approximately 18,900 L and lasts 9.8 days

A FRP tank of 27,000 L	\$18,000
Pumps, valves and VFD	\$19,000
Control panel	\$12,500
Piping	\$10,000
Concrete base	\$5,500
Electrical	<u>\$10,000</u>
Subtotal	\$75,000

2. Chlorine Contact Tank

Allow detention time of 15 minutes,

Based on the estimated cost for the chlorine contact tank in the Fax of November 18, 1997. The estimated cost was calculated using a detention time of 30 minutes.

	Capital cost = 446000	$/86 \times 230 =$	\$596,400.
--	-----------------------	--------------------	------------

3. Dechlorination Using Sodium Bisulfite

Assume residual chlorine = 1.0 mg/L

Sodium bisulfite required =  $1.61 \times 1.0 \times 230 = 370.3 \text{ Kg/d}$ 

Sodium bisulfite density = 1.30 to 1.36, use 1.30 g/mL

Assume average TRS = 40%

Sodium	bisulfite	required	= 370.3	/(1.3	x 0.4) =	= 712.1	L/d

One truck is approximately 15,100 L and lasts 21.25 days

A FRP tank of 27,000 L	\$18,000	
Pumps, valves and VFD	\$19,000	
Control panel (included)		
Piping	\$10,000	
Concrete base	\$5 <i>,</i> 500	
Electrical (included)		
Mixers	<u>\$20,000</u>	
Subtotal	\$72,500	
	Est	<u>. Cost, \$</u>
Chlorination		75,000
Contact Tank		596,400
Dechlorination		<u>72,500</u>
Subtotal		743,900
Instrumentation, admin. Building, 0.187%		1,400
Site works, 0.161%		1,200
General requirements, including bonds, insurance, contractor's overhead and profit, mobilization/demobilization and		
temporary facility, 7.7%		57 <i>,</i> 280
Construction contingency, 3.6%		<u>26,780</u>
Subtotal		830,560
Engineering & supervision, 11%		<u>91,360</u>
Total		921,910

Unite cost = 921,910/230,000 = \$ 4.00 per m³ of flow