R.M. OF GIMLI REPORT NUMBER: 181-03988-01

ADDENDUM TO NOTICE OF ALTERATION FOR EAL 2473 R

R.M. OF GIMLI - BIOSOLIDS LAND APPLICATION

JUNE 19, 2020

wsp

ADDENDUM TO NOTICE OF ALTERATION FOR EAL 2473 R

BIOSOLIDS LAND APPLICATION

R.M. OF GIMLI

FINAL

PROJECT NO.: 181-09388-01 DATE: JUNE 10, 2020

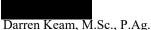
WSP 1600 BUFFALO PLACE WINNIPEG, MANITOBA R3T 6B8

T: 204-477-6650 WSP.COM

vsp

June 19, 2020

Manitoba Conservation and Climate Environmental Stewardship Division Environmental Approvals Branch 1007 Century Street Winnipeg, Manitoba R3H 0W4


Attention: Director

Subject: Provision of Addendum to Notice of Alteration to the R.M. of Gimli's EAL No. 2473 R in Support of Biosolids Land Application

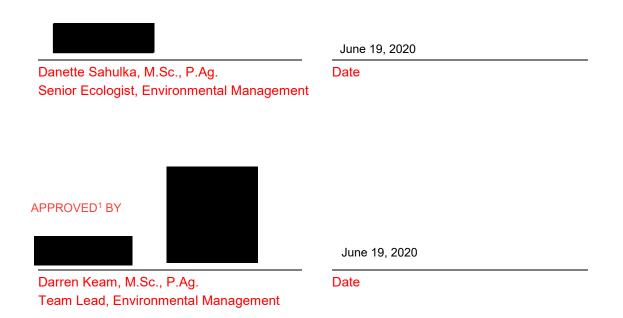
WSP Canada Inc., on behalf of the Rural Municipality (R.M.) of Gimli, is providing this report as supplemental information in support of the R.M.'s biosolids land application program as requested in a Notice of Alteration approval letter provided by the Manitoba Conservation and Climate, Environmental Approval Branch (File No. 4522.10, dated December 16, 2019) for the R.M.'s existing Environment Act Licence (Licence) No. 2473 R.

If you have any questions or concerns about this submission, please contact the undersigned at your convenience.

Yours sincerely,

Team Lead, Environmental Management

DLS/dk Encl. cc: WSP ref.: 181-03988-01


REVISION HISTORY

FIRST ISSUE

January 16, 2020	DRAFT REPORT		
Prepared by	Reviewed by	Approved By	
Danette Sahulka, Senior Ecologist	Darren Keam, Team Lead	Darren Keam, Team Lead	
REVISION 1			
June 10, 2020	DRAFT REPORT		
Prepared by	Reviewed by	Approved By	
Danette Sahulka, Senior Ecologist	Darren Keam, Team Lead	Darren Keam, Team Lead	
REVISION 2			
June 19, 2020	FINAL REPORT		
Prepared by	Reviewed by	Approved By	
<preparer, title=""></preparer,>	Darren Keam, Team Lead	Darren Keam, Team Lead	

SIGNATURES

PREPARED BY

WSP Canada Group Limited prepared this report solely for the use of the intended recipient, R.M. of Gimli, in accordance with the professional services agreement. The intended recipient is solely responsible for the disclosure of any information contained in this report. The content and opinions contained in the present report are based on the observations and/or information available to WSP Canada Group Limited at the time of preparation. If a third party makes use of, relies on, or makes decisions in accordance with this report, said third party is solely responsible for such use, reliance or decisions. WSP Canada Group Limited does not accept responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken by said third party based on this report. This limitations statement is considered an integral part of this report.

The original of this digital file will be conserved by WSP Canada Group Limited for a period of not less than 10 years. As the digital file transmitted to the intended recipient is no longer under the control of WSP Canada Group Limited, its integrity cannot be assured. As such, WSP Canada Group Limited does not guarantee any modifications made to this digital file subsequent to its transmission to the intended recipient.

¹ Approval of this document is an administrative function indicating readiness for release and does not impart legal liability on to the Approver for any technical content contained herein. Technical accuracy and fit-for-purpose of this content is obtained through the review process. The Approver shall ensure the applicable review process has occurred prior to signing the document.

wsp

TABLE OF CONTENTS

1	INTRODUCTION	1
1.1	Contact Information	1
1.2	Background	1
1.3	Location of Biosolids Land application Program	n2
2	EXISTING BIOPHYSICAL ENVIRONMEN	T4
2.1	Land Use	4
2.2	Climate	4
2.3	Physiography and Drainage	4
2.4	Soils	5
2.5	Surficial and Bedrock Geology	5
2.6	Groundwater and Hydrological Description	6
2.7	Terrestrial Environment	6
2.8	Surface Water Bodies and Aquatic Life	7
2.9	Potential Terrestrial Species of Conservation Concern	7
3	REGULATORY REQUIREMENTS	8
4	LAND SUITABILITY	9
4.1	Dominant Soils within the Project Area	9
4.2	Soil Texture	10
4.3	Canada Land Inventory –Soil Capability for Agriculture	11
4.4	Nutrient Management Zones	13
5	BIOSOLIDS QUALITY	14
5.1	Nutrients -Nitrogen and Phosphorus	14
5.1.1	Trace Metals	15
1.1.1	Salts	16
5.1.2	Emerging Substances of Concern	17
5.2	Agronomy	18

vsp

6	LOGISTICS OF BIOSOLIDS LAND APPLICATION	10
	AFFLICATION	. 19
6.1	General Requirements	19
6.2	Application Restrictions And Required Setback Distances	20
7	POTENTIAL ENVIRONMENTAL EFFECTS	
	AND MITIGATION MEASURES	. 23
7.1	Potential Biophysical Effects	24
7.1.1	Soil Effects and Mitigation	24
7.1.2	Water Quality Effects and Mitigation	25
7.1.3	Vegetation and Wildlife Effects and Mitigation	26
7.1.4	Greenhouse Gas Considerations	26
7.2	Potential Socio-economic Effects	27
7.2.1	Public Safety & Health Risks and Mitigation	27
7.3	Economic Benefits	28
8	SUMMARY	.29
REFE	RENCES	. 30

TABLES

TABLE 1-1	AVAILABLE LAND DESCRIPTIONS AND TITLE CERTIFICATE
TABLE 4-1	SOIL SERIES AND THE AERIAL EXTENT WITHIN THE PSA9
TABLE 4-2	DESCRIPTION OF SOIL SERIES WITHIN THE PSA 10
TABLE 4-3	TEST PIT OBSERVATIONS11
TABLE 4-4	LAND AREA FOR STATUS OF TITLE 23108 AGRICULTURAL CAPABILITY LIMITATIONS AND EQUIVALENT WATER QUALITY MANAGEMENT ZONE
TABLE 6-1	LAND APPLICATION NUTRIENT MANAGEMENT INPUTS AND ASSUMPTIONS19

wsp

TABLE 6-2	RESTRICTIONS AND REQUIRED SETBACK DISTANCES FOR BIOSOLIDS APPLICATION21
TABLE 6-3	SUMMARY OF APPLICABLE SOIL RESTRICTIONS AND SETBACK DISTANCES FOR GIMLI BIOSOLIDS LAND APPLICATION PROGRAM
TABLE 7-1	SUMMARY OF POTENTIAL ENVIRONMENTAL EFFECTS AND PROPOSED MITIGATION MEASURES
TABLE 7-2	ECONOMIC VALUE FOR NITROGEN AND PHOSPHORUS IN APPLIED BIOSOLIDS28

FIGURES

FIGURE 1-1	STATUS OF TITLE PARCEL 1225753/1,	
MUN	NCIPAL ROLL NO. 188403	3
FIGURE 2-1	REGIONAL SURFACE WATER FLOW	
DIRI	ECTION FOR THE GIMLI AREA	5

APPENDICES

- A FIGURES
- B STATUS OF TITLE
- C GWDRILL LOGS
- D TABLES
- E CERTIFICATES OF ANALYSIS

1 INTRODUCTION

This report provides updated information pertaining to the Rural Municipality (R.M.) of Gimli's biosolids land application program as requested in a Notice of Alteration approval letter provided by the Manitoba Conservation and Climate, Environmental Approvals Branch (File No. 4522.10, dated December 16, 2019) for the R.M.'s existing Environment Act Licence (Licence) No. 2473 R.

1.1 CONTACT INFORMATION

Primary contacts in relation to this report are as follows:

Proponent:

Joann Murphy, Chief Administrative Officer R.M. of Gimli Box 1246 Gimli, Manitoba R0C 1B0 T (main office): 204-642-6650 Email: <u>gimli@rmgimli.com</u>

Report Submitted By:

WSP Canada Group Limited 1600 Buffalo Place Winnipeg, Manitoba R3T 6B8

Darren Keam, Team Lead Environmental Management, WSP T: 204-259-1488; Email: <u>darren.keam@wsp.com</u>

Dana Bredin, Senior Engineer, Water and Wastewater, WSP T: 204-259-1486; Email: <u>dana.bredin@wsp.com</u>

1.2 BACKGROUND

Previously, biosolids land application from the R.M. of Gimli's established wastewater storage cells was occurring on a periodic/sporadic basis under the R.M.'s existing License² (the R.M.'s waste treatment plant operates under a separate EAL No. 2587). The R.M. has recently commissioned the construction of a two-cell biosolids storage pond (with future expansion to a third cell) within the Arnes Waste Disposal Ground (WDG) site (located at SW-10-21-3EPM). The storage pond will be utilized to store biosolids produced by the R.M.'s wastewater treatment plant until the materials can be land applied (approximately every 2-3 years for land application). It is anticipated that the existing storage cells will be decommissioned once the new storage pond is constructed at the Arnes WDG; to facilitate the decommissioning, land application of biosolids material will be required from the existing storage cells in the fall of 2020 (refer to Gimli Lagoon Decommissioning Plan, WSP, June 2020).

² Environment Act Licence No. 2473 R

In support of construction of the new storage pond, a recent request was made to the Manitoba Conservation and Climate (MCC), Environmental Approvals Branch (EAB) by WSP Canada Inc. (WSP), on behalf the R.M. of Gimli, for a Notice of Alteration (NOA) to the R.M.'s current Licence. Conditional approval of the NOA was provided by the EAB on December 16, 2019 contingent upon the R.M. providing updated information regarding the process going forward for the land application of biosolids from the existing storage cells and future biosolids storage pond.

As such, WSP has completed the following actions to support final approval of the NOA from the EAB:

- Review and summary of existing environmental conditions for the area of land application.
- In-field soil test pit program (four test pits advanced to 150 centimeters [cm]) completed in November 2019 to
 assess horizonation, soil texture and to collect soil samples for soil nutrients, metals and pH, Sodium Absorption
 Ratio, electrical conductivity and particle size analysis for those lands listed in the Licence to determine suitability
 for biosolids land application.
- A review of soil nutrient and heavy metals analysis collected from the test pit program to determine nutrient and metal loading rate potential.
- Review of biosolids quality data previously collected by the R.M. of Gimli and collection of current biosolids samples from existing biosolids to determine quality and potential prescription rates for land application.
- Review of current environmental legislation/regulations and current biosolids land application licensing requirements in relation to the R.M.'s Licence to mitigate deficiencies and improve the R.M.'s biosolids land application program.
- Provision of this report as an addendum to the aforementioned NOA; this report provides supporting information for the biosolids lands application component of the NOA as requested by the EAB.

1.3 LOCATION OF BIOSOLIDS LAND APPLICATION PROGRAM

As per the existing EAL No. 2473 R, the application of biosolids from the existing and future storage ponds will occur onto lands that are owned by the R.M. of Gimli (Status of Title, Appendix B) and located within Sections 12-19-3EPM, 13-19-3EPM, and 7-19-4EPM of the R.M. of Gimli (herein referred to as the "project area") (Table 1.1, and Map 1, Appendix A). The identified sections of land are divided between two Status of Title Certificates (and municipal Roll entries) as identified on survey plan 23108 and 31970.

The Gimli airport runway property (Status of Title 2145706/1, Roll No. 188402) cover approximately 185 hectares (457 acres) of the four sections of land and is excluded from this assessment. The remainder of the project area (Status of Title 1225753, Roll No. 188403), 290 hectares (718 acres) consists of planted grasses that are maintained by the R.M. as well as areas utilized for agricultural crop production. Historically, biosolids have been applied to the agricultural land adjacent to the Gimli Airport on 7-19-4EPM.

Title Number	Plan of Survey	Legal Land Description	Municipal Roll No.
1225753/1		All that portion of Parcel B Plan 23108 WLTO taken for water control works plan 27555WLTO in E1/2 of 12 and 13-19-3EPM and W1/2 of 7 and 18-19-4 EPM and in Government Road Allowance (Closed).	188403

Table 1-1	Available Land	Descriptions and	Title Certificate
-----------	----------------	------------------	-------------------

Note: Status of Title and Plan of Survey are included in Appendix B.

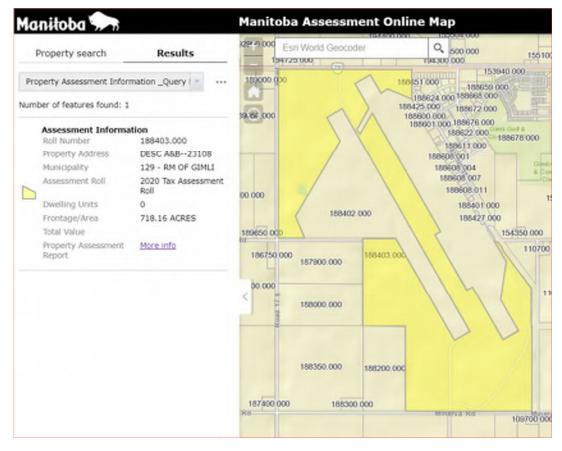


Figure 1-1 Status of Title Parcel 1225753/1, Municipal Roll No. 188403

2 EXISTING BIOPHYSICAL ENVIRONMENT

2.1 LAND USE

Land use adjacent to the project area consists primarily of agricultural crop production (annual and forage crops). The western edge of the Town of Gimli lies within 2 km of the project area and Lake Winnipeg lies further east of the Town, within 3.5 km of the project area. In addition, several tourist/ recreational areas are located along Lake Winnipeg, within 5 km of the project area including the Town of Gimli Beach, Kings Park, Loni Beach and Pelican Beach (refer to Map 1, Appendix A).

2.2 CLIMATE

The project area is located within the Gimli Ecodistrict of the Interlake Plain Ecoregion which is covered by the broader Boreal Plains Ecozone (Smith, Veldhuis, Mils, Eilers, Fraser and Lelyk 1998).

The Gimli Ecodistrict lies in a more humid and cooler subdivision of the Subhumid Low Boreal Ecoclimatic Region. The ecodistrict is characterized by short, warm summers and cold winters with a mean average temperature of 1.4°C (Smith, et al. 1998). The average crop-growing season is 176 days with approximately 1,540 growing degree-days. Mean annual precipitation is 520 millimeters (mm), one quarter of which is in the form of snowfall. The Gimli Ecodistrict has a moderately cold, humid, Cryoboreal to subhumid, cool, Boreal soil climate (Smith, et al. 1998).

2.3 PHYSIOGRAPHY AND DRAINAGE

The project area is situated at an elevation of approximately 244 metres above sea level, along the southwestern shore of the south basin of Lake Winnipeg. The physiography of the area ranges from level to depressional glaciolacustrine lowland to gently undulating, terraced plain with water-worked glacial till, shallow glaciolacustrine deposits and glaciofluvial materials. Along the western side of Lake Winnipeg, the land slopes gently at an elevation change of approximately 0.5 metres (m) per km eastward toward the lake (Smith, et al. 1998).

The R.M. of Gimli lies within the Icelandic/Willow Creek Watershed and is part of the Winnipeg South Drainage diversion of the larger Nelson River drainage system. The nearest surface water body to the project area is Lake Winnipeg, located within 6 km of the project area to the east. According to the Natural Resources Canada, *The Atlas of Canada – Toporama* online mapping tool, regional drainage is eastward towards Lake Winnipeg (refer to Figure 1).

(Image taken from Natural Resources Canada, The Atlas of Canada – Toporama, February 13, 2020. Available online at: <u>https://atlas.gc.ca/toporama/en/index.html</u>).

Figure 2-1 Regional Surface Water Flow Direction for the Gimli Area

2.4 SOILS

Soils in the ecodistrict consist of poorly drained Peaty Gleysols and shallow organic soils within lowland areas while lake terrace areas are dominated by well to imperfectly drained, Dark Gray Chernozems while Gray Luvisols have formed under forest vegetation (Smith, et al. 1998). The soil reconnaissance survey completed for the project area indicated that the area is dominated by soils from the Balmoral Series that consist of Rego Humic Gleysols that have developed on strongly calcareous, moderately fine textured sediments influenced by poor natural drainage. Surface soil texture has been described as ranging from loam to silty clay loam (Manitoba Agriculture, Food and Rural Initiatives 2010).

As no detailed soil survey reports exist for the area to determine soil suitability for biosolids land application, a soil test pit program was undertaken to better assess soils characteristics within the project area. Refer to Section 3.1 for further information.

2.5 SURFICIAL AND BEDROCK GEOLOGY

Till surficial deposits are found within the project area that are comprised of off-shore glaciolacustrine sediments consisting of clay, silt and minor sand deposits that range from 1 to 20 m in thickness, deposited from suspension in offshore, deep water of glacial Lake Agassiz that have been commonly worn and homogenized by icebergs (Matile and Keller, 2004). Surface sand and gravel deposits in the region occur mainly as long narrow beach ridges overtop the till materials. Thickness of surficial deposits rand from zero to 50 metres in the region (Rutulis 1981).

These surficial deposits are underlain by carbonate rock (limestone and dolostone) bedrock of the Selkirk Member, of the Red River Formation of the Ordovician period within the Paleozoic era (Betcher, Grove and Pupp 1995). The carbonate bedrock in the region contains fractures that make it permeable and therefore capable of conveying and storing water. Below the carbonate rock layer lies an interbedded shale and sandstone formation under which lies granite and other hard rocks, (Rutulis 1981). Depth to bedrock within the R.M. of Gimli ranges between 20 to 40 metres below ground level (Rutulis 1981).

2.6 GROUNDWATER AND HYDROLOGICAL DESCRIPTION

Groundwater bearing formations or aquifers at the project area are formed by extensive carbonate rock beds with minor shale beds. This aquifer is almost continuous throughout the area. The depth to the aquifer ranges from less than 36 m to 49 m below grade. The potential yield around this area is approximately in the range of 1 to 100 litres per second. The water quality for the upper part of carbonate aquifer is of good quality (Rutulis and Mamott 1987).

A review of the Manitoba GWDrill (2018) groundwater well logs for the Project Area. Within the three sections of land there were a total of 24 test wells, domestic use wells, production wells and geothermal wells. In general, the description of the stratigraphy is: Brown till (0-8ft) over, Grey Clay (8-29ft over, Grey Till (29 – 132 ft) over, Brown Limestone (132 – 240ft). This general description was based on eight test wells completed for the RM in 2017. The groundwater well search results are included in Appendix C.

The key consideration of these well bore logs is that there is sufficient clay or clay till recorded to depth in this Project Area.

2.7 TERRESTRIAL ENVIRONMENT

The native vegetation of the Gimli Ecodistrict is dominated by stands of trembling aspen; white spruce is also found interspersed with trembling aspen in more northern areas of the ecodistrict. Along river channels Manitoba maple, American elm, green ash and cottonwood tree species dominate. Wet depressional areas host willows, sedges and meadow grasses, while wetter marsh areas are characterized by cattail, reed and sedge species (Smith, et al. 1998).

Vegetation cover associated with the project area consists primarily of planted grasses and forage crops that are mowed/harvested several times during the growing season. The areas immediately surrounding the project area consists primarily of agricultural land used for the production of annual and forage crops.

Although habitat for wildlife species within the project area is limited due to the primarily agricultural nature of the surrounding area and location of much of the project area adjacent to the Gimli airport, habitat for wildlife species is fairly extensive within the region; examples of species that may be found include white-tailed deer, moose, black bear, beave, snowshoe hare, coyote and various waterfowl species.

2.8 SURFACE WATER BODIES AND AQUATIC LIFE

A review of the National Hydrology Network GeoBase Series open maps data viewer (Government of Canada - no date [n.d.]) and the Lower Interlake Area Designation of Drains plan (Government of Manitoba n.d.) indicates the presence of several constructed drains in the area including: a third order drain³ to the north of the project area along Road 231 that drains to the east to Lake Winnipeg and to the south through a drain along Provincial Trunk Highway (PTH) #8 to a drainage channel that leads to Lake Winnipeg; a second order³ drain that has its start at the southeast end of the Gimli Industrial Park/airport area near Anson Street and Gimli Park Road that connects to the drainage channel along PTH and also to the second order drain along Minerva Road (Road 109 N) to the south of the project area (refer to Figure1).

The constructed drain/unnamed tributary along Road 231 was assessed in 2013 by Milani for habitat complexity and fish species; Milani described this unnamed tributary as a Class B habitat, having a simple stream complexity with some cobble and lots of submerged vegetation. During the assessment, Milani (2013) also reported the presence of central mudminnow and northern pike fish species being present within this tributary indicating that this drain/tributary provides fish habitat for at least one game fish species (northern pike). There are no other waterbodies or wetlands within the project study area nor in the surrounding area.

Aquatic life is restricted to the unnamed drains in the area and Lake Winnipeg. Examples of species that may occur in these areas include frogs, dragonflies and turtles as well as various waterfowl and shorebird species. A review of the Fisheries and Oceans Canada, aquatic species at risk open viewer map (2019) indicated that the bigmouth buffalo (*Ictiobus cyprinellus*), a fish species listed as "Special Concern" under the *Species at Risk Act* has the potential to occur in the waters of Lake Winnipeg in the Gimli area (3.5 km east of the project area).

2.9 POTENTIAL TERRESTRIAL SPECIES OF CONSERVATION CONCERN

As the land use associated with the project area includes industrial use associated with the Gimli airport and agriculturally cultivated area, species of conservation concern are not anticipated to be present on these lands.

³ Drains are classified in terms of 'order' and range in size from 1st to 7th order – the higher the number being the largest size of drain. Examples of 1st and 2rd order drains include small swales, depressions or manmade ditches in which water runs only in spring or after heavy rains; this may include ditches along municipal roads. Third order to 7th order streams are larger in size, many have been manmade including municipal and highway road drains, and have significant measurable flows of surface water runoff during spring and after heavy rains. Fifth order and higher streams typically have year-round flows, and are large, 'natural' waterways such as the Assiniboine, Souris and Red River (Geoff Reimer, Manitoba Water Stewardship, n.d.).

3 REGULATORY REQUIREMENTS

Since the initial License was granted in 2003/2003R, several new regulatory requirements and beneficial management practices have come to fruition. As such, in support of the biosolids land application component of the NOA, the following sections provide applicable information and pertinent strategies that the R.M. of Gimli is committed to in order to ensure a sustainable land application program.

At that time of the License was granted, *The Environment Act* and *Livestock Manure and Mortalities Management Regulations* were the prominent Acts governing the land application of biosolids materials. In 2005 *The Water Protection Act* and in 2008 the *Nutrient Management Regulation* under *The Water Act* were enacted that provide additional requirements for land application of manure and biosolids to afford protection of Manitoba's water resources. As such, the R.M. of Gimli will adhere to the following Acts and Regulations as they apply to biosolids land application program:

- The Environment Act C.C.S.M. c. E125 (1987)
- Livestock Manure and Mortalities Management Regulation 42/98
- The Water Protection Act C.C.S.M. c. W65 (2005)
- Nutrient Management Regulation 62/2008
- Environmental Regulations for Treatment and Disposal of Biosolids in Manitoba, Mike Van Den Bosch, P.Eng., Municipalities & Industrial Approvals, Manitoba Environment.

4 LAND SUITABILITY

4.1 DOMINANT SOILS WITHIN THE PROJECT AREA

Based on soil reconnaissance level maps (available from the Manitoba Agrimaps interactive mapping program), there are six soil series within the project area that include Plum Ridge, Lakeland, Balmoral, Ledwyn, Peguis and Thalberg. Single soil series or compound map series and the applicable number of hectares are outlined in Table 4.1 and characteristics of the soil series are outlined in Table 2 and shown in Map 2 (Appendix A).

Field #	Field Number/Legal Location	Soil Series	Map Unit (percent area of polygon)	Aerial Extent (ha)
		PI	Plum Ridge (100%)	27.3
1	13-19-3EPM		Balmoral, drained (40%)	92.3
		BAM	Balmoral, non-eroded or minimal (30%)	69.2
			Balmoral, peaty (30%)	69.2
		La	Lakeland (100%)	82.4
	12-19-3EPM	ВАМ	Balmoral, drained (40%)	69.6
2			Balmoral, non-eroded or minimal (30%)	52.2
			Balmoral, peaty (30%)	52.2
		Le	Ledwyn (100 %)	3.0
			Balmoral, drained (40%)	67.3
	7-19-4EPM	BAM	Balmoral, non-eroded or minimal (30%)	50.4
4			Balmoral, peaty (30%)	50.4
		Pe/T	Peguis (100 %)	88.3
		Pe	Thalberg (100 %)	4.0

Table 4-1 Soil Series and the Aerial Extent within the PSA

Soil Series	Description	Surface Texture	Drainage
Balmoral (BAM)	Rego Humic Gleysols developed on strongly calcareous, moderately fine textured sediments influenced by poor natural drainage.	Loam to silty clay loam.	Drainage is poor to very poor.
Lakeland (La)	Imperfectly drained Gleyed Rego Black carbonated soils developed on moderately to extremely calcareous, dominantly fine loamy sediments.	Loam to clay loam and occasionally silty clay.	Imperfectly drained.
Ledwyn (Le)	Gleyed Dark Gray Chernozem soils developed on very strongly to extremely calcareous, dominantly moderately fine textured (SCL, CL, SiCL) sediments.	Very fine sandy loam to silty clay loam; the soils commonly become slightly coarser with depth and are often stratified with very fine sand.	Runoff is slow and internal drainage is moderate to moderately rapid, but may be impeded by a high-water table.
Peguis (Pe/T)	Imperfectly drained Gleyed Dark Gray Chernozem soils developed on a moderately to strongly calcareous lacustrine clay strata underlain by extremely calcareous loamy glacial till within a metre of the surface.	Silty clay loam.	Runoff is moderately slow; permeability is moderately slow in the upper clay strata and moderate to moderately slow in the loamy substrata.
Thalberg (Pe)	Imperfectly drained Gleyed Solonetzic Dark Gray Chernozem soils developed on weakly calcareous lacustrine clay.	Silty clay loam.	Runoff is slow and permeability is slow to very slow.
Reference: S	mith, R., Veldhuis, H., Mils, G., Eilers, R., Fraser, W., &	Lelyk, G. (1998)	

Table 4-2 Description of Soil Series within the PSA

4.2 SOIL TEXTURE

To confirm the soil texture for the land parcels within the project area, a test pit program was undertaken in November 2019. Three test pits were excavated to an approximate depth of 150 cm or greater depending on the soil features. Outlined below are the in-field observations and soil texture results for each.

Table 4-3 Test Pit Observations

Test Pit Location	Observations	Particle Size Analysis
TP01 14U 0637557 5611376 NW13-19-03EPM	Cropland: small grains. No biosolids to date. 0-6": Loamy, gray colour; 6-24": Silt Loam, tan colour; 24-60": Silt Clay Loam, Platy, Mottles, moist with apparent water movement.	0-6": Silt Loam 6-24": Silt Loam 24-60": Silt Clay Loam
TP02 14U 0637789 5610775 NW13-19-03EPM	Permanent grass cover. No biosolids to date. 0-6": Loamy, gray colour; 6-24": Silt Loam, tan colour; 24-60": Silt Clay Loam, Platty, Mottles, moist with apparent water movement.	0-6": Silty Clay Loam/ Clay Loam 6-24": Silt Loam 24-60": Silt Clay Loam
TP03 14U 0638836 5609302 SW07-19-04EPM	Permanent grass cover. Biosolids received in 2014, 205 and 2016 (exact areas unidentified) 0-18": Loamy, black, strong grass growth; 18-32": Silty, tan colour; 32-60": Silt Clay, Platy, Mottles, moist with apparent water movement; 60+" Clay	0-6": Silty Clay Loam 6-24": Silt Loam 24-60": Silt Clay Loam 60-72": Clay

4.3 CANADA LAND INVENTORY – SOIL CAPABILITY FOR AGRICULTURE

The *Nutrient Management Regulation* (NMR) under *The Water Protection Act*, came into effect on March 18, 2008. The MNR outlines nutrient application restrictions based on the Canada Land Inventory Soil Capability Classification for agriculture ratings (Government of Manitoba 2008). The Canada Land Inventory (CLI) is a dry-land agriculture capability inventory for rural Canada. The CLI limitations are based on climate, geology, soil chemical and physical characteristics (salinity and structure), droughtiness, inundation, erosion, stoniness and landscape topography of the soils.

The CLI groups mineral soils into seven classes with the same relative degree of limitation and then delineates subclasses within each class based on type of limitation (Fraser et al. 2001). Classes one to seven are based on increasing degree of limitation, the first three classes are capable of sustained cultivated crop production, class four is marginal for sustained arable cropping and class five is capable of pasture or hay, class six is capable of permanent pasture and class seven has no capability for arable crop or permanent pasture. There are thirteen different subclasses or limitations.

Soils series within the project area range from Class 2, 3, 5 and 6 dryland agricultural capabilities with subclass designations of W and M. The class descriptions are taken directly from Agriculture and Agri-food Canada, 2013:

- Class 1: Soils in this class have no significant limitations for crop selection. Topography of the soils are level to nearly level; they are deep, well to imperfectly drained and have moderate water holding capacity. The soils have an abundance of available nutrients for plant growth, are easily maintained in good tilth and fertility; soil productivity is considered moderately high to high for a wide range of cereal and special crops (field crops).
- Class 2: Soils in this class have moderate limitations that restrict the range of crops or require moderate conservation practices. Class 2 soils have a good water-holding capacity, the limitations are moderate and productivity is moderately high. Limitations may be one of the following; adverse regional climate, moderate effects of accumulative undesirable characteristics; moderate effects of erosion, poor soil structure or slow permeability, low fertility (correctable with fertilization), gentle to moderate slopes, occasional damaging overflow, and wetness (correctable with drainage).
- Class 3: Soils in this class have moderately severe limitations that restrict the range of crops or require special conservation practices. The limitations are more severe than for Class 2 soils. They affect one or more of the following practices: timing and ease of tillage, planting and harvesting, choice of crops, and methods of conservation. Under good management they are fair to moderately high in productivity for a wide range of crops.
- Class 4: Soils in this class have severe limitations that restrict the range of crops or require special conservation practices, or both. The limitations seriously affect one or more of the following practices: timing and ease of tillage, planting and harvesting, choice of crops, and methods of conservation. The soils are low to fair in productivity for a fair range of crops but may have high productivity for a specially adapted crop.
- Class 5: Soils in this class have very severe limitations that restrict their capability to producing perennial forage crops, and improvement practices are feasible. The limitations are so severe that soils are not capable of use for sustained production of annual field crops. The soils are capable of producing native or tame species of perennial forage plants and may be improved by use of farm machinery. The improvement practices may include clearing of bush, cultivation, seeding, fertilizing, or water control.
- Class 6: Soils in this class are capable only of producing perennial forage crops, and improvement practices are not feasible. The soils provide some sustained grazing for farm animals, but the limitations are so severe that improvement by use of farm machinery is impractical, terrain may be unsuitable for use of farm machinery, or the soils may not respond to improvement, or the grazing season may be very short.
- Class 7: Soils in this class have no capability for arable culture or permanent pasture. This class also includes
 rockland, other non-soil areas, and bodies of water too small to show on the maps.

The subclass descriptions are as follows (Agriculture and Agri-food Canada, 2013):

- 'M Moisture limitation: This subclass consists of soils where crops are adversely affected by droughtiness owing to inherent soil characteristics. They are usually soils with low water-holding capacity.
- 'W': Excess Water this subclass includes soils where excess water other than brought about by inundation is a limitation to agricultural use. Excess water may result from inadequate soil drainage, a high-water table, seepage or from runoff from surrounding areas.

Table 4-2 and Map 4 (Appendix A) provide a summary of the soil series found within the PSA and the corresponding dryland agricultural capability limitations.

4.4 NUTRIENT MANAGEMENT ZONES

The MNR also outlines criteria for the application of nutrients (nitrogen and phosphorous) to agricultural land. The purpose of the NMR is to protect water quality for sensitive water bodies and/or groundwater by encouraging responsible nutrient planning through regulating the application of substances containing nitrogen or phosphorous (Manitoba Sustainable Development n.d.). The Water Quality Management Zone nitrogen application limits within Zones N1, N2 and N3 are summarized as a rate of application that results in a residual concentration of nitrate nitrogen within the top 0.6 m of soil at the end of the growing season, at any place within the application area no greater than:

- Zone N1: 157.1 kg/ha (140 lbs/ac)
- Zone N2: 101 kg/ha (90 lbs/ac)
- Zone N3: 33 kg/ha (30 lbs/ac)

The Water Quality Management Zone phosphorous application limits within zones N1 to N3 where soil test phosphorous levels (i.e., Olsen procedure) for any place in the application area is 60 ppm or more except at a rate of application that does not exceed:

- Two times the applicable phosphorous removal rate, if the soil test phosphorous levels are less than 120 ppm; or
- The applicable phosphorous removal rate if the soil test phosphorous levels are 120 ppm or more but less than 180 ppm.

All the land parcels proposed for the program fall within Zone N1 and are subject to the aforementioned nitrogen and phosphorus application restrictions.

Table 4-4	Land Area for Status of Title 23108 Agricultural Capability Limitations and Equivalent Water
	Quality Management Zone

Legal Land Location	Area (ha)	Agricultural Capability	Water Quality Management Zone
13-19-03EPM	27.0	Class 2	N1
13-19-03EFW	60.9	Class 3	N1
12-19-03EPM	-	Class 2	N1
12-19-03EF W	77	Class 3	N1
07-19-04EPM	39	Class 2	N1
07-19-04EPW	33	Class 3	N1

5 BIOSOLIDS QUALITY

5.1 NUTRIENTS - NITROGEN AND PHOSPHORUS

The sample results for the biosolids nitrogen profile is between 6.2 to 6.92 percent total nitrogen between the 2019 and 2020 sampling events. Total Kjeldahl nitrogen concentration ranges between 5.96 and 6.7% between 2019 and 2020 sampling events; the ammonium-nitrogen (NH4-N) is 0.56 and 0.49% and Nitrate-N concentrations is 34.4 mg/kg. The organic matter content is 57.1%, total organic carbon content is 33.5% and total carbon by combustion is 34.7%. Of the 2020 material, the measured moisture content is 85.4% with a total Solids of 14.6% (Table 5.1, Appendix D). This provides an estimated organic nitrogen content of 64, 290 mg/kg. Generally, this nitrogen profile is consistent with the other cake like biosolids reviewed.

Significant findings reported by Fitzgerald and Racz (1999) and Ross et al (2003) is that the mineralization of organic nitrogen to inorganic, plant available nitrogen (nitrate and ammonium-nitrogen) was approximately 11% of biosolids N in year one and is highly dependent on soil temperature (micro-climate). It was further determined that approximately 67% of biosolids ammonium (17% of the total nitrogen) was lost as ammonia gas to volatilization when biosolids were not incorporated.

When utilizing an organic source as a fertilizer, only a portion of the total nitrogen is immediately available in the organic form and goes through a mineralization process. Mineralization is the conversion of organic nitrogen to ammonium nitrogen. Like hog manure, the anticipated mineralization rate for biosolids in year one is 25 percent, for year two, 12 percent and for year three, six percent.

When calculating the mineralization rate for the biosolids material in the prescription example, the following assumptions were made:

- At a Carbon to Nitrogen (C:N) ratio that exceeds 30:1, N becomes a limiting nutrient for decomposer organisms and this can reduce the rate of decomposition and results in N immobilization. The C:N ratio for the Cell 1 biosolids material is approximately 10:1, thus mineralization was assumed to continue at anticipated rates. Cell 2 is assumed to be similar.
- With a Carbon to Phosphorous (C:P) ratio between 200:1 and 300:1, mineralization and immobilization balance each other to result in no net release of P from the decomposing manure. When C:P is below this range, P is released and when above this range P will be tied up and not released for crop use. The Cell 1 biosolids material C:P ratio was below this range and P was anticipated to be released. Cell 2 is assumed to be similar.
- When animal and municipal wastes have N:P ratios ranging from 1:1 to 1:2 and are applied based on N rates on soils, over time P will accumulate. The Cell 1 biosolids material N:P ratio was 2.5:1, thus it was anticipated that P will not accumulate. Cell 2 is assumed to be similar.

The physical and chemical characterization of the Gimli Biosolids from sample analysis completed in 2014, 2019 and 2020 is provided in Table 5.1 (Appendix D).

5.1.1 TRACE METALS

Gimli's biosolids contain varying concentrations of metals as a result of discharges of metals via wastewater to the wastewater treatment system. Concerns regarding metals added to agricultural soil due to land application is justifiable due to the potential deleterious effects on soil quality, movement to surface and groundwater, phytotoxicity to crops, accumulation in crops and animal/human health effects.

A study completed by Fitzgerald and Racz (1999) reported that for loading rates of City of Winnipeg biosolids at 0, 50, 100 and 200 tonnes per hectare (t/ha), biosolids cadmium was not mobile, was not plant available and that very little of the cadmium was taken up by wheat plants. They also reported that for concentrations of other heavy metals (e.g., copper, zinc, nickel and lead), there was no consistent affect on the heavy metal content of wheat grain due to increasing rates of added biosolids. Fitzgerald and Racz (1999) concluded that heavy metals in the biosolids-treated soils was similar to that of wheat produced in the Canadian Prairies and that loading rates as high as 200 t/ha did not affect grain quality.

In Gimli's biosolids material, the metals of principal concern to agriculture include: arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc. The trace metal concentrations of these elements and others are outlined in Table 5.2 (Appendix D) for biosolids materials sampled in 2014 by the R.M and 2020 by WSP. The mean concentration in mg/kg and kg/tonne are presented.

MCC has established cumulative loading rates for each of these metals. The cumulative weight per hectare of each heavy metal in the soil is calculated by adding the amount of each metal in the biosolids at the prescription rate to the background soil level of the same metal (Table 5.3, Appendix D). The soil metal concentrations will be determined prior to each application event to ensure suitability of land parcels for application.

5.1.1.1 CUMULATIVE METALS MODEL

As outlined in Section 5.1.1 many trace elements are regulated under a cumulative weight per hectare of each heavy metal in the soil (Table 8). The cumulative weight is calculated by adding the amount of each heavy metal in the sludge solids applied to the background level of the same metal in the soil, thus ensuring the cumulative concentration of that metal is not exceeding the applied guideline. These cumulative guidelines are based on the CCME soil quality guidelines for the protection of the environment and human health. The mean concentration of the individual heavy metals from the biosolids sample analyzed in 2014 indicates that application of the biosolids would have metal concentrations below the applied CCME guidelines for agriculture soil.

The estimated loading rate of the metals of concern when the biosolids are applied at a rate to provide a two-times crop removal rate for P2O5 are shown in Table 5.3, Appendix D. The anticipated loading rate for biosolids is 11 tonnes per hectare (dry). Table 5.3, Appendix D outlines the number of applications of biosolids required to increase the soil metal content to the maximum levels permitted by the applied guideline. The number of applications of biosolids from the R.M. of Gimli lagoon is limited to about eight events, based on a limitation associated with the concentration of copper accumulation in the soil. While copper is a micro-nutrient required by crops, the uptake and removal of this element in the grain of crops is very minor and of little consequence to mass balance determinations.

Number of Application Events Permitted before meeting applied guideline example calculation for copper.

Total Amo to tal P rmitt db or ti gG id li L v l

$$= \begin{bmatrix} (Soil tal G id li \frac{mg}{kg} - Soil tal Coc tratio \frac{mg}{kg}) & 1,000,000 \\ \times [Sampl D pth(m) \times Soil B lk D sity \frac{kg}{m3} \times 10,000 \frac{m2}{ha}] \end{bmatrix}$$
Amo to tal Add d p r Applicatio

$$= [Biosolids tal Coc tratio \frac{mg}{kg} \times \frac{To s}{H ctar} \times (\frac{1000}{1,000,000})]$$
N mb ro Applicatio Ev ts

$$= (Total Amo to tal Add d p r Applicatio)$$
(Amo to tal Add d p r Applicatio

Notes:

Copper guideline: 63 mg/kg Mean Soil Metal Concentration = Soil Bulk Density: 1,200 kg/m³ Soil Depth: 0.15 m Hectare: 10,000 m² Soil Mass: 1,000,000 mg/kg Example Loading Rate (dry): 11 Tonnes/Hectare

$$= \left[\left(63 \frac{mg}{kg} - 8.34 \frac{mg}{kg} \right) \quad 1,000,000 \right] \times \left[0.15 \ m \ \times \ 1,200 \frac{kg}{m3} \ x \ 10,000 \frac{m2}{ha} \right] \\ \left(1065.5g \frac{mg}{kg} \ \times \ 11 \frac{T}{Ha} \quad 1,000 \right)$$

N mb r o Applicatio Ev ts = 98.388 111.72 = 8.4

Therefore, Application Events to meet Cumulative Guideline = approximately 8 events.

5.1.2 SALTS

The biosolids material from the Gimli biosolids sampled in 2019 had an electrical conductivity (E.C.) value of 2.96 decisiemens per metre (dS/m) and a Sodium Absorption Ratio (SAR) of 1.31. The biosolids material may be considered as "slightly-saline" and as such does pose a slight environmental risk for soil salinization, as soil E.C., soluble ions (e.g., sodium, potassium, chloride and sulfate) and SAR may increase directly with rate application. This is anticipated to be a negligible impact for the following management approaches; the application of the biosolids volumes is limited over the years, application is a single event in a fall season and will be rotated across the field from year to year and annual precipitation will move the limited soluble ions out of the rooting zone between application events.

Comparatively, the reported salinity is less than to hog manure as reported by Racz and Fitzgerald (2001), where it was found that the mean E.C of 145 hog manure samples from Manitoba had a value of 16.0 dS/m and a SAR of 5.1. It is reported by Sullivan, Cogger and Bary (2007) that repeated biosolids applications did not result in detrimental salt accumulations in soil even at locations with low precipitation and no irrigation. Further, they reported that annual applications of dewatered cake biosolids (80 percent moisture) made for over 10 years had not increased soil salinity above 1 mmho/cm.

Salinity analysis results for the Gimli biosolids collected in 2019 are provided in Table 5.1, Appendix D.

5.1.3 EMERGING SUBSTANCES OF CONCERN

Emerging substances of concern (ESOC), including pharmaceuticals, antibiotics, endocrine-disrupting chemicals (EDCs), hormones and personal care products (PPCPs) continue to be studied in Canada and around the world to assure environmental and public safety (Canadian Council of Ministers of the Environment [CCME] 2012). ESOC continue to emerge due to the development of new detection methods and changes in technologies (McCarthy 2015). In general, most ESOC are found in very low concentrations (nanograms), in wastewater residuals and do not necessarily imply risk to the environment or human health based on detection (CCME 2012). In 2009, the CCME reviewed ESOC concentrations and effects of treatment processes, and identified 22 significant findings, of which seven are reported below:

- Of the 24 pharmaceutical, alkyklphenolic and fragrance compounds found in detectable concentrations in more than 75% of the in-going sludge, only 14 of 71 pharmaceutical, alkyklphenolic and fragrance compounds (20%) were found in more than 75% of the treated biosolids samples likely to be land applied.
- The antibacterial compounds triclosan and triclocarban, the antibiotic ciprofloxacin and the fragrance compound galaxolide (HHCB) were the compounds most frequently detected (9 of 11 sites) above 1,000 nanograms per gram (ng/g) total solids (dry).
- A few pharmaceutical compounds appear to be removed readily by either aerobic or anaerobic biological treatment, including sulfamethoxazole, trimethoprim, caffeine and diltiazem.
- A limited number of pharmaceutical compounds appeared to be difficult to remove in almost all processes examined, when present at detectable concentrations. These included the diuretic furosemide, the anti-epileptic carbamazepine, and the antibiotic ofloxacin.
- Naproxen appears to increase substantially through aerobic composting, possibly due to biotransformation from other compounds, but it appears to be more efficiently removed by anaerobic digestion.
- While many of the ESOC remain associated with the solid phase of the sludges or biosolids, a number of compounds can be lost in any aqueous process sidestream (e.g., dewatering filtrate, leachate, digester supernatant), including furosemide, ibuprofen and 2-hydroxy-ibuprofen, naproxen, acetaminophen, caffeine, carbamazepine, clarithromycin, dehydronifedipine, erythromycin-H₂O, sulfamethoxazole and trimethoprim.
- Less than 1% of the mass of fragrance compounds in feed sludge resides in the process sidestreams or leachates from the treatment processes, while between 1% and 6% of the mass of bisphenol A in the feed sludges was transferred to the process sidestreams or leachates.

The Canadian Municipal Water Consortium (Canadian Water Network) commissioned Dr. Lynda McCarthy with Ryerson University to complete a literature review for information pertaining to ESOC that was entitled: Risks Associated with Application of Municipal Biosolids to Agricultural Lands in a Canadian Context. The literature review was conducted in order to summarize current knowledge on the occurrence, fate and potential risks of ESOC and pathogens present in biosolids after application to agricultural land (in conditions relevant to Canada). Based on

the few existing risk assessments, it is suggested that the presence of ESOC and pathogens poses a low risk to human and environmental health. (Note: It was found that the limited number of risk assessments is due to limited data; toxicity and ecotoxicity data for ESOC is generally not available).

McCarthy's literature review evaluated the fate of biosolids related ESOC and pathogens after land application. It was concluded that determining the fate of ESOC and pathogens after land application is complex, site-specific to ESOC and pathogen characterizations and properties (e.g., water solubility and partition coefficient), environmental variables (e.g., temperature, moisture, pH and organic matter content), and application methods, each factor of which limit the success of understanding the true fate. Generally, studies have concluded that most of the compounds found in biosolids do not reach groundwater after land application and that the concentrations of ESOC and pathogens in tile drainage and surface runoff are much lower than typical concentrations found in wastewater treatment plant effluent.

McCarthy's literature review also concluded that ESOC uptake by plants may be an overestimate due to the proof of concept approach to demonstrating the uptake. The limited number of risk assessments has demonstrated however that the risk to human health from the consumption of plants grown in biosolids-amended soils under relevant conditions was considered minimal risk and that although the presence of ESOC in soil, crops or soil organisms may not be desirable, the sole presence of chemicals does not constitute proof of negative impact to the soil ecosystem.

Currently, there are no federal or provincial requirements to address ESOC in biosolids land application programs. The City of Steinbach will continue to monitor academic literature and engage with provincial regulators to maintain a current understanding of ESOC as information becomes available.

5.2 AGRONOMY

Crops grown on lands receiving biosolids can include cereals oil seeds, and perennial grasses. Application of biosolids will increase soil health (water-holding capacity, tilth) and provide beneficial macro (nitrogen, phosphorus, potassium, sulfur) and micronutrients (boron, copper, zinc, magnesium) to the soil for crop production. The R.M. of Gimli will work with the agricultural producers that rent their land parcels within the PSA and will advise them of the benefits of biosolids application and that the application of commercial fertilizers should only be completed to supplement nutrient levels from the biosolids at agronomically sustainable rates.

Any agricultural producers that rent the land parcels within the PSA will be required to sign a land use agreement with the RM of Gimli that meets certain terms and conditions to ensure compliance with regulatory requirements are met. Listed below are a few of the articles that may be included in an agreement:

- Maintaining an appropriate crop rotation for three years with cereal, oil seed, pulse, soybean and corn crops. No
 livestock grazing for a period of three years post application growing season.
- Conducting a nutrient management program that accounts for residual nutrients from the biosolids application.
- Direct soil injection of biosolids.
- Permit soil sampling and analysis monitoring for a period of three full years after application.

6 LOGISTICS OF BIOSOLIDS LAND APPLICATION

6.1 GENERAL REQUIREMENTS

It is anticipated that the biosolids material will be stored within the storage pond at the Arnes WDG for a minimum of one year to a maximum of three years (the cells at the storage pond have capacity for storage for up to three years). During a scheduled application date, biosolids materials will be hauled by tandem truck and trailer (as described in the NOA previously submitted to the EAB) to the field area selected for land application within the project area (within Sections 12-19-3EPM, 13-19-3EPM, 7-19-4EPM and 18-19-4EPM of the R.M. of Gimli); the biosolids will then be land applied surface spreading and then incorporation into the soil to a minimum of 15 centimeters (cm) below the soil surface; this will aid in reducing potential losses of nutrient (erosion and volatilization) and odour issues.

Outlined in EAL #2587, prescribes that biosolids will be applied at a rate that does not exceed 15 tonnes per hectare (t/ha) on a dry weight basis and at a rate whereby the plant-available nitrogen added to the land from all sources does not exceed 100 kilograms per hectare (kg/ha) during any year in which the biosolids are applied. As this justifiably accurate, the prescription rate would be based on the mass balance of phosphorus and nitrogen.

Prior to each biosolids land application event (by March 15th of any given year), the R.M. of Gimli will provide the Director of the EAB with a summary letter that provides the location of where the biosolids will be applied, proposed agronomy and prescribed biosolids application rates. The prescription rates for biosolids application will be calculated based on various inputs and assumptions including soil nutrient levels and cumulative weights of heavy metals in soil per hectare as discussed in Sections 7.1 through 7.2 and as outlined in Table 9. An example of the prescription rate calculations worksheet is provided in Appendix D.

Categories	Inputs	
Information Requirements	 Target crop and anticipated yield - this information is provided by the participating agricultural producer for three years following application. 	
	 Target nutrient recommendations to achieve the desired yield - this is based on understanding of crop uptake and removal. Source of this information is typically provided by the Manitoba Soil Fertility Guide. 	
	 Soil testing – soil sampling for nutrient and metals profiles is completed (0-15 cm and 15-60 cm). 	
	 Biosolids testing – testing of the physical, nutrient and metals profile for the biosolids. 	
Assumptions	Nitrogen Mineralization rates:	
	 Between 20% and 25% in year one. 	
	 Less than 12% in year two and less than 6% in year three. 	
	Plant available phosphorus	
	 Between 25% and 50% of total phosphorus. 	

Table 6-1 Land Application Nutrient Management Inputs and Assumptions

Categories	Inputs
Methods	Biosolids are surface applied and then incorporated within 48 hours; therefore, volatilization of ammonia loss is 13, 19, 31 and 57% depending upon weather (cool/wet, cool/dry, warm/wet and warm/dry, respectively).
Indicators	 If C:N exceeds 30:1 in the biosolids, then N becomes a limiting nutrient for decomposer organisms, and this can reduce the rate of decomposition and results in N immobilization and loss of plant available nitrogen.
	 When C:P ratio is between 200:1 and 300:1 in the biosolids, mineralization and immobilization balance each other to result in no net release of P from the decomposing biosolids. When C:P is below this range, P is released.
	 When animal and municipal wastes with N:P ratios ranging from 1:1 to 1:2 are applied based on N rates on soils, over time P will accumulate.

6.2 APPLICATION RESTRICTIONS AND REQUIRED SETBACK DISTANCES

To minimize risk to human and environmental health and safety from the land application of biosolids and manure, the NMR and the <u>Farm Practices Guidelines for Pig Producers in Manitoba</u> (best management practices [BMPs]) (April 2007) have established soil restrictions and setback distances for land application programs. Table 6-2 provides a summary of requirements outlined in the R.M.'s current Licence. Where restrictions/setbacks are different under the NMR or from current BMPs (listed in Column C of Table 6-2), the R.M. wishes to implement those provisions listed under the NMR or BMPs.

Table 6-3 provides a summary of the soil and setback restrictions applicable to each land parcels within the project area for the Gimli biosolids land application program; these soil and setback restrictions will be adhered to during biosolids application.

Table 6-2 Restrictions and Required Setback Distances for Biosolids Application

Column A	Column B	Column C
Description of Feature	Requirement as per Current Licence	Proposed Change to Restrictions/Setbacks per Requirements under the NMR and BMPs
General Restrictions		
Land where there is less than 1.5 m of clay or clay till between the soil surface and the water table (aquifer).	Exclusion of such areas from the program.	-
Identifiable boundary of an aquifer which is exposed to the ground surface.	100 m (328 ft)	-
On soils with a pH of less than 6.0.	Exclusion of such areas from the program.	-
On land where the slope is greater than 5%.	Exclusion of such areas from the program.	-
Biosolids application onto frozen soil.	Exclusion of activity from program.	-
Crop restrictions after biosolids land application.	Crops planted on land that have received biosolids are restricted to cereal, forage, oil seed, field peas and lentils for three years post application.	-
Cattle grazing restriction after biosolids land application.	Cattle are not allowed to pasture on land on which biosolids application as occurred for three years post application.	-
Where prior to the application of biosolids, the level of residual nitrate-nitrogen exceeds 100 kilograms per hectare in the upper 60 cm of soil.	Exclusion of application area from program until the residual nitrate-nitrogen levels are reduced below the threshold.	
Where prior to the application of biosolids, the concentration of residual bicarbonate extractable phosphorous as P, exceeds 60 micrograms per gram in the upper 15 cm of soil.	Exclusion of application area from program until bicarbonate extractable phosphorous as P levels are reduced below the threshold.	
Setback Distances on Land Adjacent to Surface Water of	r a Surface Water Course	
A roadside ditch or an Order 1 or 2 drain. ¹	At least 15 m (49 ft) from first order waterway.	No direct application to ditches and Order 1 and 2 drains.
A groundwater feature. ¹	At least 50 m (164 ft) from any groundwater well.	15 m (49 ft) – vegetated buffer 20 m (66 ft) – non- vegetated buffer
A wetland, bog, marsh or swamp other than a major wetland, bog, marsh or swamp. ^{1, 2}	*	Distance between the water's edge and the high water mark. ³

Column A	Column B	Column C
Description of Feature	Requirement as per Current Licence	Proposed Change to Restrictions/Setbacks per Requirements under the NMR and BMPs
A lake or reservoir designated as vulnerable. ⁴	*	30 m (98 ft) - vegetated buffer 35 m (115 ft) – non- vegetated buffer
A lake or reservoir (not including a constructed storm water retention pond) not designated as vulnerable. ⁴ A river, creek or stream designated as vulnerable. ⁴	*	15 m (49 ft) - vegetated buffer 20 m (66 ft) – non- vegetated buffer
A river, creek or stream not designated as vulnerable. ⁴ An Order 3, 4, 5 or 6 drain. ⁵ A major wetland, bog, marsh or swamp. ⁵ A constructed storm water retention pond.	At least 30 m (98 ft) from second order drain or higher.	3 m (10 ft) – vegetated buffer 8 m (26 ft) – non- vegetated buffer
Biosolids Application Setback Distances from Neighbou	rs ²	
Designated residential areas.	At least 1,000 m (3,280 ft).	400 m (1,312 ft)
Occupied Residence (other than the residence occupied by the owner of the land on which the biosolids are to be applied).	Greater than 300 m (984 ft).	75 m (246 ft)
Property line with residence. ⁶	-	10 m (33 ft)
Property line without residence. ⁶	-	1.0 m (3.3 ft)

Table 6-3 Summary of Applicable Soil Restrictions and Setback Distances for Gimli Biosolids Land Application Program

Legal Land Location	Restrictions to Biosolids Application ¹
13-19-3EPM	1, 2, 5, 6
12-19-3EPM	1, 2, 4, 5, 6
7-19-4EPM	1, 2, 3, 4, 5, 6

¹Notes: Restrictions and Setbacks

- 1 Residual nitrate nitrogen levels cannot exceed 157.1 kg/ha (140 lbs/ac) within the top 0.6 m (2 feet) of soil.
- 2 Residual phosphorus levels (as determined by an Olsen-P test) cannot exceed 60 ppm within the top 0.15 m (6 inches) of soil.
- 3 1000 m setback from designated residential area
- 4 75 m setback from occupied residence (other than the residence occupied by the owner of the land on which the biosolids are to be applied)
- 5 No direct application to ditches and Order 1 and 2 drains
- 6 Setback of 3 m for wetlands with vegetated buffers and 8 m for wetlands with no vegetated buffers

7 POTENTIAL ENVIRONMENTAL EFFECTS AND MITIGATION MEASURES

As part of Gimli's biosolids land application program, mitigation measures will be employed that minimize the impact to the biophysical and socio-economic environments associated with the project area and surrounding area. A summary of the potential effects is provided in Table 7-1 with additional details provided in the following sections.

Potential Environmental Effects	Proposed Mitigation Measures	
Biophysical Effects		
Soil Quality Effects		
Nutrient Loading	Targeted prescription rates, matching cropping systems to nutrient uptake and removal over three seasons, soil monitoring, uniform application procedures, calibrated equipment.	
Metals	Targeted prescription rates, biosolids quality monitoring, soil monitoring, soil chemistry, CCME guidelines.	
Salinity and Sodicity	Targeted prescription rates, biosolids quality monitoring, soil monitoring, CCME guidelines, crop rotation.	
Water Quality Effects		
Groundwater	Compliance with all Provincial regulations and the establishment of setback distances as outlined in Table 6-2, targeted prescription rates, soil monitoring.	
Surface Water	Compliance with all Provincial regulations. Targeted prescription rates, setback distance of 15 m from rivers, creeks and Order 3 or greater drains, direct soil injection of biosolids, cropping systems, soil monitoring.	
Natural Areas Effects		
Natural Vegetation, Wildlife and Species of Conservation Concern	Existing land use, timing of application, setback distances, cropping systems.	
Socio-economic Effects		
Pathogens	Tillage within 48 hours, climate exposure, setback distances from residences/residential areas as outlined in Table 6-2, restricted access, exposure time between application events and harvest, restricted crop type.	
Odour	Good neighbour policies, setback distances, tillage within 48 hours to 15cm, tillage within 48 hours, and monitoring wind direction for optimum conditions.	

Table 7-1 Summary of Potential Environmental Effects and Proposed Mitigation Measures

Potential Environmental Effects	Proposed Mitigation Measures
Metal Accumulation in Crops	Nutrient based application rates, biosolids monitoring, soil monitoring, soil chemistry, CCME guidelines and crop rotation
Emerging Substances of Concern	Climate exposure, microbial degradation, photo-degradation, tillage to a depth of 15cm, direct soil injection of biosolids, setback distances from residences/residential areas as outlined in Table 6-2, restricted access, separation in time between land application event (fall) and crop harvest (the next fall), academic literature monitoring.
Noise, Dust and Malfunctions	Use of dust control measures on gravel roads where possible, hauling during regular work hours, maintain equipment in good working order, regular inspections, spill control/response plan.

7.1 POTENTIAL BIOPHYSICAL EFFECTS

7.1.1 SOIL EFFECTS AND MITIGATION

To mitigate potential impacts to the soil/land base within the project area, the R.M. of Gimli will continue to complete a soil sampling program to allow for appropriate biosolids prescription rates and crop and land rotation to be executed for the program to minimize impacts to the soil resource. The soil monitoring program will include:

1 Pre-biosolids application in a given year:

Collect composite soil samples from each field onto which biosolids will be applied prior to application as per Schedule A of the Licence.

- a Soil samples from 0-15 cm depth will be analyzed for pH, potassium, nickel, mercury, zinc, sodium bicarbonate extractable phosphorus as P, cadmium, chromium, copper, lead and arsenic. Heavy metal analysis will be carried out in accordance with Schedule B of the Licence.
- b Soil samples from 0-60 cm will be analyzed for nitrate-nitrogen and total nitrogen.
- c Monitoring information for each land parcel receiving biosolids will be supplied to the Director of the MSD, EAB by March 15 of the year following biosolids application and will include: description of each land parcel that received biosolids, background levels of soil nutrients, metals and salinity prior to application, dry weight of biosolids applied, cumulative weight of heavy metals for each parcel of land, biosolids prescription rates, laboratory certificates of analysis for biosolids and soil sample results, type of crop grown.
- 2 Conduct an annual soil sampling program to monitor concentrations of residual soil nutrients, salinity and heavy metals for three-years post application. Monitoring information will be supplied to the Director of the MCC, EAB by March 15 of each year following biosolids application and will include a summary of soil nutrient, salinity and heavy metal results as well as laboratory certificates of analysis for biosolids and soil sample results and type of crop grown.

7.1.1.1 NUTRIENT LOADING

Of primary concern associated with the land application of biosolids is the leaching and/or surface runoff of nitrogen and phosphorus into ground or surface water if application rates exceed crop removal rates and soil storing capacity. Nitrogen and phosphorus will be managed based on beneficial farm management practices and following prescription rates based on residual soil nutrient levels and biosolids quality, as well as per applicable regulations. Biosolids will be applied based on nutrient requirements for each land parcel in the project area. Prescribed nitrogen and phosphorus rates will target uptake and removal ability of pasture (permanent grass cover) lands, small grains, oil seed, pulse and soybean crops and corn. Nutrient management will be compliant with the regulatory requirements outlined in the *Nutrient Management Regulations* of *The Water Protection Act* for both maximum residual nitrogen and phosphorus criteria in nutrient management zone N1.

Post-harvest soil monitoring will be conducted on the land parcels for three-years post application of biosolids to monitor nutrient loading within the soils. Soil sampling and analysis will be completed as follows: sodium bicarbonate extractable-P at 0-15 cm soil depth and nitrate-nitrogen and total nitrogen at 0-60 cm soil depth. Management of land parcels in the project area will be based on the annual soil residual nitrogen and phosphorus levels assessed through the monitoring program.

Mitigation Measures: Targeted prescription rates, matching cropping systems to nutrient uptake and removal over three seasons, soil monitoring, uniform application procedures, calibrated equipment.

7.1.1.2 *METALS*

The soil sampling program of the receiving lands combined with the assessment of biosolids metals concentrations prior to each application will ensure that biosolids are applied based on permitted concentrations for each land parcel as outlined in the CCME guidelines. To prevent overloading of heavy metals into soils, the prescribed application rates will provide cumulative weight criteria for metals that are below the permitted concentrations. Monitoring of biosolids quality and soil monitoring (0-15 cm soil depth) for three years post biosolids application will also be conducted in order to monitor heavy metal loading rates to the land parcels in the project area.

Mitigation Measures: Targeted prescription rates, biosolids monitoring, soil monitoring, CCME guidelines.

7.1.1.3 SALINITY AND SODICITY

It is reported by Sullivan et al (2007) that repeated biosolids applications in soil have not resulted in detrimental salt accumulations in soil even at locations with low precipitation and no irrigation. The soil series within the PSA are non-saline.

This is anticipated to be a negligible impact for the following management approaches; the application of the biosolids volumes is limited over the years, application is a single event in a fall season and will be rotated across the field from year to year and annual precipitation will move the limited soluble ions out of the rooting zone between application events. Monitoring of biosolids quality and soil monitoring of the land base as part of the biosolid management plan for three years post application will minimize impacts to the soil resource from the accumulation of salts. Crop rotations will also be established for the program to aid in the reduction of salt accumulation in the soil-rooting zone.

Mitigation Measures: Targeted prescription rates, biosolids monitoring, soil monitoring, CCME guidelines, crop rotation.

7.1.2 WATER QUALITY EFFECTS AND MITIGATION

Potential impacts to surface water and aquatic species within the local drainage system includes nutrient loading from surface runoff to the constructed drains in the area including: a third order drain to the north of the project area. However, the impact to surface water and aquatic species is considered to be low as biosolids material will be applied at agronomically appropriate rates and will be incorporated into the soil within 48 hours of application thereby minimizing the potential of overland flow to the drainage system. In addition, appropriate setback distances of 8 m will be established around all Order 3 or higher drains.

However, as most domestic wells in the area draw water from the carbonate aquifer which is overlain by thick clay and/or till deposits that act as barriers to movement of contaminates to the aquifer, impacts to groundwater in the area are considered to be low.

Application of the biosolids materials at agronomically appropriate rates for nitrogen and phosphorous will ensure plant uptake of these nutrients over the growing season, thereby further minimizing the potential of leaching to the groundwater. Direct soil injection of biosolids will minimize the potential of overland flow to groundwater wells. In addition, appropriate setback distances will be established around all residences and domestic wells as outlined in Table 6-2.

Mitigation Measures: Compliance with all Provincial regulations, nutrient based application rates, setback distances, 1.5 m clay underlay, direct soil injection of biosolids, cropping systems, soil monitoring and compliance with regulations and setback distances as per Table 6-2.

7.1.3 VEGETATION AND WILDLIFE EFFECTS AND MITIGATION

As the land parcels within the project area consist primarily of commercial, industrial or other land use (associated with the Gimli airport), mowed pasture and cultivated lands, the impact to native vegetation is anticipated to be negligible.

Potential impacts to wildlife include potential vehicle/wildlife collisions due to transport of biosolids materials to the receiving fields. However, the impact to wildlife/habitat is considered to be low as land within the project area and surrounding local area primarily consists of mowed pasture and cultivated land with minimal natural vegetative cover available as habitat. Equipment traffic associated with the transfer of biosolids from the lagoons to the receiving fields will be below posted speed limits thus reducing the possibility of wildlife collisions. In addition, land application is anticipated to occur in the fall of a given year and as such the potential to impact nesting migratory birds is anticipated to be low.

Therefore, due to the agricultural nature of the area, timing of the biosolids application and establishment of appropriate setback distances as per Table 6-2, impact to native vegetation and wildlife is anticipated to be negligible to minimal.

Mitigation Measures: Existing land use, timing of application, setback distances, cropping systems

7.1.4 GREENHOUSE GAS CONSIDERATIONS

Greenhouse gas (GHG) emissions within the context of this biosolids land application program are carbon dioxide, methane and nitrous oxide. The activities related to GHG contributions are limited to the equipment emissions that will be used to transport, land apply and incorporate the biosolids material and natural decomposition of land applied organic matter in the soil. Land application of biosolids provides significant benefits through the reduction of GHG production that occurs with landfill disposal, carbon sequestration in soil organic matter and reduced use of inorganic commercial fertilizers from petroleum based sources. These three benefits are reported to counter balance the potential emissions due to mechanical needs for the land application program (CCME 2012).

7.2 POTENTIAL SOCIO-ECONOMIC EFFECTS

7.2.1 PUBLIC SAFETY & HEALTH RISKS AND MITIGATION

7.2.1.1 BIOLOGICAL PATHOGENS

Biological pathogens such as *Escherichia coli* (E. coli) and fecal coliforms as well as nuisance odour associated with land application of biosolids may be considered to pose a public health and safety risk. These human health and safety risks will be managed through the application of the biosolids onto private lands that have restricted public access. In addition, tillage within 48 hours will minimize odour and eliminate human exposure to pathogens. Pathogens from biosolids are often killed by exposure to sunlight ultra violet spectrum, drying conditions, unfavorable pH and other macro and micro environmental conditions. Lands that receive biosolids will also be managed on a crop rotation system for three years that excludes root/vegetable crops and livestock grazing.

In addition, appropriate setback distances including 1,000 m from residential areas, 75 m from occupied residence, 10 m from property lines with a residence and 1 m from property lines without a residence, will be adhered to throughout the program.

Mitigation Measures: Tillage within 48 hours, climate exposure, setback distances, restricted access, separation in time between land application event (fall) and crop harvest (the next fall), restricted crop type

7.2.1.2 ODOUR MANAGEMENT

While it is impossible to eliminate odour associated with the biosolids applications, mitigation measures that include the use of best management and good neighbour practices will be employed to minimize odour issues associated with the land applications. Best management practices that will be employed includes tillage of biosolids and public notification via local advertisement to local residents of intended biosolids applicant sites for a give year (e.g. via newspapers, R.M. website). Additionally, the establishment of applicable setback distances from residences as per Table 6-2 will aid in minimizing odour issues.

Mitigation Measures: Good neighbour policy, setback distances, tillage within 48 hours to 15cm depth, and monitoring wind direction for optimum conditions.

7.2.1.3 METAL ACCUMULATION IN CROPS

Heavy metal bioaccumulation in agricultural crops consumed by humans poses a minimal human health risk as uptake, removal and accumulation of metals by the harvested portions of crops is minimal. Harb (1999) concluded that the health risk to humans from the consumption of heavy metals in wheat and oats grown on land treated with biosolids is negligible and that there are environmental and economic benefits.

Mitigation Measures: Nutrient based application rates, biosolids monitoring, soil monitoring, soil chemistry, CCME guidelines and crop rotation

7.2.1.4 EMERGING SUBSTANCES OF CONCERN (ESOC)

ESOC including pharmaceuticals, antibiotics, EDCs) hormones and PPCPs continue to be studied in Canada and around the world to assure environmental and public safety (CCME 2012). ESOC continue to emerge due to the development of new detection methods (e.g., culture and identification of pathogens) and changes in technologies (McCarthy 2015). In general, most ESOC are found in very low concentrations (nanograms), in wastewater residuals and do not necessarily imply risk to the environment or human health based on detection (CCME 2012).

Mitigation Measures: Climate exposure, microbial degradation, photo-degradation, tillage within 48 hours to 15cm depth, setback distances, separation in time between land application event (fall) and crop harvest (the next fall), and academic literature monitoring

7.2.1.5 NOISE, DUST AND MALFUNCTIONS

To minimize the impacts to local residents from dust and noise, wherever possible paved roadways will be utilized during the transport of biosolids to the field sites and transportation will be completed during regular weekly work hours as much as possible.

Mitigation Measures: Good neighbour policy, use of dust control measures on gravel roads, biosolids transport during regular work hours, maintain equipment in good working order, regular equipment inspections, spill control/response plan.

7.3 ECONOMIC BENEFITS

The application of biosolids to agricultural land provides a positive economic benefit to both agricultural producers that may be renting the land and to the R.M. of Gimli. The objective of providing biosolids prescription application rates that match crop requirements for nutrient management is both sustainable and highly economical. As outlined, biosolids provide macronutrients (nitrogen, phosphorous, potassium, and sulfur) and micronutrients (boron, copper, iron, chloride, manganese, molybdenum and zinc) to soils/crops, which provide economic value to the agricultural producer.

To determine the basic economic value of the N and P of the biosolids, the average fertilizer commodity price between May 2019 and April 2020 for Urea (46-0-0) and Triple Super Phosphate (0-45-0) was determined as 0.73/kg N and 0.79/kg P₂O₅, respectively. The following economic value as presented in Table 7-2 is based on the prescribed biosolids land application of 2x Crop removal of P₂O₅ (11 t/ha dry).

Nutrient	Market Price (June 2020)	Hypothetical Application Rate	Value of Applied Biosolids
Available Nitrogen	\$0.73/kg	218 kg/ha	\$159.14/ha
Total Available P ₂ O ₅	\$.79/kg	110 kg/ha	\$86.9/ha
	r Nitrogen and Phosph 1 tonnes/ha) sub-total		\$246.04/ha

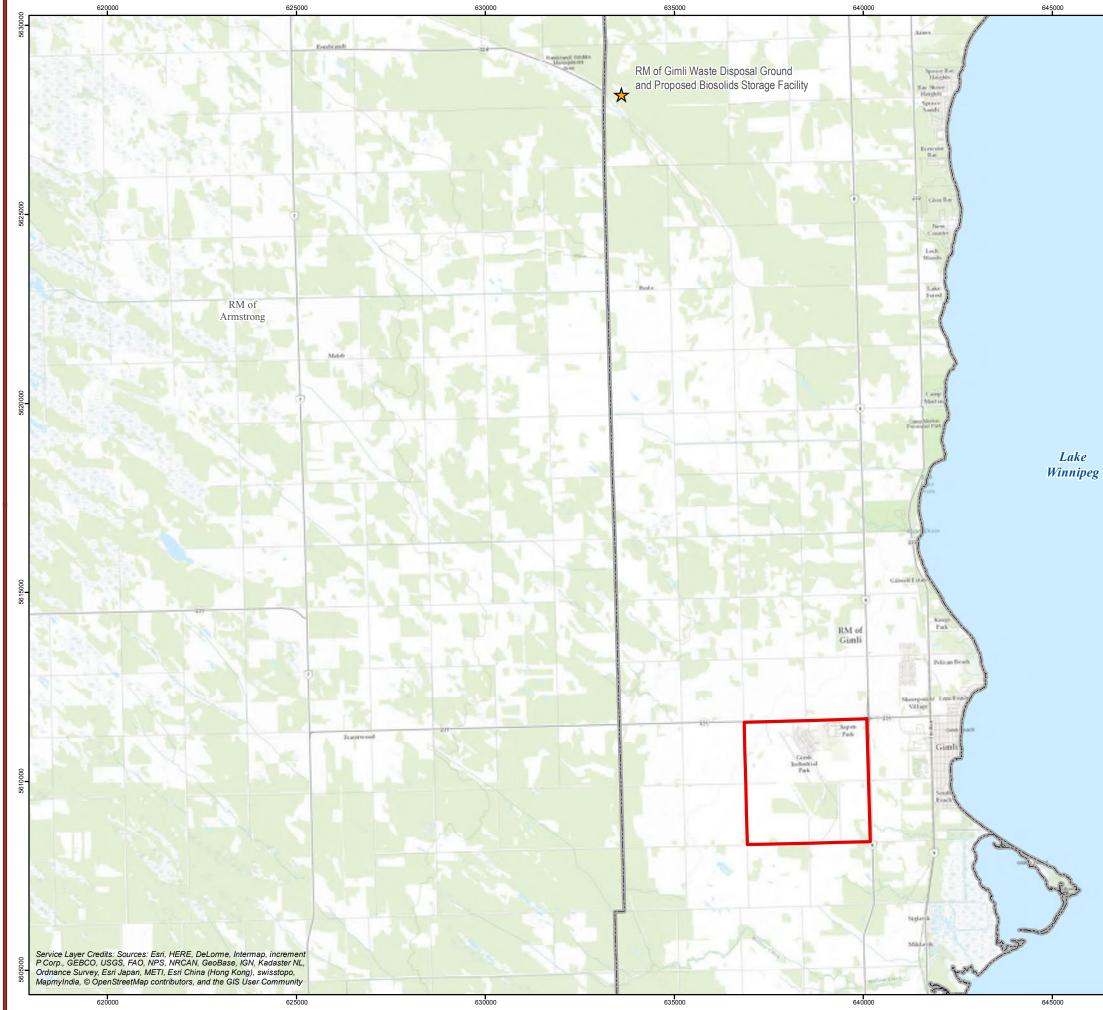
Table 7-2 Economic Value for Nitrogen and Phosphorus in Applied Biosolids

The biosolids material would be provided at no charge to the farm producer and is reducing their fertilizer expenses by approximately \$246.04 per hectare (Table 7-2). Based on the anticipated 65 hectares required for the land application this equates to approximately \$15,992.60 for just nitrogen and phosphorous fertilizer and does not account for the added benefit of potassium, sulfur and micro-nutrients. Hence the economic benefit to the farm producer is substantial based on the savings the farm producer will incur from crop fertilizer amendments. It should also be noted that the economic benefit to the R.M. is recognized from no land use fees being paid to the farm producer for the application of the biosolids; whereas, if the biosolids were disposed of in the local landfill the tipping fee would represent a significant cost to the R.M.

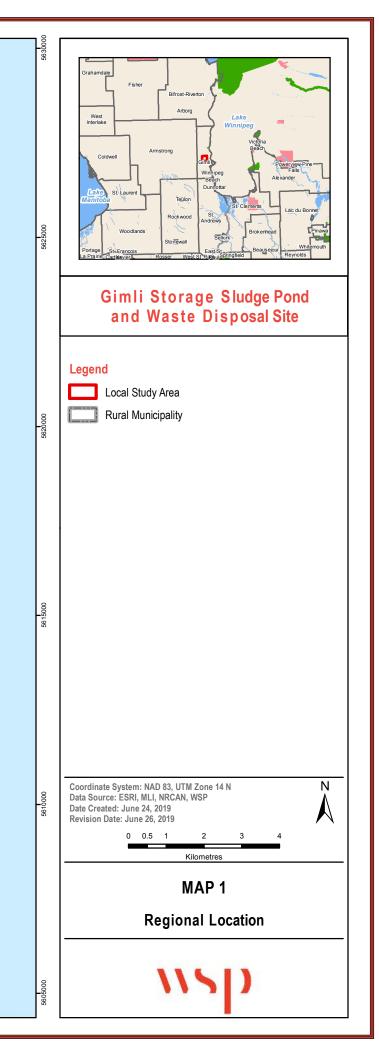
8 SUMMARY

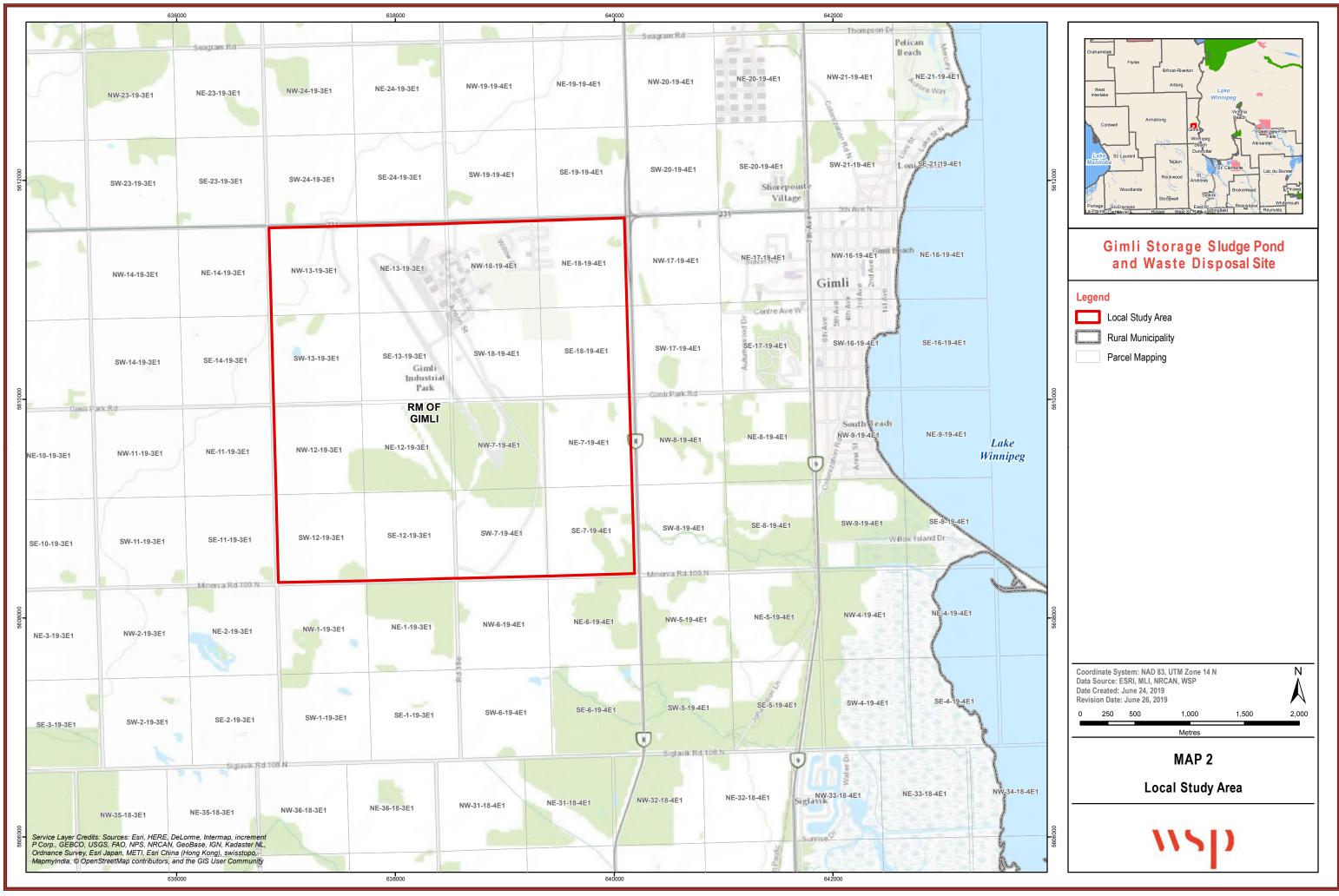
The objective of the R.M. of Gimli's biosolids land application plan is to complete the land application of biosolids material collected from their wastewater treatment lagoon (and stored at existing cells or in the future at the new storage pond) in an environmentally sustainable and agronomically suitable manner. Pre- and post-application soil monitoring of the land base receiving biosolids will enable the R.M. to make informed decisions regarding nutrient and metal loading to these land parcels to ensure their longevity in the program.

All regulatory requirements, guidelines and good neighbour policies and procedures discussed in this report will be adhered to during the course of the R.M. of Gimli's biosolids land application program. With the employment of appropriate mitigation measures, potential negative effects associated with the R.M.'s biosolids land application program can be minimized. When applied at balanced rates, the land application of biosolids is a sustainable means to reuse nutrients within an agriculture system as the application of biosolid organic material enhances the water holding capacity, structure and tilth of soils thereby providing benefits to land utilized for agricultural production.

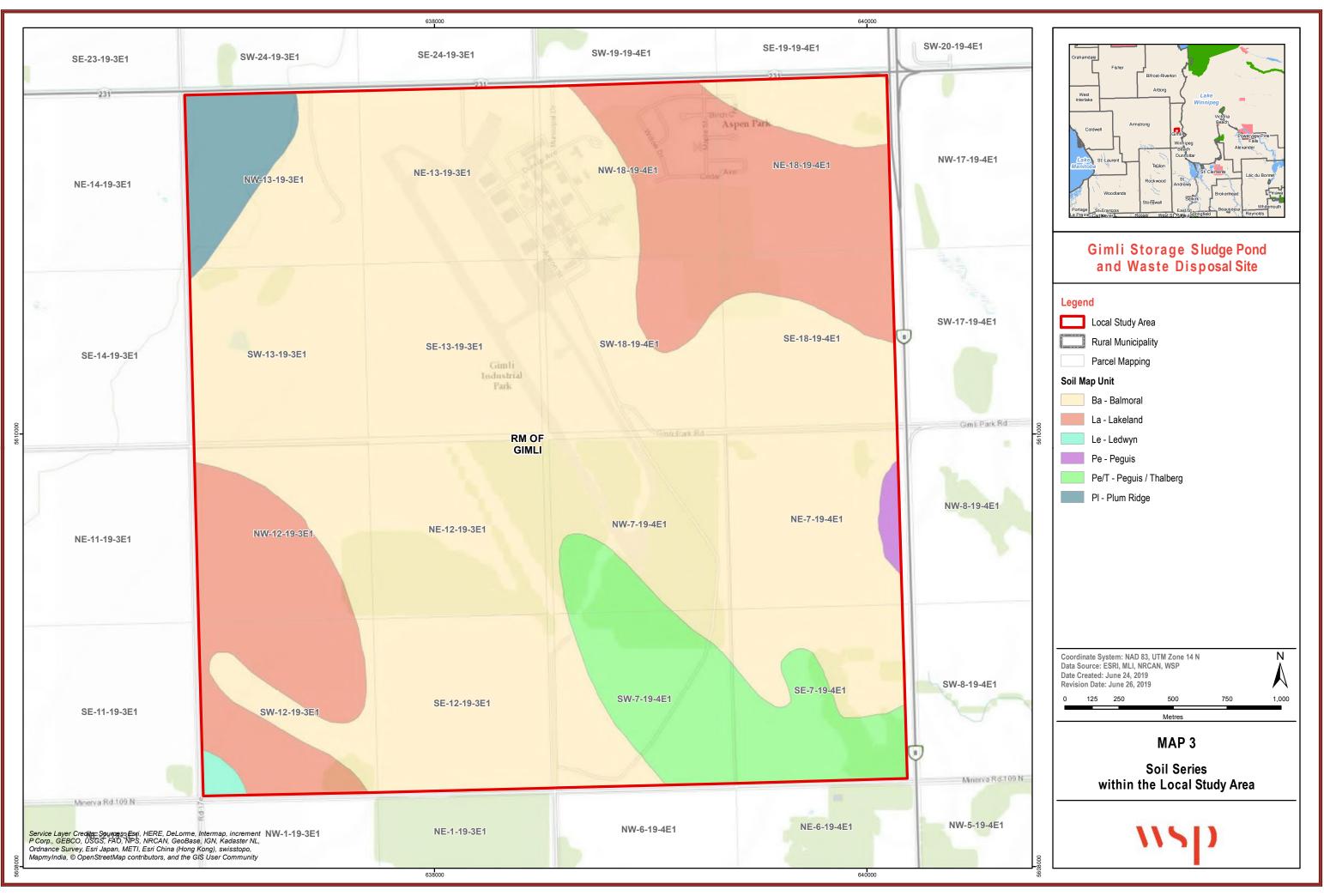

The information has been supplied as requested in a Notice of Alteration approval letter provided by the Manitoba Conservation and Climate, Environmental Approval Branch (File No. 4522.10, dated December 16, 2019) for the R.M.'s existing Environment Act Licence No. 2473 R.

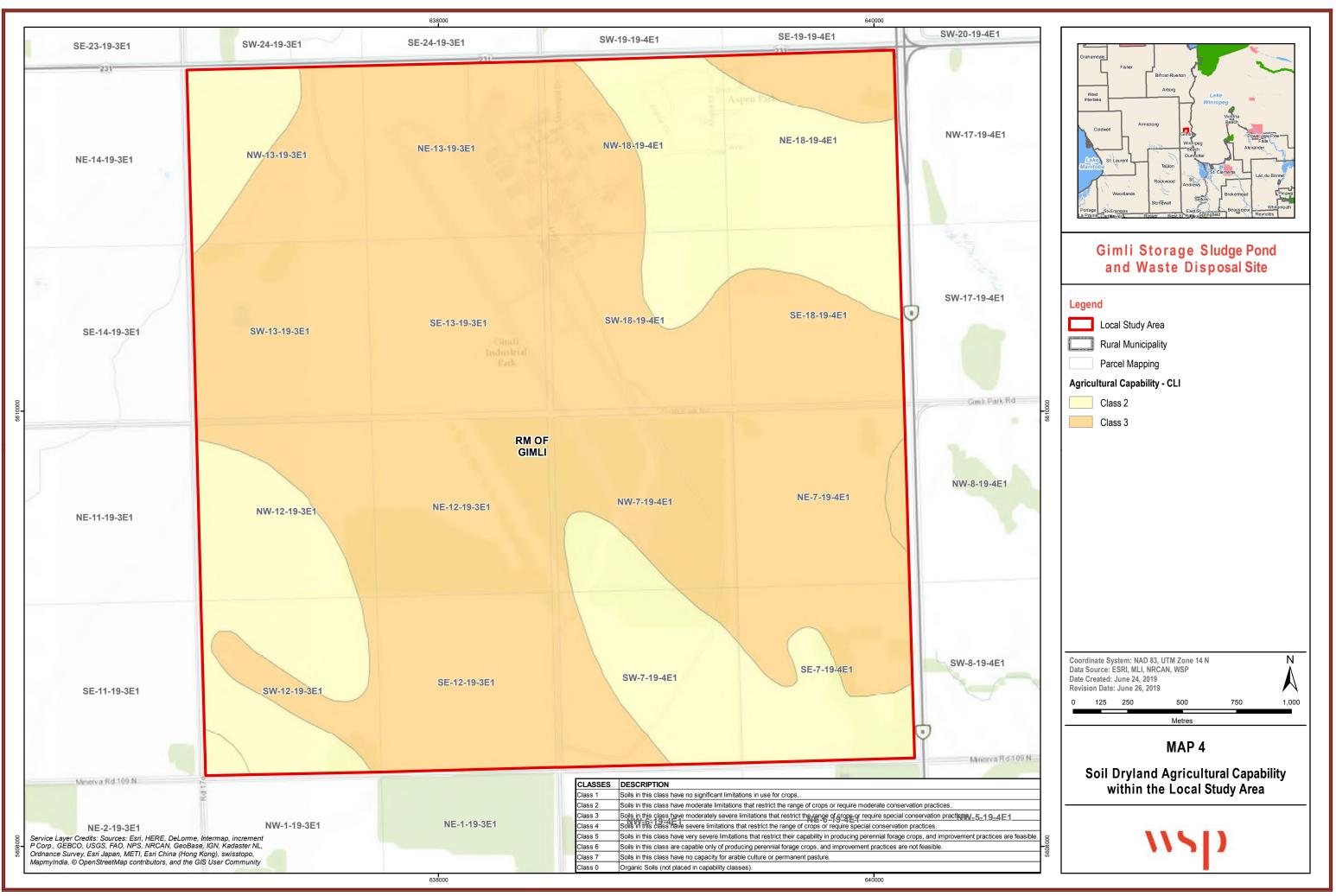
REFERENCES

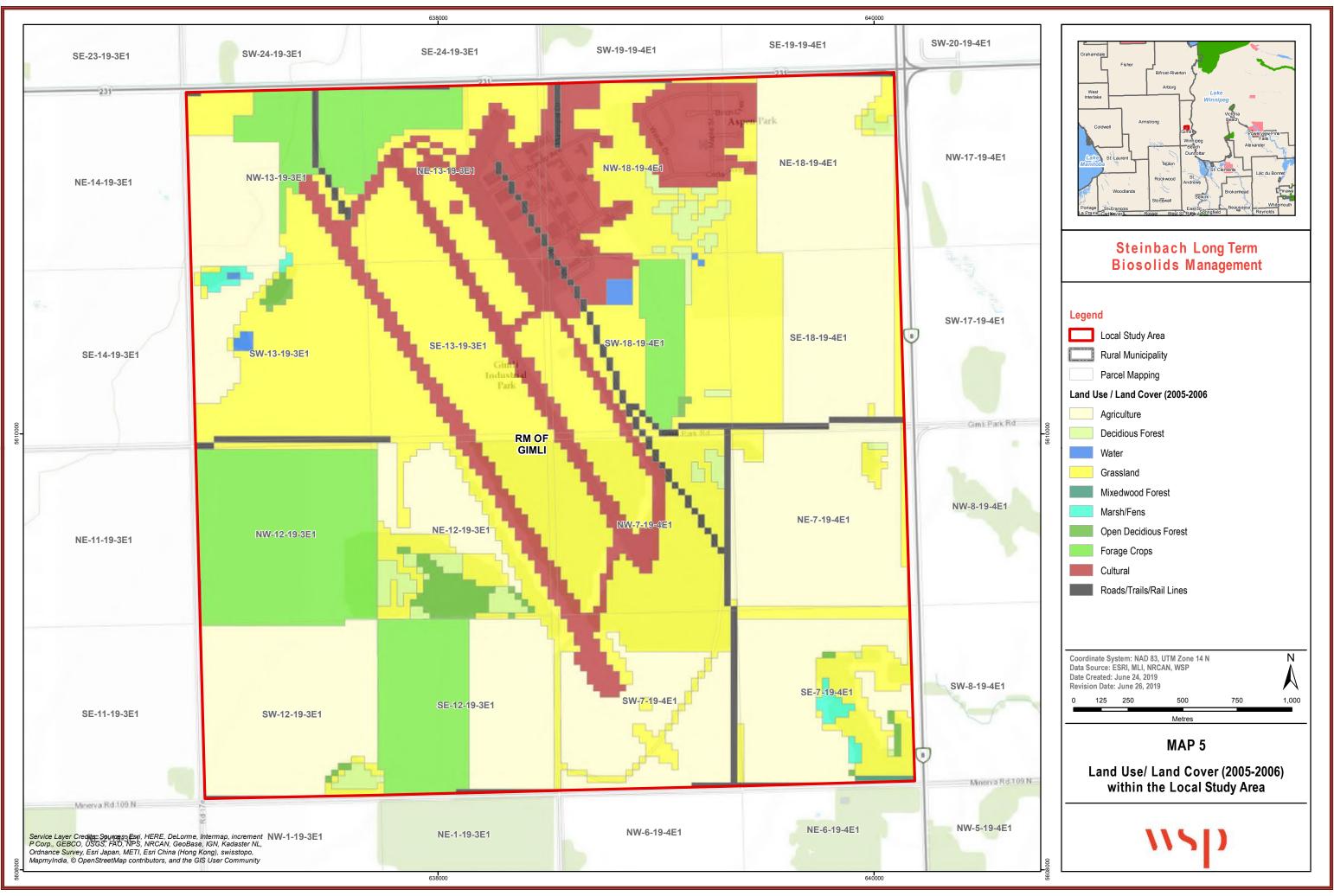

- Canadian Council of Ministers of the Environment (CCME). 2009. The Biosolids Emissions Assessment Model (BEAM): A Method for Determining Greenhouse Gas Emissions from Canadian Biosolids Management Practices, PN 1432.
- Haluschak, P., R.G. Eilers, G.F.Mills, and S.Grift. 1998. Status of Selected Trace Elements in Agriculture Soils of Southern Manitoba. Soil Resources Section, Soils and Crops Branch, Manitoba Agriculture.
- Harb, J. 1999. A Health Risk Assessment on the Consumption of Trace Metals Found in Crops Grown on Biosolids Amended Soil. Master of Science Thesis. Faculty of Medicine, Department of Community Health Sciences, University of Manitoba.
- Manitoba Agrimaps. n.d. Searchable online mapping resource. Retrieved on January 14, 2020 from: <u>https://agrimaps.gov.mb.ca/agrimaps/</u>.
- Racz, G. J. and M.M Fitzgerald. 1999. The Effect of Biosolids on Crops, Soil and Environmental Quality, A Summary of the Research. Department of Soil Science at the University of Manitoba.
- Racz, G. J. and M. M. Fitzgerald. 2001. Long-term Effects of Hog Manure on Soil Quality and Productivity. Final Report prepared for: Agri-Food Research and Development Imitative.
- Rutulis, M. and J. Mamott. (1986)1. Aquifer Maps of Southern Manitoba Map 1 of 2 Sand and Gravel Aquifers. Winnipeg, MB: Department of Water Resources, Water Resources Branch.
- Rutulis, M. and J. Mamott. (1986)2. Aquifer Maps of Southern Manitoba Map 2 of 2 Bedrock Aquifers. Winnipeg, MB: Department of Water Resources, Water Resources Branch.
- Smith, R., Veldhuis, H., Mils, G., Eilers, R., Fraser, W., & Lelyk, G. (1998). Terrestrial Ecozones, Ecoregions and Ecodistrics of Manitoba, An Ecological Stratification of Manitoba's Natural Landscapes. Winnipeg, MB: Agriculture and Agri-Food Canada, Research Branch, Brandon Research Centre, Land Resources Unit.
- Sullivan, D.M., C.G. Cogger, A.I. Bary, 2007. Fertilizing with Biosolids. A Pacific Northwest Extension Publication (PNW 508-E). Oregon State University, University of Idaho, Washington State University.



AFIGURES




U:/Projects/PROJECTS_2018/181-03988-00_RMofGimi_SludgeStoragePonds_WDGIMXDIMAP1_RegionalLocation_Bsize_20190626.mxd



U.1Projects\PROJECTS_2018\181-03988-00_RMofGimii_S\udgeStoragePonds_WDG\MXDMAP2_LocalStudyArea_Bsize_20190626.

U.\Projects\PROJECTS_20181181-03988-00_RMofGimli_SludgeStoragePonds_WDG\MXD\MAP4_SolDrylandAgCap_Bsize_2019

U:\Projects\PROJECTS_2018\181-03988-00_RMofGimil_StudgeStoragePonds_WDG\MXD\MAP5_LandUseLandCover_Bsize_20

B STATUS OF TITLE

STATUS OF TITLE

Title Number1225753/1Title StatusAcceptedClient File181-03988-01

1. REGISTERED OWNERS, TENANCY AND LAND DESCRIPTION

HER MAJESTY THE QUEEN IN RIGHT OF THE PROVINCE OF MANITOBA

IS REGISTERED OWNER SUBJECT TO SUCH ENTRIES RECORDED HEREON IN THE FOLLOWING DESCRIBED LAND:

ALL THAT PORTION OF PARCEL B PLAN 23108 WLTO TAKEN FOR WATER CONTROL WORKS PLAN 27555 WLTO IN E1/2 OF 12 AND 13-19-3 EPM AND IN W1/2 OF 7 AND 18-19-4 EPM AND IN GOVERNMENT ROAD ALLOWANCE (CLOSED)

The land in this title is, unless the contrary is expressly declared, deemed to be subject to the reservations and restrictions set out in section 58 of *The Real Property Act*.

2. ACTIVE INSTRUMENTS

No active instruments

3. ADDRESSES FOR SERVICE

DEPARTMENT OF JUSTICE (MB.) DIRECTOR OF LEGAL SERVICES 6TH FLOOR 405 BROADWAY WPG., MB. R3C 3L6

4. TITLE NOTES

No title notes

5. LAND TITLES DISTRICT

Winnipeg

6. DUPLICATE TITLE INFORMATION

Duplicate not produced

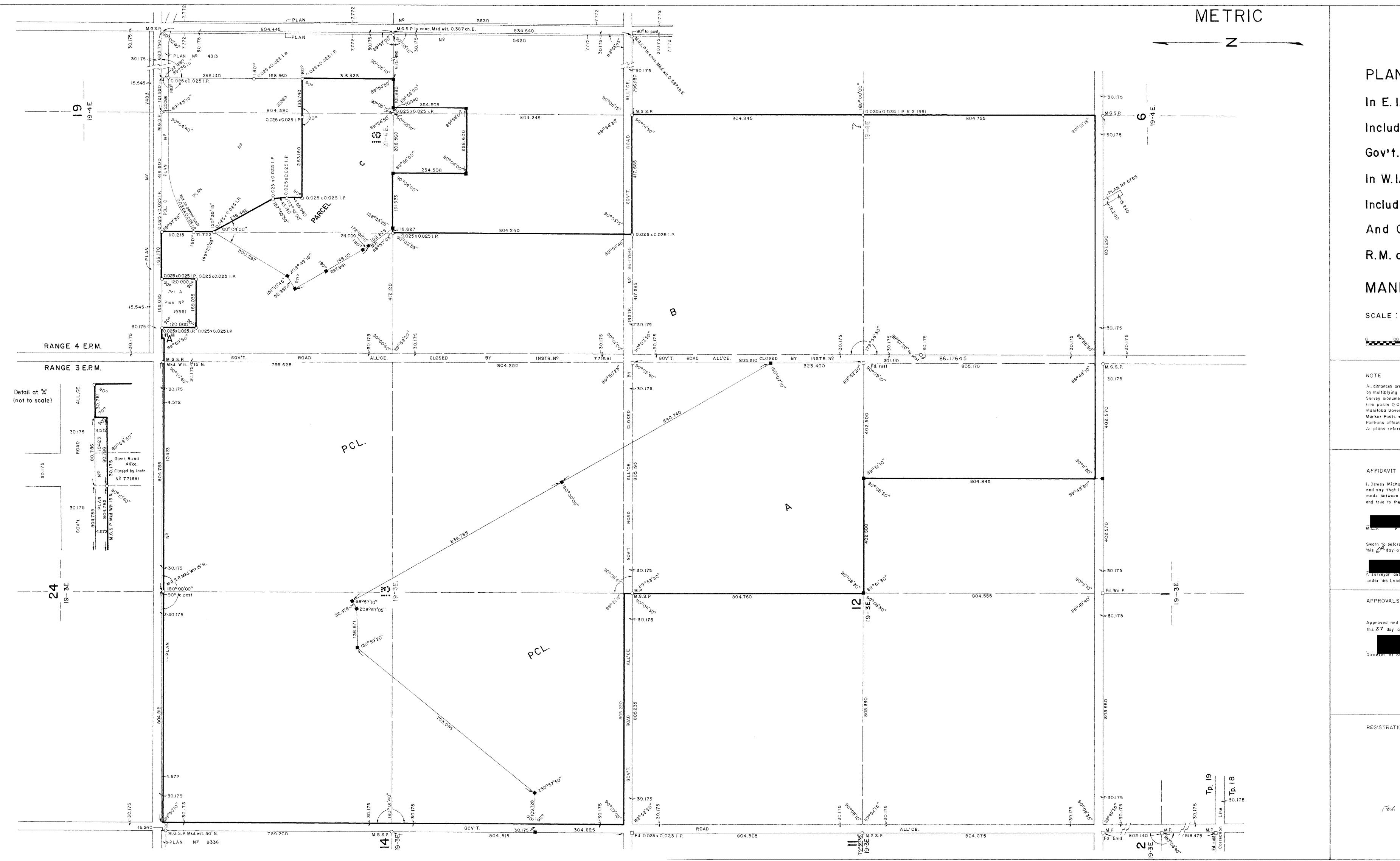
7. FROM TITLE NUMBERS

1099334/1 Partial

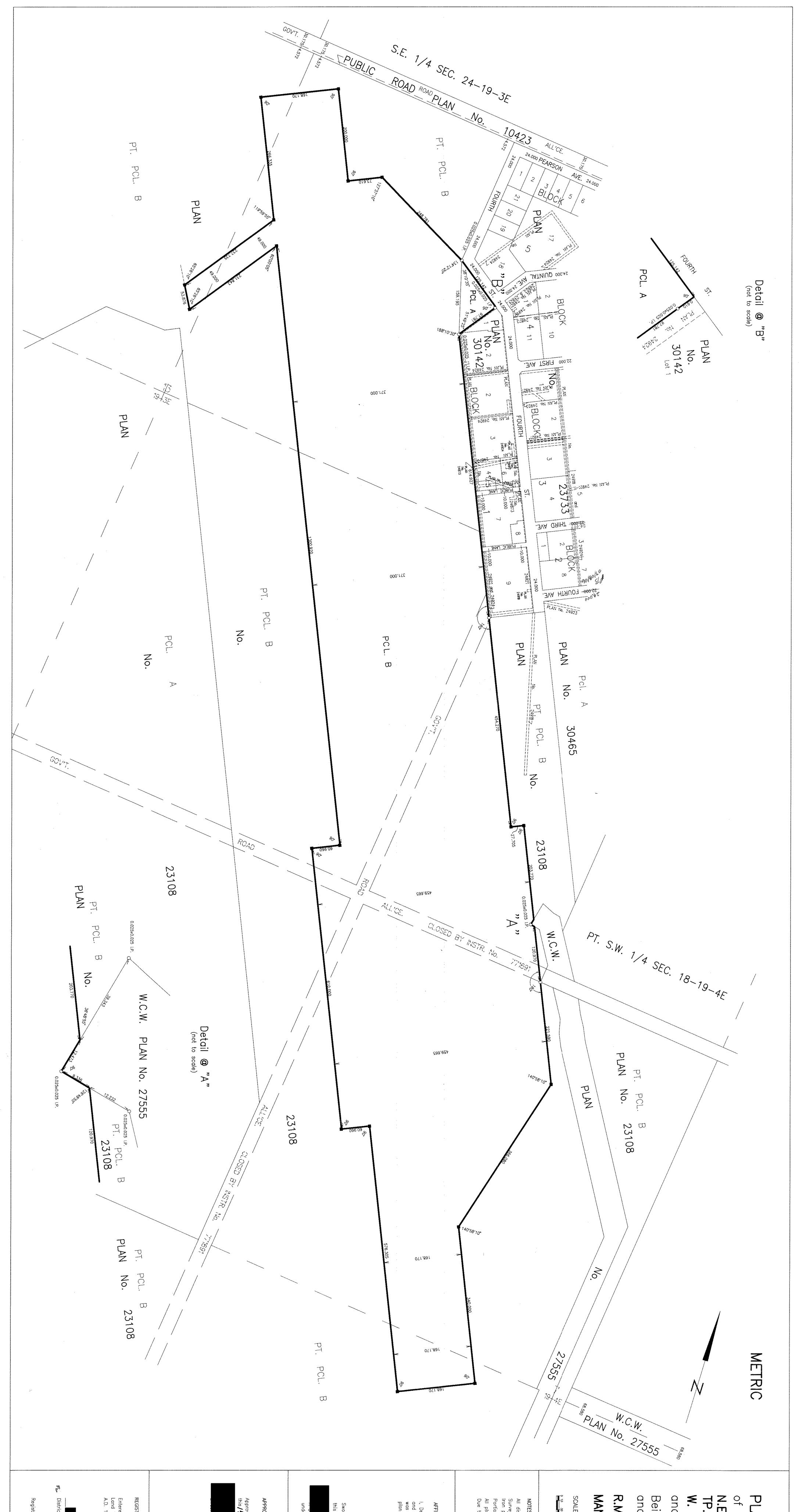
8. REAL PROPERTY APPLICATION / CROWN GRANT NUMBERS

No real property application or grant information

9. ORIGINATING INSTRUMENTS


Instrument Type:	Request To Issue Title - Internal
Registration Number:	1486434/1
Registration Date: From/By: To: Amount:	1991-11-22 WLTO SURVEY OFFICE

10. LAND INDEX


Lot B Plan 23108 WATER CONTROL WORKS PLAN 27555

Plan 27555 WATER CONTROL WORKS IN PCL B PL 23108

CERTIFIED TRUE EXTRACT PRODUCED FROM THE LAND TITLES DATA STORAGE SYSTEM OF TITLE NUMBER 1225753/1

		Deposit № 151/86	
			D. 22100
N OF SURVEY			Reider 3108 No Fee S President
1/2 Sec. 12 and Sec. 13, T	n 19 Rae 3 F P M		S Presidence
ding all of Plan Nº 5675 i			
. Road All'ce.s (now clos			
1/2 Sec. 7 and Sec. 18, Tp			
ding all of Plan N ^{os} 5599		7	
Govit. Road All'ce. (now c		•	
of Gimli			
ΙΙΤΟΒΑ			Q. A.C.
: I: 5000			
are in metres and decimals of a metre and may be converted to feet g by 3.28084. nents found on the ground are described and shown thus .025 x 0.025 x 0.914, marked M.L.S., are placed at all points shown t vernment Survey Posts are placed at all points shown thus with public warning plates are placed at all points shown thus . oted by this plan are shown bordered thus erred to are on record in the Winnipeg Land Titles Office.	hus M M.P.		
hael Roger Hoplock, of the City of Winnipeg, Manitoba Land Surve I did personally superintend the survey represented by this plan, In November 13,1985 and January 17,1986, and that the survey o he best of my knowledge and belief.	hat the survey was		
ore me at Winnipeg of FEBruary A.D. 1986			
nd Surveyors Act			
S			
d Confirmed of March A.D. 1986			
Surveys			
		1.11737790,1.77774,2.1914,1.4,2.194,1.194,1.194,1.194,1.194,1.194,1.194,1.194,1.194,1.194,1.194,1.194,1.194,1.1	
TON Entered and filed in the Winnipeg Land	EXAMINER OF SURVEYS This approval is Valid for 12 months unless	registered	
Titles Office this24 day of November A.D. 1988 as PLAN № 23108.	Approved this 24 day of November A.D. 198 8		
	Examiner of Surveys		
District Registration Priority Nº 1093413	Re-approved		
e e e e e e e e e e e e e e e e e e e			
	F. I	B. 2456 8-M-85(2)	

	F.B. 25337 File 634_GS/LAB_94	
· .	PROVINCE OF MANITOBA LAND INFORMATION CENTRE SURVEY SERVICES 1007 CENTURY STREET WINNIPEG MB.	stration No. 1882895
,	Re-Approved	int Registrar
t	EXAMINER OF SURVEYS This Approval is Valid for 12 months unless registered. Approved this 3 day of February A	STRATION red and filed in the Winnipeg 1 Titles Office this 3 rd day of February 1995 as PLAN No. 31970
		ROVALS oved and Confirmed A.D. 199
		s for the before me at Winnipeg s for day of December A.D. 1994 Journal Valmonteeu to process der The Land Surveyors Act
		M.L.S.
 	anitoba Land Surveyor, make oath sented by this plan, that the survey 27, 1994, and that the survey and id belief.	FIDAVIT Dewey Michael Roger Hoplock, of the City of Winnipeg, Manitoba Lar d say that 1 did personally superintend the survey represented by th s made between the dates of October 24 and October 27, 1994, c n are correct and true to the best of my knowledge and belief.
	d may be converted to feet by multiplying by 3.28084 and shown thus	ES distances are in metres or decimals of a metre and may be conver ey monuments found on the ground are described and shown thus posts 0.025 x 0.025 x 0.914, marked M.L.S., S.B., are placed at ions affected by this plan is shown bordered thus
		1:3000
LAND ACQUISITION	4 SEC. 18 TP. 19 RGE. 4 E.P.M., nce (closed) No. 23108	1/2 SEC. 7 and S.W. 1/4 Government Road Allowanc ng part of Parcel B Plan N part of Plan No. 24873 . OF GIMLI
A H	and N.W. 1/4 SEC. 13,	AN OF SURVEY part of E. 1/4 SEC. 12 and E. 1/2 TO RCF 3 FPM
_ _	Deposit No. 1138/94	

C GWDRILL LOGS

Well_PID: 1041 Owner: UNKNOWN Driller: MANITOBA GOVERNMENT Well Name: Well Use: PRODUCTION Water Use: Domestic UTMX: 638114.6840 UTMY: 5609562 Accuracy XY: UNKNOWN UTMZ: Accuracy Z: Date Completed: 1912 Apr 30

Location: NE-12-19-3E

WELL LOG

 From
 To
 Log

 (ft.)
 (ft.)

 0
 20.0
 CLAY

 20.0
 40.0
 HEAVY BLUE CLAY

 40.0
 84.9
 CLAY AND STONES

 84.9
 89.9
 CLAY, STONES, SAND

 89.9
 118.9
 CLAY AND STONES

 118.9
 125.9
 LIMESTONE AND SAND, WATER

No construction data for this well.

Top of Casing: 0 ft. below ground

No pump test data for this well.

REMARKS

GROUND LEVEL ELEV EST 735 FT

Well_PID: 3524 Owner: DEPT OF TRANSPORT Driller: HI-RATE DRILLING LTD. Well Name: Well Use: TEST WELL Water Use: UTMX: 638062.4450 UTMY: 5611205.04 Accuracy XY: UNKNOWN UTMZ: Accuracy Z: Date Completed: 1941 Jun 01

Location: NE-13-19-3E

WELL LOG

From To Log (ft.) (ft.) 0 13.0 WHITE YELLOWISH CLAY 13.0 45.0 SOFT AND STICKY BLUE CLAY 45.0 56.0 BLUE CLAY AND SOFT THIN STREAKS OF LIMESTONE 56.0 77.9 MEDIUM HARD LIMESTONE AND DOLOMITE 77.9 89.9 LIMESTONE AND CLAY STREAKS 89.9 90.9 HARD LIMESTONE 90.9 109.9 MEDIUM HARD LIMESTONE AND DOLOMITE 109.9 111.9 VERY HARD LIMESTONE AND DOLOMITE

No construction data for this well.

Top of Casing: 0 ft. below ground

No pump test data for this well.

REMARKS

1550 FT W OF SEC LINE, GROUND LEVEL ELEV EST 740 FT, FORMATION TOO HARD FOR DRILL RIG USED

WELL LOG

 From
 To
 Log

 (ft.)
 (ft.)

 0
 6.0
 BROWN TILL

 6.0
 23.0
 GREY CLAY

 23.0
 127.0
 GREY TILL

 127.0
 236.0
 BROWN LIMESTONE

WELL CONSTRUCTION

From To CasingInside Outside SlotTypeMaterial(ft.)(ft.) TypeDia.(in) Dia.(in) Size(in)00129.0 BOREHOLE7.880129.0 CASING5.005.50INSERT129.0 236.0 OPEN HOLE4.7500129.0 SURFACE SEALHOLEPLUGBENTONITE

Top of Casing: 1.502 ft. above ground

PUMPING TEST

Date:2017 Apr 19Pumping Rate:52.005 Imp. gallons/minuteWater level before pumping:21.9 ft. below groundPumping level at end of test:22.4 ft. below groundTest duration:1 hours, minutesWater temperature:?? degrees F

REMARKS

62 2ND AVENUE, P.O. BOX 1296, GIMLI MB, ROC 1BO. AIR LIFTING. CONVERTED TO 12 INCH STEEL CASED PRODUCTION WELL.

WELL LOG

 From
 To
 Log

 (ft.)
 (ft.)

 0
 6.0
 BROWN TILL

 6.0
 23.0
 GREY CLAY

 23.0
 127.0
 GREY TILL

 127.0
 236.0
 BROWN LIMESTONE

WELL CONSTRUCTION

From To CasingInside Outside SlotTypeMaterial(ft.)(ft.) TypeDia.(in) Dia.(in) Size(in)0129.0 BOREHOLE12.0012.75WELDEDSTEEL129.0240.0 OPEN HOLE00000000

Top of Casing: 1.502 ft. above ground

PUMPING TEST

Date:2017 May 25Rate:?? Imp. gallons/minuteWater level before pumping:21.9 ft. below groundPumping level at end of test:?? ft. below groundTest duration:??? hours, ?? minutesWater temperature:?? degrees F

REMARKS

WITN:000130; AIR LIFTING.

Location: NE13-19-3E Well PID: 134983 Owner: FAROEX Driller: Interlake Water Supply Well Name: Well Use: PRODUCTION Water Use: Industrial UTMX: 638062.4450 5611205.04 UTMY: Accuracy XY: UTMZ: Accuracy Z: Date Completed: 2005 Aug 09 WELL LOG From To Log (ft.) (ft.) 0 1.0 TOPSOIL 1.0 34.0 SILTY CLAY 34.0 114.0 SOFT GREY TILL WITH GRAVEL LAYERS 114.0 200.0 BROWN LIMESTONE 200.0 205.0 YELLOW LIMESTONE 205.0 222.0 BROWN LIMESTONE WELL CONSTRUCTION From To Casing Inside Outside Slot Type Material Dia.(in) Dia.(in) Size(in) (ft.) (ft.) Type INSERT PVC 0 134.0 CASING 6.00 134.0 222.0 OPEN HOLE 5.80 CASING GROUT CEMENT Top of Casing: 1.502 ft. above ground PUMPING TEST Date: 2005 Aug 09 Pumping Rate: 300.000 Imp. gallons/minute Water level before pumping: 22.0 ft. below ground Pumping level at end of test: 48.0 ft. below ground 3 hours, minutes Test duration: Water temperature: ?? degrees F

Well_PID:197776Owner:RURAL MUNICIPALITY OF GIMLIDriller:Friesen Drillers Ltd.Well Name:(TH-02) MIDDLE MONITORING WELLWell Use:TEST WELLWater Use:PUBLIC/SEMI-PUBLICUTMX:638375.7730UTMY:5611107.8120Accuracy XY:1 EXACT [<5M] [GPS]</td>UTMZ:228Accuracy Z:4 FAIR - Shuttle at CentroidDate Completed:2017 Feb 14

WELL LOG

 From
 To
 Log

 (ft.)
 (ft.)
 (ft.)

 0
 11.0
 BROWN TILL

 11.0
 21.0
 GREY CLAY

 21.0
 73.0
 GREY TILL

 73.0
 121.0
 BROWN ROCKY TILL

 121.0
 216.0
 BROWN LIMESTONE

WELL CONSTRUCTION

From To Casing Inside Outside Slot Type Material(ft.) (ft.) Type Dia.(in) Dia.(in) Size(in)0 123.0 BOREHOLE7.880 123.0 CASING5.005.501V23.0 216.0 OPEN HOLE4.750 123.0 SURFACE SEALHOLEPLUG BENTONITE

Top of Casing: 2.000 ft. above ground

PUMPING TEST

Date:2017 Feb 14Pumping Rate:100.000 Imp. gallons/minuteWater level before pumping:20.7 ft. below groundPumping level at end of test:21.4 ft. below groundTest duration:1 hours, minutesWater temperature:?? degrees F

REMARKS

62 2ND AVENUE, P.O. BOX 1296, GIMLI MB, ROC 1BO. AIR LIFTING. TEST WELL USED AS MONITORING WELL.

Well_PID:197778Owner:RURAL MUNICIPALITY OF GIMLIDriller:Friesen Drillers Ltd.Well Name:(TH-03) NORTH MONITORING WELLWell Use:TEST WELLWater Use:PUBLIC/SEMI-PUBLICUTMX:638344.3160UTMY:5611200.4410Accuracy XY:1 EXACT [<5M] [GPS]</td>UTMZ:228Accuracy Z:4 FAIR - Shuttle at CentroidDate Completed:2017 Feb 15

WELL LOG

 From
 To
 Log

 (ft.)
 (ft.)

 0
 4.0
 FILL

 4.0
 23.0
 BROWN TILL

 23.0
 35.0
 GREY CLAY

 35.0
 82.0
 GREY TILL

 82.0
 138.0
 BROWN TILL

WELL CONSTRUCTION

From To CasingInside Outside SlotTypeMaterial(ft.)(ft.) TypeDia.(in) Dia.(in) Size(in)0140.0 BOREHOLE7.880140.0 CASING5.005.50INSERTPVC140.0216.0 OPEN HOLE4.750140.0 SURFACE SEALHOLEPLUG BENTONITE

Top of Casing: 2.502 ft. above ground

PUMPING TEST

Date:2017 Feb 15Pumping Rate:100.000 Imp. gallons/minuteWater level before pumping:23.6 ft. below groundPumping level at end of test:24.6 ft. below groundTest duration:1 hours, minutesWater temperature:?? degrees F

REMARKS

62 2ND AVENUE, P.O. BOX 1296, GIMLI MB, ROC 1B0 . AIR LIFTING. TEST WELL USED AS MONITORING WELL.

Well_PID: 100587
Owner: RM OF GIMLI
Driller: Stasiuk & Sons Drilling Inc.
Well Name: FAROEX MAIN WELL
Well Use: PRODUCTION
Water Use: Domestic
UTMX: 638062.5010
UTMY: 5611198.61
Accuracy XY: 5 GENERAL [1KM-8KM] [WITHIN TOWNSHIP]
UTMZ:
Accuracy Z: UNKNOWN
Date Completed: 1996 Aug 22

WELL LOG

From To Log (ft.) (ft.) 0 115.0 SANDY TILL AND BOULDERS 115.0 130.0 GRAVEL, SAND AND LOOSE ROCK 130.0 222.0 BROWN ROCK

WELL CONSTRUCTION

From To CasingInside Outside SlotTypeMaterial(ft.)(ft.) TypeDia.(in) Dia.(in) Size(in)BLACK IRON0131.5 CASING6.00BLACK IRON131.5 222.0 OPEN HOLEComparisonComparison

Top of Casing: 1.502 ft. above ground

PUMPING TEST

Date:1996 Aug 22Pumping Rate:270.000 Imp. gallons/minuteWater level before pumping:24.1 ft. below groundPumping level at end of test:34.6 ft. below groundTest duration:2 hours, minutesWater temperature:?? degrees F

Well_PID:197772Owner:RURAL MUNICIPALITY OF GIMLIDriller:Friesen Drillers Ltd.Well Name:NORTH WELLWell Use:TEST WELLWater Use:PUBLIC/SEMI-PUBLICUTMX:638099UTMY:5611299.6670Accuracy XY:1 EXACT [<5M] [GPS]</td>UTMZ:228Accuracy Z:4 FAIR - Shuttle at CentroidDate Completed:2017 Apr 18

WELL LOG

 From
 To
 Log

 (ft.)
 (ft.)

 0
 8.0
 BROWN TILL

 8.0
 29.0
 GREY CLAY

 29.0
 132.0
 GREY TILL

 132.0
 237.0
 BROWN LIMESTONE

WELL CONSTRUCTION

From To CasingInside Outside SlotTypeMaterial(ft.)(ft.) TypeDia.(in) Dia.(in) Size(in)00134.0 BOREHOLE7.880134.0 CASING5.005.50INSERT134.0 237.0 OPEN HOLE4.7500134.0 SURFACE SEALHOLEPLUGBENTONITE

Top of Casing: 1.502 ft. above ground

PUMPING TEST

Date:2017 Apr 18Pumping Rate:52.005 Imp. gallons/minuteWater level before pumping:20.5 ft. below groundPumping level at end of test:21.2 ft. below groundTest duration:1 hours, minutesWater temperature:?? degrees F

REMARKS

WITN:000129; 62 2ND AVENUE, P.O. BOX 1296, GIMLI MB, ROG 1B0. AIR LIFTING. CONVERTED TO 12 INCH STEEL CASED PRODUCTION WELL.

Well_PID:197771Owner:RURAL MUNICIPALITY OF GIMLIDriller:Friesen Drillers Ltd.Well Name:NORTH WELLWell Use:PRODUCTIONWater Use:PUBLIC/SEMI-PUBLICUTMX:638099UTMY:5611299.6670Accuracy XY:1 EXACT [<5M] [GPS]</td>UTMZ:228Accuracy Z:4 FAIR - Shuttle at CentroidDate Completed:2017 Apr 18

WELL LOG

 From
 To
 Log

 (ft.)
 (ft.)

 0
 8.0
 BROWN TILL

 8.0
 29.0
 GREY CLAY

 29.0
 132.0
 GREY TILL

 132.0
 240.0
 BROWN LIMESTONE

WELL CONSTRUCTION

From To CasingInside Outside SlotTypeMaterial(ft.)(ft.) TypeDia.(in) Dia.(in) Size(in)00134.0 CASING12.0012.75STEEL134.0240.0 OPEN HOLE10.6300134.0 BOREHOLE12.88

Top of Casing: 1.502 ft. above ground

PUMPING TEST

Date:2017 Apr 18Pumping Rate:650.000 Imp. gallons/minuteWater level before pumping:20.5 ft. below groundPumping level at end of test:29.4 ft. below groundTest duration:1 hours, minutesWater temperature:?? degrees F

REMARKS

WITN:000129; 62 2ND AVENUE, P.O. BOX 1296M GIMLI MB, ROG 1BO. AIR LIFTING. REPORT BY FRIESEN DRILLERS. Q: 433 USGPM PI: 100 FT.

Well_PID:197773Owner:RURAL MUNICIPALITY OF GIMLIDriller:Friesen Drillers Ltd.Well Name:SOUTH WELLWell Use:PRODUCTIONWater Use:PUBLIC/SEMI-PUBLICUTMX:637990.9430UTMY:5611345.7740Accuracy XY:1 EXACT [<5M] [GPS]</td>UTMZ:228Accuracy Z:4 FAIR - Shuttle at CentroidDate Completed:2017 May 25

WELL LOG

 From
 To
 Log

 (ft.)
 (ft.)

 0
 6.0
 BROWN TILL

 6.0
 23.0
 GREY CLAY

 23.0
 127.0
 GREY TILL

 127.0
 240.0
 BROWN LIMESTONE

WELL CONSTRUCTION

From To CasingInside Outside SlotTypeMaterial(ft.)(ft.) TypeDia.(in) Dia.(in) Size(in)0129.0 CASING12.0012.75STEEL129.0240.0 OPEN HOLE10.6310.6310.6310.6310.6310.63

Top of Casing: 1.502 ft. above ground

PUMPING TEST

Date:2017 Jun 01Pumping Rate:650.000 Imp. gallons/minuteWater level before pumping:20.6 ft. below groundPumping level at end of test:29.4 ft. below groundTest duration:24 hours, minutesWater temperature:?? degrees F

REMARKS

WITN:000130; 62 2ND AVENUE, P.O. BOX 1296, GIMLI MB, ROC 1B0. AIR LIFTING. REPORT BY FRIESEN DRILLERS. Q: 433 USGPM PI: 100 FT.

Well_PID:195109Owner:TOWN OF GIMLIDriller:Friesen Drillers Ltd.Well Name:SOUTH WELLWell Use:PRODUCTIONWater Use:DOMESTIC,PUBLIC/SEMI-PUBLIC,COMM/INDUSTUTMX:638099UTMY:5611299.6670Accuracy XY:1 EXACT [<5M] [GPS]</td>UTMZ:228Accuracy Z:4 FAIR - Shuttle at CentroidDate Completed:2017 May 18

WELL LOG

 From
 To
 Log

 (ft.)
 (ft.)

 0
 8.0
 BROWN TILL

 8.0
 29.0
 GREY CLAY

 29.0
 132.0
 GREY TILL

 132.0
 240.0
 BROWN LIMESTONE

WELL CONSTRUCTION

From To Casing Inside Outside SlotType Material(ft.) (ft.) Type Dia.(in) Dia.(in) Size(in)00134.0 BOREHOLE12.00134.0 203.0 OPEN HOLE10.63203.0 240.0 OPEN HOLE10.00

Top of Casing: 1.502 ft. above ground

PUMPING TEST

Date:2017 May 18Pumping Rate:?? Imp. gallons/minuteWater level before pumping:20.5 ft. below groundPumping level at end of test:?? ft. below groundTest duration:??? hours, ?? minutesWater temperature:?? degrees F

REMARKS

WITN:000129; AIR LIFTING.

Well_PID: 11542 Owner: RM OF GIMLI Driller: PRUDEN DRILLING CO. LTD. Well Name: WELL NO. 1 Well Use: PRODUCTION Water Use: Municipal UTMX: 638384 UTMY: 5611173 Accuracy XY: 1 EXACT [<5M] [GPS] UTMZ: Accuracy Z: Date Completed: 1968 Dec 01

Location: NE13-19-3E

WELL LOG

From To Log (ft.) (ft.) 0 30.0 CLAY 30.0 131.9 TILL 131.9 133.9 FRACTURED LIMESTONE 133.9 149.9 LIMESTONE

WELL CONSTRUCTION

From To CasingInside Outside SlotTypeMaterial(ft.) (ft.) TypeDia.(in) Dia.(in) Size(in)0149.9 casing10.00

Top of Casing: 0 ft. below ground

PUMPING TEST

Date:1968 Dec 01Pumping Rate:336.860 Imp. gallons/minuteWater level before pumping:25.0 ft. below groundPumping level at end of test:28.0 ft. below groundTest duration:12 hours, minutesWater temperature:?? degrees F

REMARKS

GIMLI INDUSTRIAL PARK/ASPEN PARK - PUBLIC WATER SYSTEM WELL (COMMUNITY CODE 75.00). WELL LOCATED AT FORMER CANADIAN FORCES BASE, GIMLI. WELL LOCATED IN BASEMENT OF WATER TREATMENT PLANT. WELL INVENTORY/GPS COMPLETED BY WRB IN JUNE 2006. PREVIOUS OWNER - DEPT. OF DEFENCE.

Well_PID: 136763
Owner: RM OF GIMLI
Driller: UNKNOWN
Well Name: WELL NO. 2
Well Use: PRODUCTION
Water Use: Municipal
UTMX: 638355
UTMY: 5611196
Accuracy XY: 1 EXACT [<5M] [GPS]
UTMZ:
Accuracy Z:
Date Completed: 1940 Jan 01

No well log data for this well.

No construction data for this well.

Top of Casing:

No pump test data for this well.

REMARKS

GIMLI INDUSTRIAL PARK/ASPEN PARK - PUBLIC WATER SYSTEM WELL (COMMUNITY CODE 75.00). WELL LOCATED AT FORMER CANADIAN FORCES BASE, GIMLI. WELL LOCATED IN SOFTENING PLANT. WELL INVENTORY/GPS COMPLETED BY WRB IN JUNE 2006. NO WELL LOG AVAILABLE. DRILL DATE UNKNOWN, BUT LIKELY IN THE 1940'S.

WELL LOG

 From
 To
 Log

 (ft.)
 (ft.)

 0
 24.0
 CLAY

 24.0
 112.0
 TILL; SILTY

 112.0
 137.0
 LIMESTONE; MEDIUM, HARD

 137.0
 162.0
 FRACTURED LIMESTONE

 162.0
 173.0
 LIMESTONE; MEDIUM, HARD

 173.0
 181.0
 SHALE

 181.0
 230.0
 LIMESTONE

WELL CONSTRUCTION

From To CasingInside Outside SlotTypeMaterial(ft.) (ft.) TypeDia.(in) Dia.(in) Size(in)0 119.9 casing4.00INSERTGALVANIZED119.9 184.9 casing2.00T & CGALVANIZED184.9 229.8 open hole2.00

Top of Casing: 0 ft. below ground

PUMPING TEST

Date:1985 Sep 17Pumping Rate:29.987 Imp. gallons/minuteWater level before pumping:0 ft. below groundPumping level at end of test:22.0 ft. below groundTest duration:5 hours, minutesWater temperature:?? degrees F

WELL LOG

 From
 To
 Log

 (ft.)
 (ft.)

 0
 28.0
 CLAY

 28.0
 109.9
 TILL; SILTY

 109.9
 117.9
 LIMESTONE; SOFT, FRACTURED

 117.9
 136.9
 LIMESTONE

WELL CONSTRUCTION

From ToCasingInsideOutsideSlotTypeMaterial(ft.)(ft.)TypeDia.(in)Dia.(in)Size(in)0120.9casing4.00INSERTGALVANIZED120.9136.9open hole3.80

Top of Casing: 2.000 ft. above ground

PUMPING TEST

Date:1985 Sep 11Pumping Rate:19.987 Imp. gallons/minuteWater level before pumping:0 ft. below groundPumping level at end of test:20.0 ft. below groundTest duration:3 hours, minutesWater temperature:?? degrees F

Location: NW-13-19-3E Well PID: 7617 Owner: BACM Driller: KARL STASIUK AND SON Well Name: Well Use: PRODUCTION Water Use: Industrial UTMX: 637272.6280 UTMY: 5611183.42 Accuracy XY: UNKNOWN UTMZ: Accuracy Z: Date Completed: 1965 Jul 09 WELL LOG From To Log (ft.) (ft.) 0 7.0 BROWN SANDY CLAY 7.0 18.0 PUTTY DARK GREY CLAY 18.0 40.0 SOFT PUTTY, DARK GREY CLAY 40.0 66.0 SOFT GREY CLAY, FEW PEBBLES 66.0 70.0 GREY CLAY AND PEBBLES 70.0 78.9 HARDER GREY CLAY, LOTS OF PEBBLES 78.9 81.9 HARDPAN AND BOULDERS 81.9 88.9 RED GRANITE BOULDER 88.9 107.9 HARDPAN WITH BOULDERS, SAND AND GRAVEL 107.9 114.9 SOFT BROWN LIMESTONE WELL CONSTRUCTION From To Casing Inside Outside Slot Type Material (ft.) (ft.) Type Dia.(in) Dia.(in) Size(in) 0 107.9 casing 4.00 107.9 114.9 open hole Top of Casing: 0 ft. below ground PUMPING TEST 1965 Jul 09 Date: Pumping Rate: 29.987 Imp. gallons/minute Water level before pumping: 28.0 ft. below ground Pumping level at end of test: 29.0 ft. below ground Test duration: 2 hours, minutes Water temperature: 41.000 degrees F REMARKS

54 FT S OF FRAZERWOOD RD + 130 FT E OF N/S RD ALLOW GROUND LEVEL ELEV EST 745 FT

Well_PID: 100588 Owner: RM OF GIMLI Driller: Stasiuk & Sons Drilling Inc. Well Name: FAROEX RETURN WELL Well Use: RECHARGE Water Use: UTMX: 637272.6280 UTMY: 5611183.42 Accuracy XY: 4 FAIR [350M-1KM] [WITHIN SECTION] UTMZ: Accuracy Z: UNKNOWN Date Completed: 1996 Aug 29

WELL LOG

From To Log (ft.) (ft.) 0 138.0 SANDY TILL AND BOULDERS 138.0 158.0 GRAVEL, SAND AND BROKEN ROCK 158.0 200.0 BROWN ROCK 200.0 205.0 YELLOW ROCK AND SAND

WELL CONSTRUCTION

Location: NW13-19-3E

From To CasingInside Outside SlotTypeMaterial(ft.)(ft.) TypeDia.(in) Dia.(in) Size(in)BLACK IRON0159.0CASING6.00BLACK IRON159.0205.0OPEN HOLECASINGCASING

Top of Casing: 2.000 ft. above ground

PUMPING TEST

Date:1996 Aug 29Pumping Rate:?? Imp. gallons/minuteWater level before pumping:24.1 ft. below groundPumping level at end of test:?? ft. below groundTest duration:??? hours, ?? minutesWater temperature:?? degrees F

REMARKS

POTENTIAL ERROR IN INFORMATION REGARDING THIS WELL BEING SEALED

Location: SE-13-19-3E Well PID: 3525 Owner: DEPT OF TRANSPORT Driller: HI-RATE DRILLING LTD. Well Name: Well Use: TEST WELL Water Use: UTMX: 638089.28 UTMY: 5610395.33 Accuracy XY: UNKNOWN UTMZ: Accuracy Z: Date Completed: 1941 Jun 01

WELL LOG

From To Log (ft.) (ft.) 0 11.0 YELLOWISH WHITE CLAY 11.0 59.0 VERY STICKY BLUE CLAY 59.0 91.9 LIMESTONE AND CLAY STREAKS 91.9 96.9 LIGHT BLUE CLAY 96.9 108.9 LIMESTONE AND CLAY 108.9 109.9 LIMESTONE AND DOLOMITE 109.9 131.9 LIMESTONE AND CLAY STREAKS 131.9 132.9 VERY HARD DOLOMITE

No construction data for this well.

Top of Casing: 0 ft. below ground

No pump test data for this well.

REMARKS

GROUND LEVEL ELEV EST 735 FT, HOLE WAS ABANDONED AS DRILLING RIG WAS NOT HEAVY ENOUGH

Location: SW-13-19-3E Well PID: 7618 Owner: **R C A F STATION** Driller: KARL STASIUK AND SON Well Name: Well Use: PRODUCTION Water Use: Domestic UTMX: 637293.1620 UTMY: 5610376.55 Accuracy XY: UNKNOWN UTMZ: Accuracy Z: Date Completed: 1965 Jul 27 WELL LOG From To Log (ft.) (ft.) 0 9.0 BROWN SANDY CLAY 9.0 34.0 SOFT BLUE CLAY 34.0 73.0 SOFT GREY CLAY WITH GRAVEL 73.0 107.9 HARDPAN AND PEBBLES 107.9 112.9 HARDPAN WITH GRAVEL, PEBBLES 112.9 124.4 GRAVEL, SAND, AND PEBBLES 124.4 132.9 HARD GREY LIMESTONE 132.9 133.9 SOFT GREY LIMESTONE WELL CONSTRUCTION From To Casing Inside Outside Slot Type Material (ft.) (ft.) Type Dia.(in) Dia.(in) Size(in) 4.00 0 124.9 casing 124.9 133.9 open hole Top of Casing: 0 ft. below ground PUMPING TEST Date: 1965 Jul 27 29.987 Imp. gallons/minute Pumping Rate: Water level before pumping: 22.0 ft. below ground Pumping level at end of test: 22.0 ft. below ground Test duration: 7 hours, minutes Water temperature: ?? degrees F REMARKS GROUND LEVEL ELEV EST 740 FT

Well PID: 115145 Owner: JERRY ROSHICH Driller: Ford Drilling Ltd. Well Name: Well Use: PRODUCTION Water Use: Domestic UTMX: 639749.1020 5609605.83 UTMY: Accuracy XY: UTMZ: Accuracy Z: Date Completed: 2000 May 09

Location: NE7-19-4E

WELL LOG

 From
 To
 Log

 (ft.)
 (ft.)

 0
 2.0
 LIMESTONE FILL

 2.0
 20.0
 CLAY

 20.0
 45.0
 SOFT TILL

 45.0
 65.0
 TILL

 65.0
 117.0
 LIMESTONE

WELL CONSTRUCTION

From To CasingInside Outside SlotTypeMaterial(ft.)(ft.) TypeDia.(in) Dia.(in) Size(in)068.0 CASING2.00T & CSTEEL68.0117.0 OPEN HOLE

Top of Casing: 4.000 ft. above ground

PUMPING TEST

Date:2000 May 09Flowing Rate:20.000 Imp. gallons/minuteWater level before pumping:5.0 ft. above groundPumping level at end of test:5.0 ft. above groundTest duration:??? hours, ?? minutesWater temperature:?? degrees F

Location: NW-7-19-4E Well PID: 56698 Owner: **DIMAR TRAINING SYS** Driller: Stasiuk & Sons Drilling Inc. Well Name: Well Use: PRODUCTION Water Use: Industrial UTMX: 638944.7530 UTMY: 5609584.18 Accuracy XY: UNKNOWN UTMZ: Accuracy Z: Date Completed: 1986 Apr 15 WELL LOG From To Log (ft.) (ft.) 0 19.0 CLAY; BROWN 19.0 30.0 CLAY; GREY 30.0 98.9 TILL; GREY 98.9 108.9 GRAVEL AND SAND 108.9 112.9 BOULDER 112.9 140.9 GRAVEL AND SAND 140.9 150.9 BROWN LIMESTONE WELL CONSTRUCTION From To Casing Inside Outside Slot Type Material (ft.) (ft.) Type Dia.(in) Dia.(in) Size(in) 0 142.4 casing 4.25 INSERT BLACK IRON 142.2 150.9 open hole 4.00 Top of Casing: 1.498 ft. below ground PUMPING TEST Date: 1986 Apr 15 Pumping Rate: 0 Imp. gallons/minute Water level before pumping: 15.0 ft. below ground Pumping level at end of test: 17.0 ft. below ground Test duration: hours, minutes Water temperature: ?? degrees F

Location: SE-7-19-4E Well PID: 22012 Owner: G KMET Driller: KARL STASIUK AND SON Well Name: Well Use: PRODUCTION Water Use: Domestic UTMX: 639774.7060 UTMY: 5608810.83 Accuracy XY: UNKNOWN UTMZ: Accuracy Z: Date Completed: 1974 Jun 08 WELL LOG From To Log (ft.) (ft.) 0 18.0 DARK BROWN CLAY 18.0 95.9 GREY STONY TILL 95.9 115.9 GRAVEL& SAND 115.9 120.9 SAND 120.9 127.9 ROCK WELL CONSTRUCTION From To Casing Inside Outside Slot Type Material (ft.) (ft.) Type Dia.(in) Dia.(in) Size(in) 4.50 0 120.9 casing GALVANIZED 120.9 127.9 open hole 4.00 Top of Casing: 0 ft. below ground PUMPING TEST Date: Pumping Rate: 29.987 Imp. gallons/minute Water level before pumping: 14.0 ft. below ground Pumping level at end of test: 19.0 ft. below ground 2 hours, minutes Test duration: Water temperature: ?? degrees F

Well PID: 161979 Owner: MKA KARTING, GIMLI RACE TRACK Driller: Perimeter Drilling Ltd. Well Name: Well Use: PRODUCTION Water Use: Domestic UTMX: 638582 UTMY: 5609127 Accuracy XY: 1 EXACT [<5M] [GPS] UTMZ: 225 Accuracy Z: 4 FAIR - Shuttle at Centroid Date Completed: 2010 May 25

WELL LOG

Location: SW7-19-4E

From To Log (ft.) (ft.) 0 25.0 CLAY 25.0 32.0 TILL 32.0 34.0 BOULDERS 34.0 120.0 LIMESTONE 120.0 130.0 LIMESTONE

WELL CONSTRUCTION

From To Casing Inside Outside Slot Type Material (ft.) (ft.) Type Dia.(in) Dia.(in) Size(in) 0 122.0 CASING 5.00 INSERT PVC 122.0 130.0 OPEN HOLE 4.50 CASING GROUT

Top of Casing: 1.000 ft. above ground

PUMPING TEST

Date:2010 May 25Pumping Rate:100.000 Imp. gallons/minuteWater level before pumping:8.0 ft. below groundPumping level at end of test:25.0 ft. below groundTest duration:hours, 45 minutesWater temperature:?? degrees F

REMARKS GIMLI, MB.

D TABLES

Analyta	Unite	Results				
Analyte	Units	2014	2019	2020		
Total Kjeldahl Nitrogen	%	4.27	5.96	6.7		
Total Nitorgen	%	-	6.2	6.92		
Ammonia as N	lbs/ton	0.66	-	-		
Available Ammonium-N	mg/kg	-	5630	4910		
Available Nitrate-N	mg/kg	10.9	<42	34.4		
Available Phosphate-P	mg/kg	-	4730	-		
Organic Matter	%	-	57.1	-		
Total Organic Carbon	%	-	33.5	-		
Total Inorganic Carbon	%	-	1.22	-		
Total Carbon by Combustion	%	-	34.7	-		
Moisture	(%)			85.4		
Total Solids	%	40.5	-	14.6		
	Detailed Sal	inity				
Total Volatile Solids (paste)	%	81.2	-	-		
Conductivity Sat. Paste	dS/m	0.849	2.96	-		
Sodium Absorption Ratio	-		1.31			
% Saturation	-		1200			
Calcium (Wet)	mg/kg		550			
Magnesium (Wet)	mg/kg		960			
Sodium (Wet)	mg/kg		760			
Chloride (Wet)	mg/kg		-			
Potassium (Wet)	mg/kg		1380			
Sulfate-S (Wet)	mg/kg		210			
pH	-	7.53	7.44	-		
	Metals					
Aluminum (Al)	mg/kg	25700	-	18900		
Antimony (Sb)	mg/kg	0.89	-	0.49		
Arsenic (As)	mg/kg	9.56	-	11.0		
Barium (Ba)	mg/kg	545	-	195		
Beryllium (Be)	mg/kg	0.22	-	0.17		
Bismuth (Bi)	mg/kg	22.5		10.8		
Boron (B)	mg/kg	21	29.5	16.5		
Cadmium (Cd)	mg/kg	1.42	-	0.491		
Calcium (Ca)	mg/kg	37300	550	18400		
Chromium (Cr)	mg/kg	23.5	-	25.1		
Cobalt (Co)	mg/kg	3.14	-	1.84		
Copper (Cu)	mg/kg	481	-	1650		
Iron (Fe)	mg/kg	9550	-	6510		
Lead (Pb)	mg/kg	20.8	-	10.4		
Lithium (Li)	mg/kg	-	-	<2.0		
Magnesium (Mg)	mg/kg	15700	960	9400		
Manganese (Mn)	mg/kg	137	-	79.7		
Mercury (hg) Total	mg/kg	1.25	-	0.299		

Table 5.1 R.M. of Gimli Historic and Current Biosolids Analysis

Analysia	l lucito		Results					
Analyte	Units	2014	2019	2020				
Molybdenum (Mo)	mg/kg	6.44	-	16.7				
Nickel (Ni)	mg/kg	18.6	-	15.4				
Phosphorus (P)	mg/kg	28200	-	18100				
Potassium (K)	mg/kg	2940	1380	2800				
Selenium (Se)	mg/kg	5.86	-	3.19				
Silver (Ag)	mg/kg	2.62	-	0.91				
Sodium (Na)	mg/kg	658	760	1780				
Strontium (Sr)	mg/kg	270	-	189				
Sulphur	mg/kg	-	210	11600				
Thallium (TI)	mg/kg	0.12	-	0.054				
Tin (Sn)	mg/kg	22.3	-	11.3				
Titanium (Ti)	mg/kg	108	-	30.6				
Tungsten (W)	mg/kg	-	-	<0.50				
Uranium (U)	mg/kg	4.84	-	2.96				
Vanadium (V)	mg/kg	14.1	-	2.52				
Zinc (Zn)	mg/kg	904	-	44.7				
Zironium (Zr)	mg/kg	-	-	16.5				

Table 5.1 R.M. of Gimli Historic and Current Biosolids Analysis

Table 5.2 R.M of Gimli Soil Analytical Results for Receiving Land Test Pit Locations

	Sample Location			TP01			TP02		TP03			
	UTM Coordinates		14U 0	637557 56	11376	14U 063	7789 5610	14U 0638836 5609302				
	Depth (inches)		0-6	6 - 24	24 - 60	0 - 6	6 - 24	24 - 60	0 - 6	6 - 24	24 - 60	60 - 72
Parameter	Analytical	Units	0-0	0-24	24 - 00	0-0	0-24	24 - 00	0-0	0-24	24 - 00	00 - 72
	Sand		24	26	7	20	18	8	18	22	9	<1.0
	Silt	%	66	55.6	63	52.4	60	56	46	54	43	16
Particle Size	Clay		10	18.4	30	27.6	22	36	36	24	48	84
	Texture		Silt Loam	Silt Loam	Silty Clay	Silty Clay Loam	Silt Loam	Silty Clay	Silty Clay	Silt Loam	Silty	Clay
					Loam	/ Clay Loam		Loam	Loam		Clay	
	Total Kjeldahl Nitrogen	%	0.236	< 0.020	-	0.147	< 0.02	-	0.172	0.053	-	-
I	Total Nitrogen		0.219	< 0.020	-	0.128	< 0.02	-	-	0.05	-	-
Nutrients	Available Ammonium Nitrate-N	-	1 8.8	<1.0 <2.0	-	1.6 <2.0	<1.0 <2.0	-	3.3 <2.0	1.6 <2.0	-	-
Numerits	Available Phosphate-P	mg/kg	9.7		-	1.6	~2.0	-	7.8	~2.0	-	-
	Available Prospirate-P	iiig/kg	9.7	-	-	94	-	-	164	-	-	-
	Available Folassium Available Sulfate-S	1	5.4	-	-	94 4	-	-	<4.0	-	-	-
	Aluminum (AI)		8280		-	13300	-	-	17600		-	-
	Antimony (Sb)	-	0200		-	0.1	-	-	0.15	-	-	-
	Arsenic (As)	-	1.83	-	-	2.1	-	-	3.3	-	-	-
	Barium (Ba)		65.4	-	_	93.7	_	-	125	-	-	-
	Beryllium (Be)		0.29			0.47			0.63			
	Boron (B)*		0.46	-	-	0.64	-	-	0.52	-	-	-
	Bismuth (Bi)		<0.2	-	-	<0.20	-	-	<0.20	-	-	-
	Cadmium (Cd)		0.173	-	-	0.189	-	-	0.146	-	-	-
	Calcium (Ca)		89300	-	-	90300	-	-	61700	-	-	-
	Chromium (Cr)		16.6	-	-	27.1	-	-	35.4	-	-	-
	Cobolt (Co)		4.28	-	-	6.36	-	-	8.89	-	-	-
	Copper (Cu)		8.34	-	-	13.9	-	-	19.3	-	-	-
	Iron (Fe)	1	9460	-	-	14400	-	-	18900	-	-	-
	Lead (Pb)	1	4.96	-	-	6.38	-	-	8.85	-	-	-
	Lithium (Li)	1	9	-	-	16	-	-	20.3	-	-	-
	Magnesium (Mg)		48400	-	-	46300	-	-	33300	-	-	-
	Manganese (Mn)		361	-	-	370	-	-	468	-	-	-
Metals	Mercury (Hg)	mg/kg	0.0199			0.0222			0.0238			
	Molybdenum (Mo)	1	0.25	-	-	0.28	-	-	0.52	-	-	-
	Nickel (Ni)		11	-	-	18.3	-	-	25.9	-	-	-
	Phosphorus (P)		682	-	-	511	-	-	600	-	-	-
	Potassium (K)		1550	-	-	2660	-	-	3860	-	-	-
	Selenium (Se)		0.25	-	-	0.21	-	-	0.22	-	-	-
	Silver (Ag)		<0.1	-	-	<0.1	-	-	<0.1	-	-	-
	Sodium (Na)		122	-	-	188	-	-	245	-	-	-
	Strontium (Sr)		46	-	-	56.5	-	-	45.4	-	-	-
	Sulfur (S)	_	<1000	-	-	<1000	-	-	<1000	-	-	-
	Thallium (Ti)		0.097	-	-	0.152	-	-	0.217	-	-	-
	Tin (Sn)	-	<1.0	-	-	<1.0	-	-	<1.0	-	-	-
	Titanium (Ti)	-	170	-	-	318	-	-	386	-	-	-
	Tungsten (W)	-	<0.50	-	-	< 0.50	-	-	< 0.50	-	-	-
	Uranium (U)	-	0.644	-	-	0.915	-	-	0.741	-	-	-
	Vanadium (V)	-	20.2	-	-	29.8	-	-	38.8	-	-	-
	Zinc (Zn)	-	26.3	-	-	39.5	-	-	56.7	-	-	-
	Zirconium (Zr)		1.7	-	-	3.2	-	-	4.6	-	-	-
	Calcium (Ca)	4	47.8	-	-	41.7	-	-	60.9	-	-	-
	Potassium (K)	mg/L	5.4	-	-	<5.0	-	-	<5.0	-	-	-
Desta	Magnesium (Mg)	-	26.1	-	-	37.1	-	-	26.9	-	-	-
Basic Salinity	Sodium (Na)		<5.0	-	-	13.5	-	-	9.9	-	-	-
Santiny	Sodium Absorption Ratio	dC/	<0.1	-	-	0.37	-	-	0.27	-	-	-
1	Electrical Conductivity	dS/m	0.4	-	-	0.46	-	-	0.46	-	-	-
1	% Saturation	%	61.3	-	-	58.9	-	-	64.8	-	-	-
	pH in Saturated Paste		7.96	-	-	8.13	-	-	7.82	-	-	-

Notes: *Hotwater Extraction

Table 5.3 RM of Gimli Biosolids and Application Field Trace Metal Content

		Biosolids 1	race Metals				Soil	Sample	Trace M	letals							Applications Events
Trace Element	2014 L1529065	2020	Me	an	(TP0/ 15c	l, 0- m)	(TP02, 15c	0 m)	/твоз 15с	0. m)	Me	an	Application Rate (dry)	Cumulative Metal Concentration	Cumu Weight / by Gui	Allowed	Permitted before meeting applied Criteria based on Average Metal Concentrations
	(mg/kg	g - Dry)	mg/kg Dry	(kg/T)	(mg/kg)	(kg/ha)	(mg/kg)	(kg/ha)	(mg/kg)	(kg/ha)	(mg/kg)	(kg/ha)	(kg/ha)	(kg/ha)	(mg/kg)	(kg/ha)	Count
Arsenic	9.56	11.0	10.28	0.010	1.83	3.29	2.1	3.78	3.30	5.94	2.41	4.34	0.11	4.451	12	21.6	162
Cadmium	1.42	0.491	0.96	0.001	0.173	0.31	0.189	0.34	0.15	0.26	0.17	0.30	0.01	0.315	1.4	2.5	210
Copper	481.0	1650.0	1065.50	1.066	8.34	15.01	13.9	25.02	19.30	34.74	13.85	24.92	11.72	36.645	63	113.4	8
Chromium	23.5	25.1	24.30	0.024	16.6	29.88	27.1	48.78	35.40	63.72	26.37	47.46	0.27	47.727	64	115.2	319
Lead	20.8	10.4	15.60	0.016	4.96	8.93	6.38	11.48	8.85	15.93	6.73	12.11	0.17	12.286	70	126	682
Mercury	1.3	0.299	0.77	0.001	0.02	0.04	0.02	0.04	0.02	0.04	0.02	0.04	0.01	0.048	6.6	11.9	1390
Nickle	18.6	15.4	17.00	0.017	11.00	19.80	18.30	32.94	25.90	46.62	18.40	33.12	0.19	33.307	50	90	375
Zinc	904.0	44.7	474.35	0.474	26.30	47.34	39.50	71.10	56.70	102.06	40.83	73.50	5.22	78.718	200	360	60

Notes:

 2 = Cumulative Weight Allowed by Guideline includes the metals in soils.

Inputs/Assumptions

Soil Bulk Density	1,200	kg/m3	
Sample Depth	0.15	m	
Hectare	10,000	m2/ha	
Soil Mass	1,000,000	mg/kg	
Anticipated Application Rate	11	T/ha - dry	W1/2 31-12-01W

Example of Field Prescription Application Rate, R.M. of Gimli Date Modified: 04-Jun-20

Field ID:	Example			
Land Area Available (ac ha):	58			
Anticipated 2020 Crop	Wheat	CWRS		
2020 Target Yield (bu/ac):	45			
	lb/ac	kg/ha		
Target Nitrogen total less soil residual:	50	56		
Fertilizer Phosphate (P2O5) total less soil residual:	24	27		
1 x P2O5 Crop Removal @ target Yield:	50	56		
2 x P2O5 Crop Removal @ target Yield:	100	112		
3 x P2O5 Crop Removal @ target Yield:	150	168		
Sulfate-S target:	Sulfate-S target: 20 22			

Plant Available Nutrients Soil Test Data

	TP01	TP01	L2386158-1	TP02	TP02	L2386158-4
Sample Depth	0-15 cm	15-60 cm	Total Available	0-15 cm	15-60 cm	Total Available
Units	mg	kg⁻¹	kg ha⁻¹	mg kợ	g ⁻¹	kg ha⁻¹
Total Nitrogen	2190			1280		
Available Nitrate-N	08.8	1.9	26	01.9	1.9	14
Available Phosphate-P	09.7		17	1.60		3
Available Potassium	120		216	94.0		169
Available Sulfate-S	005		11	4.0		8
EC (dS/m)	0.40			0.46		

City of Winnipeg Biosolids Characteristics and Analysis

Parameter Name	Parameter Description	Unit	Biosolid Analysis Pilot Project
Estimated Biosolid Volume	In-field	m ³	-
Assumed Specific Gravity	As Received	g cm⁻¹	
Estimated Biosolids		tonnes	
Dry tonnes biosolids available (=wet tonnes x %solids)	Dried Basis	tonnes	
Moisture	As Received	%	85.4
Total Solids	As Received	%	14.6
Organic Matter	Dry Basis	%	57.10
Total Organic Carbon	Dry Basis	%	33.50
C:N Ratio	Dry Basis	x:1	4.8
C:P Ratio	Dry Basis	x:1	18.5
N:P Ratio	Dry Basis	x:1	3.82
рН	Saturated Paste		7.44
Total N	Dried Basis	%	6.9
	Dried Basis	mg kg⁻¹	69,200
	Dried Basis	kg Tonne ⁻¹	69.2
Ammonium - N (NH4-N)	Dried Basis	_ mg kg⁻¹	4,910.00
	Dried Basis	kg Tonne ⁻¹	4.91
Available Nitrate-N	Dried Basis	mg kg⁻¹	34.40
Available Nitrate-N		kg Tonne ⁻¹	0.034
Total Phosphorous	Dried Basis	mg kg⁻¹	18,100
Amount of Biosolids Nutrient Available to Crop			•
Organic N (=TN - Ammonium N)	Dried Basis	mg kg⁻¹	64,290
Organic N	Dried Basis	kg Tonne ⁻¹	64.3
Method of Application:			Incorporated
Anticipated Weather			Cool/dry
Anticipated Volatilization (%)	within 1 day		15
Available Organic N (@ 25%)	Dried Basis	kg Tonne⁻¹	16.1
Ammonium-nitrogen Available	Dried Basis	kg Tonne ⁻¹	4.17

17,785 1.00 17,785 2,597

		4				
Application Rate based on Nitrogen						
Total Available P ₂ O ₅	Dried Basis	kg Tonne ⁻¹	10.4			
P ₂ O _{5 equivalent}	Dried Basis	kg Tonne ⁻¹	41.6			
Phosphorous	Dried Basis	kg Tonne ⁻¹	18.1			
PAN Year 3 (@6% mineralization)	Dried Basis	kg Tonne ⁻¹	3.9			
PAN Year 2 (@12% mineralization)	Dried Basis	kg Tonne ⁻¹	7.7			
Plant Available Nitrogen (PAN) (Year 1)	Dried Basis	kg Tonne ⁻¹	20.3			
Ammonium-nitrogen Available	Dried Basis	kg Tonne ⁻¹	4.17			
Available Organic N (@ 25%)	Dried Basis	kg Tonne⁻¹	16.1			

Application Rate	Land Area Required			
Nitrogen Based Application Rate	Dried Basis	tonnes ha ⁻¹	3	940 Ha
Amount of Available P2O5 applied	Dried Basis	kg ha⁻¹	29	2,323 Ac
P ₂ O ₅ Application check		%	107	
Application Rate based	Land Area Required			
Total Phosphorus Based Application Rate	Dried Basis	tonnes ha ⁻¹	5	483 Ha
	Dried Basis	kg ha⁻¹	109	1,192 Ac
Amount of Nitrogen applied		lb ac⁻¹	97	
		kg ha⁻¹	- 53	
Additional Nitrogen required		lb ac⁻¹	- 47	
Application Rate based	on Phosphorou	s (2xCR)		Land Area Required
Total Phosphorus Based Application Rate	Dried Basis	tonnes ha ⁻¹	11	241 Ha
Amount of Nitrogen applied	Dried Basis	kg ha⁻¹	218	596 Ac
Additional Nitrogen required		kg ha⁻¹	- 162	

Selected Application rate based on:		2x CR P	
	Dried Basis	tonnes ha ⁻¹	11
Selected Application Rate	Drieu Basis	tons ac ⁻¹	5
	Wet Basis	tonnes ha ⁻¹	80
	Wet Dasis	tons ac ⁻¹	36
Estimated Biosolids Volume Applied	Wet	Tonnes	4,647
Estimated Biosolids Volume Remaining	Wet	Tonnes	13,138

Notes:

Available Ammonium N - Volatilization loss associated with different application methods (0% with Injection)

Organic N - TKN - Ammonium N

Available Organic N - Organic N x 0.20 year 1 (Ross and Racz, 2003)

Mineralization of Year 2 = 12%, Year 3 = 6%

Plant Available Nitrogen= (NO3-N)+Volatilization factor (NH4-N)+Organic N Mineralization

Estimated P2O5 Available based on 25% of total Phosphorus as directed by MSD.

Note: the biosolids are FeCl treated and fixes the majority of the total P.

Soil Phosphorous Olsen method.

* See Estimates of Ammonium-N Retained After Biosolids application

C:N exceeds 30:1, N becomes a limiting nutrient for decomposer organisms, and this can reduce the rate of decomposition and results in N immobilization

C:P ratio between 200:1 and 300:1, mineralization and immobilization balance each other to result in no net release of P from the decomposing manure. When C:P is below this range, P is released.

When animal and municipal wastes have N:P ratios ranging from 1:1 to 1:2 are applied based on N rates on soils, over time P will accumulate

E CERTIFICATES OF ANALYSIS

L1529065 CONTD.... PAGE 2 of 4 Version: FINAL

ALS ENVIRONMENTAL ANALYTICAL REPORT

mple Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
529065-1 BIOSOLIDS				· · · · ·			
An annual and an				Ì			
		1					
atrix: Sludge							
Miscellaneous Parameters	0.65		0.00	lingitan	16-OCT-14	16-OCT-14	00004040
Ammonia as N	0.66	0.14	0.20	lbs/ton			R2994940
Available Nitrate-N	10.9	DLM	4.0	mg/kg	14-OCT-14	14-OCT-14	R2986329
Mercury (Hg)-Total	1.25	DLA	0.20	mg/kg	10-OCT-14	14-OCT-14	R2985548
Total Kjeldahl Nitrogen	4.27		0.020	%	14-OCT-14	15-OCT-14	R2991612
Total Solids and Total Volatile Solids	40.5		0.40	%	15-OCT-14	15-OCT-14	R2991209
Total Solids Total Volatile Solids (dry basis)	40.5		0.10	% %	15-OCT-14	15-OCT-14	R2991209
	81.2		0.10	70	13-001-14	10-001-14	K2331203
pH and EC (1:2 Soil:Water Extraction) Conductivity (1:2)	0.649		0.050	dSm-1	14-OCT-14	14-OCT-14	R2984671
pH (1:2 soit:water)	7.53		0.10	pH	14-OCT-14	14-OCT-14	R2984671
Metals			4 .1 0				
Aluminum (Al)	25700	DLA	5.0	mg/kg	10-OCT-14	15-OCT-14	R2991836
Antimony (Sb)	0.89		0.10	mg/kg	10-OCT-14	10-OCT-14	R2983668
Arsenic (As)	9.56	5	0.10	mg/kg	10-OCT-14	10-0CT-14	R2983668
Barium (Ba)	545		0.50	mg/kg	10-OCT-14	10-OCT-14	R2983668
Seryllium (Be)	0.22		0.10	mg/kg	10-OCT-14	10-OCT-14	R2983668
Bismuth (Bi)	22.5	ļ	0.020	mg/kg	10-OCT-14	10-OCT-14	R2983668
Boron (B)	21		10	mg/kg	10-OCT-14	10-OCT-14	
Cadmium (Cd)	1.42		0.020	mg/kg	10-OCT-14	10-OCT-14	· ·
Calcium (Ca)	37300		100	mg/kg	10-OCT-14	10-OCT-14	
Chromium (Cr)	23.5		1.0	mg/kg	10-OCT-14	· · · · ·	
Cobalt (Co)	3.14		0.020	mg/kg	10-OCT-14		
Copper (Cu)	481		1.0	mg/kg	10-OCT-14		
Iron (Fe)	9550	· .	25	mg/kg	10-OCT-14	1	
Lead (Pb)	20.8 15700		0.20	mg/kg	10-OCT-14	5 C	
Magnesium (Mg)	137	· · } · ·	0.50	mg/kg mg/kg	10-OCT-14		
Manganese (Mn) Molybdenum (Mo)	6.44	· · [· ·	0.020	mg/kg	10-OCT-1-		
	18.6		0.50	mg/kg	10-OCT-1		
Nickel (Ni) Phosphorus (P)	28200		100	mg/kg			
Potassium (K)	2940	· · · ·	25	mg/kg			
Selenium (Se)	5.86		0.50	mg/kg			1
Silver (Ag)	2.62		0.10	mg/kg	· · · · ·	1	1
Sodium (Na)	658	· .	10	mg/kg			
Strontium (Sr)	270		0.10	mg/kg		:	
Thallium (T)	0.12	· •	0.10	mg/kg		2 · · ·	
Tin (Sn)	22.3	[5.0	mg/k			
Titanium (Ti)	108		0.50		-		
Uranium (U)	4.84	· · .	0.020		-		{
Vanadium (V)	14.1	· 1	0.50	-	- :	1	
Ziac (Zn)	904	·	10	mg/l	· .	1	
Total Organic N - solid manure- as rec'd			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111341			
Nitrogen, Total Organic						ļ	
Total Organic Nitrogen	19.0		0.10) lbs/te	on (16-001	[-14
Total N In Solid Manure -as rec'd	1						
Total Nilrogen	19.7	ļ	0.10	D lbs/t	on 14-001	-14 14-00	T-14 R29888
		····					
		· · .		1	1		
]	Ì		
		· 1	1	5		,	1

2010 -40°6

WSP Canada Group Limited ATTN: DARREN KEAM 111-93 Lombard Ave Winnipeg MB R3B 3B1 Date Received: 21-NOV-19 Report Date: 03-DEC-19 14:05 (MT) Version: FINAL

Client Phone: 204-272-2020

Certificate of Analysis

Lab Work Order #: L2386360

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: 181-03988-00 181-03988-00

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Sample Details/Parameters	Result	MU	Qualifier*	D.L.	Units	Bias	Extracted	Analyzed	Batch
.2386360-1 GIMLI BS WSP									
Sampled By: DK on 21-NOV-19 @ 11:00									
Matrix: GRAB									
Total Carbon, TOC and TIC in soil									
Inorganic Carbon as CaCO3 Equivalent									
Inorganic Carbon as CaCO3 Equivalent Inorganic Carbon (as CaCO3 Equivalent	/alent10 1	_		0.40	%	_		29-NOV-19	
Total Inorganic Carbon in Soil				0.40	/0			20110110	
Inorganic Carbon in Son	1.22	+/-0.18		0.050	%	0		29-NOV-19	R492840
Total Organic Carbon Calculation	1.22	17 0.10		0.000	/0	0		20110110	1140204
Total Organic Carbon	33.5	-		0.050	%			29-NOV-19	
Miscellaneous Parameters	00.0			0.000				20110110	
Boron (B), Hot Water Ext.	29.5	+/-5.0	DLM	5.2	mg/kg	0	20-NOV-10	29-NOV-19	R40205
Available Phosphate-P	4730	17 0.0	DLHC	160	mg/kg	0		29-NOV-19	
	4730	-	DLIIC	160	nig/kg	-	29-110 - 19	29-110 - 19	R49209
Note: Samples analyzed as received and calculated to dry									
Available Potassium	1710	+/-200	DLM	260	mg/kg	-11.8%	27-NOV-19	27-NOV-19	R49280
Note: Samples analyzed as received and		., 200		200		1.070			
calculated to dry.									
% Saturation	1200	-		1.0	%	-	27-NOV-19	28-NOV-19	R49280
Total Carbon by Combustion	34.7	+/-2.9		0.05	%	0	29-NOV-19		
Total Kjeldahl Nitrogen	5.96	+/-1.2	DLHC	0.60	%	0		29-NOV-19	
Total Nitrogen by LECO	5.90 6.20	+/-1.2		0.020	%	-		29-NOV-19	
	6.20	+/-1.0		0.020	%	0	29-NOV-19	29-NOV-19	R49289
Organic Matter by LOI at 375 deg C. Organic Matter	F7 4	./ 11		1.0	0/		20 NOV 10	29-NOV-19	D 40200
	57.1	+/-11		1.0	%	0			
Loss on Ignition @ 375 C	72.9	+/-12		1.0	%	0	28-NOV-19	29-NOV-19	R49300
Detail Salinity in mg/kg				100				00 050 40	
Calcium (Ca)	550	-		120	mg/kg	-		02-DEC-19	
Magnesium (Mg)	960	-		120	mg/kg	-		02-DEC-19	
Potassium (K)	1380	-		120	mg/kg	-		02-DEC-19	
Sodium (Na)	760	-		120	mg/kg	-		02-DEC-19	
Sulfur (as SO4)	210	-		120	mg/kg	-		02-DEC-19	
SAR and Cations in saturated soil									D / 2 2 2 2
Calcium (Ca)	46	-	DLDS	10	mg/L	-		28-NOV-19	
Potassium (K)	114	-	DLDS	10	mg/L	-		28-NOV-19	
Magnesium (Mg)	80	-	DLDS	10	mg/L	-		28-NOV-19	
Sodium (Na)	63	-	DLDS	10	mg/L	-		28-NOV-19	
SAR	1.31	-		0.10	SAR	-	28-NOV-19	28-NOV-19	R49283
Available Ammonia-N & Nitrate-N (2N KCI)									
Available Ammonium-N									
Available Ammonium-N	5630	+/-790	DLHC	840	mg/kg	0	28-NOV-19	28-NOV-19	R49280
Note: Samples analyzed as received and									
calculated to dry.									
Available Nitrate-N (2N KCI) Available Nitrate-N	.40		DLM	40	~~//ca		20 NOV 40	28-NOV-19	D 40 20 2
	<42	-		42	mg/kg	-	20-INOV-19	20-INOV-19	1749283
Note: Sample analyzed as rec'd and calculated to dry									
Sat. Paste pH, EC and Sulphate									
Sulfate (SO4) in saturated soil									
Sulfur (as SO4)	18	-	DLDS	10	mg/L	-	28-NOV-19	28-NOV-19	R49283
pH and EC (Saturated Paste)									
% Saturation	1200	+/-0.8		1.0	%	0	27-NOV-19	28-NOV-19	R49280
pH in Saturated Paste	7.44	+/-0.06		0.10	pH	0		28-NOV-19	
Conductivity Sat. Paste	2.96	+/-0.38		0.10	dS m-1	0		28-NOV-19	
Conductivity Sat. 1 aste	2.90	1,-0.30	+	0.10			211100-19	201101-19	11-3200
* Refer to Referenced Information	on for Qualifiers	(if any) and M	ethodology.						

		Reference	e Informatio	n	FAGE 5 01 5
QC Samples v	vith Qualifiers &	Comments:			
QC Type Descr		Parameter	Qualifier	Applies to Sam	ple Number(s)
Internal Referen	nce Material	Sulfur (as SO4)	DLDS	L2386360-1	
Internal Referen	nce Material	Calcium (Ca)	DLDS	L2386360-1	
Internal Referen	nce Material	Magnesium (Mg)	DLDS	L2386360-1	
Internal Referen	nce Material	Potassium (K)	DLDS	L2386360-1	
Internal Referen	nce Material	Sodium (Na)	DLDS	L2386360-1	
Duplicate		Sulfur (as SO4)	DLDS	L2386360-1	
Duplicate		Calcium (Ca)	DLDS	L2386360-1	
Duplicate		Magnesium (Mg)	DLDS	L2386360-1	
Duplicate		Potassium (K)	DLDS	L2386360-1	
Duplicate		Sodium (Na)	DLDS	L2386360-1	
Internal Referen	nce Material	Available Ammonium-N	DLHC	L2386360-1	
Duplicate		Total Kjeldahl Nitrogen	DLHC	L2386360-1	
Sample Param	neter Qualifier K	ey:			
Qualifier	Description				
DLDS	Detection Limit R	aised: Dilution required due to high Dis	ssolved Solids / Electr	ical Conductivity.	
DLHC	Detection Limit R	aised: Dilution required due to high co	ncentration of test and	alyte(s).	
DLM	Detection Limit A	djusted due to sample matrix effects (e.g. chemical interfere	nce, colour, turbidi	ty).
Test Method R	References:				
ALS Test Code		K Test Description	Preparation Met	thod Reference	Method Reference**
B-HOTW-SK	Soil	Available Boron, Hot Water			CSSS (2008) Ch.9
Hot water is use	ed to extract the pla	nt-available and potentially plant-availa	able boron from soil.	Boron in the extrac	t is determined by ICP-OES.
C-TIC-PCT-SK	Soil	Total Inorganic Carbon in Soil			CSSS (2008) P216-217
	ty of acetic acid is o e relating pH to wei		in the soil. The pH of	the resulting solution	on is measured and compared against
C-TOC-CALC-S		Total Organic Carbon Calculatio	n		CSSS (2008) 21.2
		-			
Total Organic C	arbon (TOC) is cal	culated by the difference between total	carbon (TC) and total	l inorganic carbon.	(TIC)
C-TOT-LECO-S	K Soil	Total Carbon by combustion me	thod		CSSS (2008) 21.2
The sample is ig	gnited in a combust	tion analyzer where carbon in the redu	ced CO2 gas is detern	nined using a therr	nal conductivity detector.
IC-CACO3-CAL	C-SK Soil	Inorganic Carbon as CaCO3 Equivalent			Calculation
K-AVAIL-SK	Soil	Available Potassium			Comm. Soil Sci. Plant, 25 (5&6)
Plant available 770 nm.	potassium is extrac	ted from the soil using Modified Kelow	na solution. Potassiun	n in the soil extract	is determined by flame emission at
N-TOT-LECO-S	K Soil	Total Nitrogen by combustion method			CSSS (2008) 22.4
The sample is i	gnited in a combust	tion analyzer where nitrogen in the red	uced nitrous oxide gas	s is determined usi	ng a thermal conductivity detector.
N-TOTKJ-COL-	SK Soil	Total Kjeldahl Nitrogen			CSSS (2008) 22.2.3
The soil is diges nm.	sted with sulfuric ac	id in the presence of CuSO4 and K2S	O4 catalysts. Ammoni	a in the soil extract	t is determined colrimetrically at 660
NH4-AVAIL-SK	Soil	Available Ammonium-N			CSSS Carter 6.2 / Comm Soil Sci 19(
		om the soil using 2 N KCI. Ammonium trically by auto analysis at 660 nm.	in the extract is mixed	d with hypochlorite	and salicylate to form indophenol

NO3-AVAIL-KCL-SK Soil Available Nitrate-N (2N KCI)

CSSS (1993) 4.2, 4.3

Available Nitrate and Nitrite are extracted from the soil using a 2N KCl solution. Nitrate is quantitatively reduced to nitrite by passage of the sample through a copperized cadmium column. The nitrite (reduced nitrate plus original nitrite) is then determined by diazotizing with sulfanilamide followed by coupling with N-(1-naphthyl) ethylenediamine dihydrochloride. The resulting water soluble dye has a magenta color which is measured at colorimetrically at 520nm.

ALS Test Code	Matrix	Test Description	Preparation Method Reference	Method Reference**
Reference: Carter, Martin. Soil Samp	ling and Met	hods of Analysis. Can. Soc. Soil	Sci.(1993) methods 4.2, 4.3	
OM-LOI-SK	Soil	Organic Matter by LOI at 375	deg C.	CSSS (1978) p. 160
The dry-ash method invol combustion.	ves the remo	oval of organic matter by combus	stion at 375 degrees C for a minimum of 16	hours. Samples are dried prior to
PO4-AVAIL-OLSEN-SK	Soil	Available Phosphate-P by Ol	sen	CSSS (2008) 8
Plant available phosphoru	us is extracte	d from air dried soil using a fixed	ratio bicarbonate extraction. Phosphorus	is determined by colorimetry.
SAL-MG/KG-CALC-SK	Soil	Detail Salinity in mg/kg		Manual Calculation
SAR-CALC-SK	Soil	SAR and Cations in saturated	d soil	APHA 3120B
A soil extract is generated	d using our s	aturated paste procedure. Ca, N	/lg, Na and K in a saturated soil extract are	determined by ICP-OES.
SAT-PCNT-SK	Soil	Saturated Paste		CSSS Ch. 15
There should be no free la	ayer of water	close readily upon jarring the co on top of the sample. Iried at 105C and saturation perc		
SAT/PH/EC-SK	Soil	pH and EC (Saturated Paste)	1	CSSS 15/CSSC 3.14
The sample paste glister The sample flows slightly A trench carved in the so There should be no free An aliquot of the sample i	ns as it reflec when conta bil surface wil layer of wate is obtained, c	iner is tipped, and slides freely a I close readily upon jarring the co r on top of the sample.	nd cleanly off the spatula. ontainer. centage is determined.pH of a saturated so	il paste is measured using a pH meter
SO4-SAR-SK	Soil	Sulfate (SO4) in saturated so	il	APHA 3120 B-ICP-OES
	tusina our s	aturated paste procedure. Sulfu	r is analyzed by ICP-OES and reported as	sulfate.
A soil extract is generated	a using our s			
** The indicated I	Vethod Refe		internationally recognized reference for the	
** The indicated I methods may inc	Method Refe	difications from the specified refe	erence to improve performance.	applicable ALS test method. ALS
** The indicated I methods may inc	Method Reference orporate moderate above test c	difications from the specified refe		applicable ALS test method. ALS

GLOSSARY OF REPORT TERMS

Surr - Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than. D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

MU: Measurement Uncertainty. The reported uncertainty is an expanded uncertainty calculated using a coverage factor of 2 which gives a level of confidence of approximately 95%.

Bias: The reported method bias is the average long term deviation from the target value for a long term reference or control sample, measured in percent. Zero values indicate no detectable method bias.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder:	L238636	0	Report Date: 03-	DEC-19		Page 1 of 7
Client:	WSP Canada Group Limit 111-93 Lombard Ave Winnipeg MB R3B 3B1	ed						
Contact:	DARREN KEAM							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
B-HOTW-SK	Soil							
WG3231458-	R4929553 1 DUP ot Water Ext.	L2386158-4 0.64	0.58		mg/kg	9.5	30	29-NOV-19
WG3231458- Boron (B), H	3 IRM ot Water Ext.	SAL814	87.2		%		70-130	29-NOV-19
WG3231458- Boron (B), H	4 LCS ot Water Ext.		101.1		%		70-130	29-NOV-19
WG3231458- Boron (B), H	2 MB ot Water Ext.		<0.20		mg/kg		0.2	29-NOV-19
C-TIC-PCT-SK	Soil							
Batch WG3228242- Inorganic Ca		L2387280-44 0.549	0.561		%	2.2	20	29-NOV-19
WG3228242- Inorganic Ca		08-109_SOIL	93.8		%		80-120	29-NOV-19
WG3228242- Inorganic Ca			95.9		%		80-120	29-NOV-19
WG3228242- Inorganic Ca			<0.050		%		0.05	29-NOV-19
C-TOT-LECO-SI	K Soil							
WG3229994-	R4928917 1 DUP h by Combustion	L2388370-1 40.5	40.6		%	0.4	20	29-NOV-19
WG3229994- Total Carbor	2 IRM by Combustion	08-109_SOIL	103.0		%		80-120	29-NOV-19
WG3229994- Total Carbor	4 LCS by Combustion		100.6		%		90-110	29-NOV-19
WG3229994- Total Carbor	3 MB h by Combustion		<0.05		%		0.05	29-NOV-19
K-AVAIL-SK	Soil							
Batch WG3228633- Available Pot		FARM2005	99.9		%		70-130	27-NOV-19
WG3228633- Available Po			94.3		%		80-120	27-NOV-19
WG3228633- Available Po			<20		mg/kg		20	27-NOV-19
N-TOT-LECO-SI	K Soil							

		Workorder:	L2386360	Re	eport Date: 03-DI	EC-19		Page 2 of 7
111-93 L	nada Group Limited ombard Ave y MB R3B 3B1	d						
Contact: DARREN	I KEAM							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
N-TOT-LECO-SK	Soil							
Batch R4928917 WG3229994-1 DUP Total Nitrogen by LECC)	L2388370-1 8.14	8.11		%	0.4	20	29-NOV-19
WG3229994-2 IRM Total Nitrogen by LECC)	08-109_SOIL	105.1		%		80-120	29-NOV-19
WG3229994-4 LCS Total Nitrogen by LECC)		100.5		%		90-110	29-NOV-19
WG3229994-3 MB Total Nitrogen by LECC)		<0.020		%		0.02	29-NOV-19
N-TOTKJ-COL-SK	Soil							
Batch R4928949 WG3228542-1 DUP Total Kjeldahl Nitrogen		L2386360-1 5.96	5.96		%	0.0	20	29-NOV-19
WG3228542-2 IRM Total Kjeldahl Nitrogen		08-109_SOIL	97.4		%		80-120	29-NOV-19
WG3228542-3 LCS Total Kjeldahl Nitrogen			91.6		%		80-120	29-NOV-19
WG3228542-4 MB Total Kjeldahl Nitrogen			<0.020		%		0.02	29-NOV-19
NH4-AVAIL-SK	Soil							
Batch R4928074 WG3228613-1 DUP Available Ammonium-N		L2386158-7 3.3	3.1		mg/kg	5.0	20	28-NOV-19
WG3228613-3 IRM Available Ammonium-N		SAL814	104.9		%		70-130	28-NOV-19
WG3228613-4 LCS Available Ammonium-N			92.1		%		80-120	28-NOV-19
WG3228613-2 MB Available Ammonium-N			<1.0		mg/kg		1	28-NOV-19
NO3-AVAIL-KCL-SK	Soil							
Batch R4928348 WG3228614-1 DUP Available Nitrate-N		L2386158-7 <2.0	<2.0	RPD-NA	mg/kg	N/A	30	28-NOV-19
WG3228614-3 IRM Available Nitrate-N		SAL814	95.5		%		70-130	28-NOV-19
WG3228614-4 LCS Available Nitrate-N			96.6		%		70-130	28-NOV-19
WG3228614-2 MB								

			Quum	y cont	oncepon			
		Workorder:	L238636	0	Report Date: 03-	DEC-19		Page 3 of 7
111-S Winn	Canada Group Limit 33 Lombard Ave ipeg MB R3B 3B1	ed						
	REN KEAM							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO3-AVAIL-KCL-SK	Soil							
Batch R4928								
WG3228614-2 MI Available Nitrate-N	В		<2.0		mg/kg		2	28-NOV-19
			~ 2.0				-	20-110 1-19
OM-LOI-SK	Soil							
Batch R4930	068							
	JP	L2386360-1						
Organic Matter		57.1	57.1		%	0.0	20	29-NOV-19
Loss on Ignition @ 3		72.9	72.9		%	0.0	20	29-NOV-19
WG3229356-3 IR Organic Matter	Μ	SAL2001	97.8		%		80-120	29-NOV-19
Loss on Ignition @ 3	375 C		97.4		%		80-120	29-NOV-19
WG3229356-2 M	В							
Organic Matter			<1.0		%		1	29-NOV-19
Loss on Ignition @ 3	375 C		<1.0		%		1	29-NOV-19
PO4-AVAIL-OLSEN-SP	K Soil							
Batch R4928								
WG3231463-1 DI Available Phosphate	JP P	L2386158-7 7.8	6.2		mg/kg	23	30	29-NOV-19
WG3231463-3 IR		FARM2005	0.2		iiig/kg	25	50	29-110 - 19
Available Phosphate			87.0		%		80-120	29-NOV-19
WG3231463-4 LC								
Available Phosphate	e-P		109.3		%		80-120	29-NOV-19
WG3231463-2 Mi			-1.0		malka		1	
Available Phosphate			<1.0		mg/kg		1	29-NOV-19
SAR-CALC-SK	Soil							
Batch R4928 WG3229867-6 DI		L2386360-1						
Calcium (Ca)	JF	46	46		mg/L	1.0	30	28-NOV-19
Potassium (K)		114	107		mg/L	6.9	30	28-NOV-19
Magnesium (Mg)		80	77		mg/L	3.8	30	28-NOV-19
Sodium (Na)		63	63		mg/L	0.1	30	28-NOV-19
WG3229867-5 IR Calcium (Ca)	Μ	ALS SAL 2019	103.1		%		70-130	28-NOV-19
Potassium (K)			82.2		%		70-130	28-NOV-19
Magnesium (Mg)			90.4		%		70-130	28-NOV-19
Sodium (Na)			104.3		%		70-130	28-NOV-19

			Workorder:	L2386360	0	Report Date: 0	3-DEC-19		Page 4 of 7
Client:	111-93 Lo	ada Group Limite mbard Ave MB R3B 3B1	d						
Contact:	DARREN								
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SAR-CALC-SK		Soil							
Batch	R4928300								
WG3229867-4 Calcium (Ca)				102.8		%		70-130	28-NOV-19
Potassium (K				98.9		%		70-130	28-NOV-19
Magnesium (Mg)			99.3		%		70-130	28-NOV-19
Sodium (Na)				103.7		%		70-130	28-NOV-19
WG3229867-2	2 MB								
Calcium (Ca)	1			<5.0		mg/L		5	28-NOV-19
Potassium (K	()			<5.0		mg/L		5	28-NOV-19
Magnesium (Mg)			<5.0		mg/L		5	28-NOV-19
Sodium (Na)				<5.0		mg/L		5	28-NOV-19
SAT-PCNT-SK		Soil							
	R4928008								
WG3229867-6 % Saturation	6 DUP		L2386360-1 1200	1240		%	3.1	20	28-NOV-19
WG3229867-5 % Saturation			ALS SAL 2019	96.0		%		80-120	28-NOV-19
WG3229867-4 % Saturation				100.3		%		80-120	28-NOV-19
WG3229867-2	2 MB								20-110 - 19
% Saturation				<1.0		%		1	28-NOV-19
SAT/PH/EC-SK		Soil							
	R4928008								
WG3229867-1 % Saturation			L2386505-21 67.3	69.2		%	2.0	20	28 NOV 10
pH in Saturat			7.67	7.71	J	рН	2.8 0.04	20 0.3	28-NOV-19 28-NOV-19
Conductivity			8.02	8.10	J	dS m-1	1.0	0.3 20	
WG3229867-6			L2386360-1	0.10			1.0	20	28-NOV-19
% Saturation			1200	1240		%	3.1	20	28-NOV-19
pH in Saturat	ed Paste		7.44	7.41	J	рН	0.03	0.3	28-NOV-19
Conductivity	Sat. Paste		2.96	2.84		dS m-1	4.1	20	28-NOV-19
WG3229867-5 % Saturation			ALS SAL 2019	96.0		%		80-120	28-NOV-19
pH in Saturat				90.0 7.35		рН		7.01-7.61	28-NOV-19 28-NOV-19
Conductivity				96.8		%		80-120	28-NOV-19 28-NOV-19
WG3229867-4				00.0		<i>,</i> ,		00-120	20-110 1-13
% Saturation				100.3		%		80-120	28-NOV-19

Client:	111-93 Lo	ada Group Limite	Workorder:	L2386360)	Report Date:	03-DEC-19		Page 5 of 7
Contact:	DARREN	MB R3B 3B1 KEAM							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SAT/PH/EC-SK		Soil							
WG3229867-4 pH in Saturate	ed Paste			6.95		pН		6.66-7.06	28-NOV-19
Conductivity S				98.4		%		80-120	28-NOV-19
WG3229867-2 % Saturation	2 MB			<1.0		%		1	28-NOV-19
Conductivity S	Sat. Paste			<0.10		dS m-1		0.1	28-NOV-19
SO4-SAR-SK		Soil							
Batch F WG3229867-6	R4928300		L2386360-1						
Sulfur (as SO	-		18	33	J	mg/L	15	20	28-NOV-19
WG3229867-5 Sulfur (as SO			ALS SAL 2019	99.8		%		70-130	28-NOV-19
WG3229867-2 Sulfur (as SO				<5.0		mg/L		5	28-NOV-19

Workorder: L2386360

Client:	WSP Canada Group Limited
	111-93 Lombard Ave
	Winnipeg MB R3B 3B1
Contact:	DARREN KEAM

Legend:	
---------	--

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L2386360

Report Date: 03-DEC-19

Client:	WSP Canada Group Limited						
	111-93 Lombard Ave						
	Winnipeg MB R3B 3B1						
Contact:	DARREN KEAM						

Hold Time Exceedances:

ALS Produc	t Description	Sample ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Plant Availa	ble Nutrients		v					
Available	Nitrate-N (2N KCI)							
		1	21-NOV-19 11:00	26-NOV-19 12:00	3	5	days	EHT
Legend & Q	ualifier Definitions:	:						
EHTR-FM: EHTR: EHTL:	Exceeded ALS rec	commend	ed hold time prior to san ed hold time prior to san ed hold time prior to ana	nple receipt.				piry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2386360 were received on 21-NOV-19 15:35.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain of Custody (COC) / Analytical **Request Form**

Canada Toll Free: 1 800 668 9878

IOC Number: 14 -

Page	CÍ	-
	******	-

L2386360-COFC

	www.alsglobal.com																		
Report To			Report Format	/ Distribution		1	****	45es * 10000 *	·		•·····	Autor	nound	Типе (tat) is	noi ava	ai:aola f	or all test	(s)
Company:	WSP Canada Group Limited	Select Report	Format: 🛛 Por	🖸 EXCEL 🛛	EDD (DIGITAL)	R	🗋 Reg	ular (St	andard	tat it ie	ceived	by 3 pr	n - bus	iness o	ays)		•		
Contact	Darren Keam	Quality Control	QC) Report with R	Report 🛛 🖓 Ye	s 🗂 No	3												nifirm TA	
Address:	1600 Buffalo Place	Citeria on Rep	ort - provide details beid	w if box checked		E	🗋 Erne	rgency	(1-5 pn	s. days i	f receiv	ed by 3	(pm) 1	30% 51	echarg	e - cost	act ALS	to confi	m TAT
		Select Distribu	tion: 🖸 EMA	ul [] mail	🗇 FAX	E2	🖾 Sam	ie day c	x weeke	au eme	rgency	conta	a als	to cont	irm TA	T and s	urcharg	<u>۲</u>	
Phone:	204-259-1488	Email 1 or Fax	damen.keam@wsj	p.com		Spec	ify Dat	e Req	uired f	or E2,8	E or P:							-	
	· · ·	Email 2					_				A	nalys	is Re	quəsi					
Invoice To	Same as Report To FYes FNo		Invoice Di	stribution			todk	cale Fā	lered (F). Prose	rved (P)	IGR 10	ered er	nt Pres	erved	(FiP) be	dow		
	Copy of Invoice with Report F Yes F No	Select Invoice	elect Invoice Distribution: 🖾 Email. 🔲 mail. 💭 Pax																
Company:		Email 1 or Fax	apWest@wsp.con	n]					Stat								
Contact:		Email 2				J					CCME Metat								e
	Project Information	0	il and Gas Require	d Fleids (client	us o)	z					Ğ			*					aine
ALS Quote #:	Q37455	Approver ID:		Cost Center:		Nilrate-N								å	*				onti
Job #:	181-03988-00	GL Account:		Routing Code:		S NH					ater				Aattu	. [ひ ち
PO/AFE:	181-03988-00	Activity Code:	Activity Code:					e			hoty		£9£		nic N	Ì		1	Nyrober of Containers
LSD:		Location:				1	õ	Sitan	5-6		-uj)		it, co		- Bug				hanti
ALS Lab Wo	rk Order # (lab use only)	ALS Contact:		Sampier:	D.Keam	e Amm	ate-2 b)	e Potas	Avaitable Sulfate-s	SAR	, Boron	rogen	eldahi N		irbon, (Reques			Z
ALS Sample # (lab use only)	Sample Identification and/or Coord (This description will appear on the r		Date (dd-mmm-yy)	Time (hh.mm)	Sample Type	vailshie.	Phosphate-2 by Diser	Available Potassium	4vaitabi	pH, EC. SAR	Mercury, Boron (in-hotwater).	Fotal Nitrogen	Total Kjeldahi Nitrogen		Ttoal Carbon, Organic Matter	Special Request			
·····	Gimli BS WBT :		21/11/19	1 an	Grab	TŻ	X	X	2	×	X	×	$\dot{\mathbf{x}}$		と	×		Ť	2
*******			<u> </u>	11cm	10 Star	<u>+</u>					<u>`</u>		— `					-+	<u>~</u>
······································									 	Į									
												_							
					ļ.,	.			<u>.</u>			Į							
						1]									T	
		······································				1						<u>.</u>							
						1													
				4	<u> </u>	<u> </u>	ļ		ļ	 			ļ						
					<u></u>	ļ			ļ			ļ							
						ļ			<u> </u>										
												}						T	
Driaking	Water (DW) Samples ¹ (client use)	Special Instructions / Spe	rife Criteria to odd o	in maant inlight []			·		SAMP	LE CO	NDIT	ON A	S RE	CEN	ED (I	ib use	only		
			cay Criteria to add o	at tehort (cusut C	94)	Froze	n.					SIF (Obser	vatior	15	Yes		No	
	ten from a Regulated DW System? CCME Agricul	tural Land Use				ice p	acks	Yes		No		Cust	ody s	eal in	act	Yes		No	
ΓY						£	ng Initi												
	human drinking water use?							OLER	TEMPE	RATUR	8 °C	[INAL	coou	R TEN	PERAT	URES 9	С
Г Үі						2.	7												
	SHIPMENT RELEASE (client use)	INITIAL	SHIPMENT RECEP		ıly)				FIN	AL SH	IIPME	NT R			(lab				
	Date: 21/10/19 4 15pm	Received by: CEL		Date: NOV 21	Time: 3:35	Rece	eived b	Y:					Date	¥:		Time:			
Rei en ro ono	ALS LOCATIONS AND SAMPLING INFORMATI		VVH	TE-LABORATO		LOW		IT CO	8v				L		11 .	0.0001 3500			

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

. !

WSP Canada Inc. ATTN: DARREN KEAM 1600 Buffalo Place Winnipeg MB R3T 6B8 Date Received:21-NOV-19Report Date:27-MAR-20 08:30 (MT)Version:FINAL REV. 2

Client Phone: 204-477-6650

Certificate of Analysis

Lab Work Order #: L2386158

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc:

181-03988-00 181-03988-00

Comments: ADDITIONAL 24-MAR-20 12:46 ADDITIONAL 22-NOV-19 09:09

Account Manager [This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🕽

www.alsglobal.com

BIGHT SOLUTIONS BIGHT PARTNER

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2386158-1 TP01 0-6							
Sampled By: DK on 21-NOV-19 @ 11:30							
Matrix: SOIL							
Miscellaneous Parameters							
Boron (B), Hot Water Ext.	0.46		0.20	mg/kg	29-NOV-19	29-NOV-19	R4929553
Available Phosphate-P	9.7		1.0	mg/kg	29-NOV-19	29-NOV-19	R4928926
Available Potassium	120		20	mg/kg	27-NOV-19	27-NOV-19	R4928083
Available Sulfate-S	5.4		4.0	mg/kg	28-NOV-19	28-NOV-19	R4928303
Mercury (Hg)	0.0199		0.0050	mg/kg	28-NOV-19	29-NOV-19	R4929523
Total Kjeldahl Nitrogen	0.236	DLHC	0.040	%	28-NOV-19	29-NOV-19	R4928949
Total Nitrogen by LECO	0.230	22.10	0.040	%	27-NOV-19	27-NOV-19	R4927526
Particle Size	0.219		0.020	70	27-100-19	27-110-19	14927 520
% Sand	24.0		1.0	%		02-DEC-19	R4930017
% Silt	66.0		1.0	%		02-DEC-19	R4930017
% Clay	10.0		1.0	%		02-DEC-19	R4930017
Texture	Silt loam		-			02-DEC-19	R4930017
Metals in Soil by CRC ICPMS							
Aluminum (Al)	8280		50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Antimony (Sb)	0.10		0.10	mg/kg	28-NOV-19	29-NOV-19	R4928687
Arsenic (As)	1.83		0.10	mg/kg	28-NOV-19	29-NOV-19	R4928687
Barium (Ba)	65.4		0.50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Beryllium (Be)	0.29		0.10	mg/kg	28-NOV-19	29-NOV-19	R4928687
Boron (B)	11.5		5.0	mg/kg	28-NOV-19	29-NOV-19	R4928687
Bismuth (Bi)	<0.20		0.20	mg/kg	28-NOV-19	29-NOV-19	R4928687
Cadmium (Cd)	0.173		0.020	mg/kg	28-NOV-19	29-NOV-19	R4928687
Calcium (Ca)	89300		50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Chromium (Cr)	16.6		0.50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Cobalt (Co)	4.28		0.10	mg/kg	28-NOV-19	29-NOV-19	R4928687
Copper (Cu)	8.34		0.50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Iron (Fe)	9460		50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Lead (Pb)	4.96		0.50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Lithium (Li)	9.0		2.0	mg/kg	28-NOV-19	29-NOV-19	R4928687
Magnesium (Mg)	48400		20	mg/kg	28-NOV-19	29-NOV-19	R4928687
Manganese (Mn)	361		1.0	mg/kg	28-NOV-19	29-NOV-19	R4928687
Molybdenum (Mo)	0.25		0.10	mg/kg	28-NOV-19	29-NOV-19	R4928687
Nickel (Ni) Phosphorus (P)	11.0		0.50	mg/kg	28-NOV-19	29-NOV-19 29-NOV-19	R4928687
Potassium (K)	682		50 100	mg/kg	28-NOV-19 28-NOV-19	29-NOV-19 29-NOV-19	R4928687
Selenium (Se)	1550 0.25		100	mg/kg	28-NOV-19 28-NOV-19	29-NOV-19 29-NOV-19	R4928687 R4928687
Silver (Ag)	<0.10		0.20 0.10	mg/kg mg/kg	28-NOV-19	29-NOV-19	R4928687
Sodium (Na)	122		50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Strontium (Sr)	46.0		0.50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Sulfur (S)	<1000		1000	mg/kg	28-NOV-19	29-NOV-19	R4928687
Thallium (TI)	0.097		0.050	mg/kg	28-NOV-19	29-NOV-19	R4928687
Tin (Sn)	<1.0		1.0	mg/kg	28-NOV-19	29-NOV-19	R4928687
Titanium (Ti)	170		1.0	mg/kg	28-NOV-19	29-NOV-19	R4928687
Tungsten (W)	<0.50		0.50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Uranium (U)	0.644		0.050	mg/kg	28-NOV-19	29-NOV-19	R4928687
Vanadium (V)	20.2		0.20	mg/kg	28-NOV-19	29-NOV-19	R4928687
Zinc (Zn)	26.3		2.0	mg/kg	28-NOV-19	29-NOV-19	R4928687
Zirconium (Zr)	1.7		1.0	mg/kg	28-NOV-19	29-NOV-19	R4928687
Available Ammonia-N & Nitrate-N (2N KCI)				-			
Available Ammonium-N							
Available Ammonium-N	1.0		1.0	mg/kg	28-NOV-19	28-NOV-19	R4928074
Available Nitrate-N (2N KCI)							

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2386158-1 TP01 0-6							
Sampled By: DK on 21-NOV-19 @ 11:30							
Matrix: SOIL							
Available Nitrate-N (2N KCI)							
Available Nitrate-N	8.8		2.0	mg/kg	28-NOV-19	28-NOV-19	R4928348
Basic Salinity							
SAR and Cations in saturated soil							
Calcium (Ca)	47.8		5.0	mg/L	28-NOV-19	28-NOV-19	R4928300
Potassium (K)	5.4		5.0	mg/L	28-NOV-19	28-NOV-19	R4928300
Magnesium (Mg) Sodium (Na)	26.1 <5.0		5.0 5.0	mg/L mg/L	28-NOV-19 28-NOV-19	28-NOV-19 28-NOV-19	R4928300 R4928300
SAR	<0.10	SAR:DL	0.10	SAR	28-NOV-19	28-NOV-19	R4928300 R4928300
pH and EC (Saturated Paste)	<0.10	0/11.022	0.10	0/11	20110110	20110110	104520500
% Saturation	61.3		1.0	%	27-NOV-19	28-NOV-19	R4928008
pH in Saturated Paste	7.96		0.10	pН	27-NOV-19	28-NOV-19	R4928008
Conductivity Sat. Paste	0.40		0.10	dS m-1	27-NOV-19	28-NOV-19	R4928008
L2386158-2 TP01 6-24							
Sampled By: DK on 21-NOV-19 @ 11:30							
Matrix: SOIL							
Miscellaneous Parameters							
Total Kjeldahl Nitrogen	<0.020		0.020	%	28-NOV-19	29-NOV-19	R4928949
Total Nitrogen by LECO	<0.020		0.020	%	29-NOV-19	29-NOV-19	R4928917
Particle Size							
% Sand	26.0		1.0	%		02-DEC-19	R4930017
% Silt	55.6		1.0	%		02-DEC-19	R4930017
% Clay	18.4		1.0	%		02-DEC-19	R4930017
Texture	Silt loam					02-DEC-19	R4930017
Available Ammonia-N & Nitrate-N (2N KCI)							
Available Ammonium-N Available Ammonium-N	<1.0		1.0	~~//ca	28-NOV-19	28-NOV-19	D 4000074
Available Airmonium N Available Nitrate-N (2N KCI)	<1.0		1.0	mg/kg	20-1100-19	20-110 - 19	R4928074
Available Nitrate-N	<2.0		2.0	mg/kg	28-NOV-19	28-NOV-19	R4928348
L2386158-3 TP01 24-60							
Sampled By: DK on 21-NOV-19 @ 11:30							
Matrix: SOIL							
Particle Size							
% Sand	7.0		1.0	%		02-DEC-19	R4930017
% Silt	63.0		1.0	%		02-DEC-19	R4930017
% Clay	30.0		1.0	%		02-DEC-19	R4930017
Texture	Silty clay loam					02-DEC-19	R4930017
L2386158-4 TP02 0-6							
Sampled By: DK on 21-NOV-19 @ 11:30							
Matrix: SOIL							
Miscellaneous Parameters							
Boron (B), Hot Water Ext.	0.64		0.20	mg/kg	29-NOV-19	29-NOV-19	R4929553
Available Phosphate-P	1.6		1.0	mg/kg	29-NOV-19	29-NOV-19	R4928926
Available Potassium	94		20	mg/kg	27-NOV-19	27-NOV-19	R4928083
Available Sulfate-S	4.0		4.0	mg/kg	28-NOV-19	28-NOV-19	R4928303
Mercury (Hg)	0.0222		0.0050	mg/kg	28-NOV-19	29-NOV-19	R4929523
Total Kjeldahl Nitrogen	0.147		0.020	%	28-NOV-19	29-NOV-19	R4928949
Total Nitrogen by LECO	0.128		0.020	%	27-NOV-19	27-NOV-19	R4927526
Particle Size							
% Sand	20.0		1.0	%		02-DEC-19	R4930017

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2386158-4 TP02 0-6							
Sampled By: DK on 21-NOV-19 @ 11:30							
Matrix: SOIL							
Particle Size							
% Silt	52.4		1.0	%		02-DEC-19	R4930017
% Clay	27.6		1.0	%		02-DEC-19	R4930017
Texture	Silty clay loam /		1.0	,.		02-DEC-19	R4930017
	Clay loam					02 020 10	114000017
Metals in Soil by CRC ICPMS							
Aluminum (Al)	13300		50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Antimony (Sb)	0.10		0.10	mg/kg	28-NOV-19	29-NOV-19	R4928687
Arsenic (As)	2.10		0.10	mg/kg	28-NOV-19	29-NOV-19	R4928687
Barium (Ba)	93.7		0.50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Beryllium (Be)	0.47		0.10	mg/kg	28-NOV-19	29-NOV-19	R4928687
Boron (B)	13.6		5.0	mg/kg	28-NOV-19	29-NOV-19	R4928687
Bismuth (Bi)	<0.20		0.20	mg/kg	28-NOV-19	29-NOV-19	R4928687
Cadmium (Cd)	0.189		0.020	mg/kg	28-NOV-19	29-NOV-19	R4928687
Calcium (Ca)	90300		50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Chromium (Cr)	27.1		0.50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Cobalt (Co)	6.36		0.10	mg/kg	28-NOV-19	29-NOV-19	R4928687
Copper (Cu)	13.9		0.50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Iron (Fe)	14400		50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Lead (Pb)	6.38		0.50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Lithium (Li)	16.0		2.0	mg/kg	28-NOV-19	29-NOV-19	R4928687
Magnesium (Mg)	46300		20	mg/kg	28-NOV-19	29-NOV-19	R4928687
Manganese (Mn)	370		1.0	mg/kg	28-NOV-19	29-NOV-19	R4928687
Molybdenum (Mo)	0.28		0.10	mg/kg	28-NOV-19	29-NOV-19	R4928687
Nickel (Ni)	18.3		0.50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Phosphorus (P)	511		50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Potassium (K)	2660		100	mg/kg	28-NOV-19	29-NOV-19	R4928687
Selenium (Se)	0.21		0.20	mg/kg	28-NOV-19	29-NOV-19	R4928687
Silver (Ag)	<0.10		0.10	mg/kg	28-NOV-19	29-NOV-19	R4928687
Sodium (Na)	188		50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Strontium (Sr)	56.5		0.50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Sulfur (S)	<1000		1000	mg/kg	28-NOV-19	29-NOV-19	R4928687
Thallium (TI)	0.152		0.050	mg/kg	28-NOV-19	29-NOV-19	R4928687
Tin (Sn)	<1.0		1.0	mg/kg	28-NOV-19	29-NOV-19	R4928687
Titanium (Ti)	318		1.0	mg/kg	28-NOV-19	29-NOV-19	R4928687
Tungsten (W)	<0.50		0.50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Uranium (U)	0.915		0.050	mg/kg	28-NOV-19	29-NOV-19	R4928687
Vanadium (V)	29.8		0.20	mg/kg	28-NOV-19	29-NOV-19	R4928687
Zinc (Zn)	39.5		2.0	mg/kg	28-NOV-19	29-NOV-19	R4928687
Zirconium (Zr)	3.2		2.0 1.0	mg/kg	28-NOV-19	29-NOV-19	R4928687
Available Ammonia-N & Nitrate-N (2N KCI)	5.2		1.0	iiig/kg	20-110 - 13	29-110 - 19	14920007
Available Ammonium-N							
Available Ammonium-N	1.6		1.0	mg/kg	28-NOV-19	28-NOV-19	R4928074
	1.0		1.0	iiig/kg	20-110 - 13	20-110 - 19	14920074
Available Nitrate-N (2N KCI) Available Nitrate-N	<2.0		2.0	mg/kg	28-NOV-19	28-NOV-19	R4928348
Basic Salinity	×2.0		2.0		201101-19	20110119	117020040
-							
SAR and Cations in saturated soil Calcium (Ca)	41.7		5.0	mg/L	28-NOV-19	28-NOV-19	R4928300
Potassium (K)	<5.0		5.0 5.0	mg/L	28-NOV-19	28-NOV-19 28-NOV-19	R4928300 R4928300
				-			
Magnesium (Mg)	37.1		5.0	mg/L	28-NOV-19	28-NOV-19	R4928300
Sodium (Na)	13.5		5.0	mg/L	28-NOV-19	28-NOV-19	R4928300
SAR	0.37	1	0.10	SAR	28-NOV-19	28-NOV-19	R4928300

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2386158-4 TP02 0-6							
Sampled By: DK on 21-NOV-19 @ 11:30							
Matrix: SOIL							
pH and EC (Saturated Paste)							
% Saturation	58.9		1.0	%	27-NOV-19	28-NOV-19	R4928008
pH in Saturated Paste	8.13		0.10	pН	27-NOV-19	28-NOV-19	R4928008
Conductivity Sat. Paste	0.46		0.10	dS m-1	27-NOV-19	28-NOV-19	R4928008
L2386158-5 TP02 6-24							
Sampled By: DK on 21-NOV-19 @ 11:30							
Matrix: SOIL							
Miscellaneous Parameters							
Total Kjeldahl Nitrogen	<0.020		0.020	%	28-NOV-19	29-NOV-19	R4928949
Total Nitrogen by LECO	<0.020		0.020	%	27-NOV-19	27-NOV-19	R4927526
Particle Size							
% Sand	18.0		1.0	%		02-DEC-19	R4930017
% Silt	60.0		1.0	%		02-DEC-19	R4930017
% Clay	22.0		1.0	%		02-DEC-19	R4930017
Texture Available Ammonia-N & Nitrate-N (2N KCI)	Silt loam					02-DEC-19	R4930017
Available Ammonium-N							
Available Ammonium-N	<1.0		1.0	mg/kg	28-NOV-19	28-NOV-19	R4928074
Available Nitrate-N (2N KCI)							
Available Nitrate-N	<2.0		2.0	mg/kg	28-NOV-19	28-NOV-19	R4928348
L2386158-6 TP02 24-60							
Sampled By: DK on 21-NOV-19 @ 11:30							
Matrix: SOIL							
Particle Size							
% Sand	8.0		1.0	%		02-DEC-19	R4930017
% Silt	56.0		1.0	%		02-DEC-19	R4930017
% Clay	36.0		1.0	%		02-DEC-19	R4930017
Texture	Silty clay loam					02-DEC-19	R4930017
L2386158-7 TP03 0-6							
Sampled By: DK on 21-NOV-19 @ 11:30							
Matrix: SOIL							
Miscellaneous Parameters							
Boron (B), Hot Water Ext.	0.52		0.20	mg/kg	29-NOV-19	29-NOV-19	R4929553
Available Phosphate-P	7.8		1.0	mg/kg	29-NOV-19	29-NOV-19	R4928926
Available Potassium	164		20	mg/kg	27-NOV-19	27-NOV-19	R4928083
Available Sulfate-S	<4.0		4.0	mg/kg	28-NOV-19	28-NOV-19	R4928303
Mercury (Hg)	0.0238		0.0050	mg/kg	28-NOV-19	29-NOV-19	R4929523
Total Kjeldahl Nitrogen	0.172		0.020	%	28-NOV-19	29-NOV-19	R4928949
Total Nitrogen by LECO	0.172		0.020	%	26-MAR-20	26-MAR-20	R5041787
Particle Size				- ·			
% Sand	18.0		1.0	%		02-DEC-19	R4930017
% Silt	46.0		1.0	%		02-DEC-19	R4930017
% Clay	36.0		1.0	%		02-DEC-19	R4930017
Texture	Silty clay loam					02-DEC-19	R4930017
Metals in Soil by CRC ICPMS Aluminum (Al)	17600		50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Antimony (Sb)	0.15		0.10	mg/kg	28-NOV-19	29-NOV-19	R4928687 R4928687
Arsenic (As)	3.30		0.10	mg/kg	28-NOV-19	29-NOV-19	R4928687
Barium (Ba)	125		0.50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Beryllium (Be)	0.63		0.10	mg/kg	28-NOV-19	29-NOV-19	R4928687

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2386158-7 TP03 0-6							
Sampled By: DK on 21-NOV-19 @ 11:30							
Matrix: SOIL							
Metals in Soil by CRC ICPMS							
Boron (B)	12.8		5.0	mg/kg	28-NOV-19	29-NOV-19	R4928687
Bismuth (Bi)	<0.20		0.20	mg/kg	28-NOV-19	29-NOV-19	R4928687
Cadmium (Cd)	0.146		0.020	mg/kg	28-NOV-19	29-NOV-19	R4928687
Calcium (Ca)	61700		50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Chromium (Cr)	35.4		0.50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Cobalt (Co)	8.89		0.10	mg/kg	28-NOV-19	29-NOV-19	R4928687
Copper (Cu)	19.3		0.50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Iron (Fe)	18900		50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Lead (Pb)	8.85		0.50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Lithium (Li)	20.3		2.0	mg/kg	28-NOV-19	29-NOV-19	R4928687
Magnesium (Mg)	33300		20	mg/kg	28-NOV-19	29-NOV-19	R4928687
Magnese (Mn)	468		1.0	mg/kg	28-NOV-19	29-NOV-19	R4928687
Molybdenum (Mo)	0.52		0.10	mg/kg	28-NOV-19	29-NOV-19	R4928687
Nickel (Ni)	25.9		0.50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Phosphorus (P)	600		50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Potassium (K)	3860		100	mg/kg	28-NOV-19	29-NOV-19	R4928687
Selenium (Se)	0.22		0.20	mg/kg	28-NOV-19	29-NOV-19	R4928687
Silver (Ag)	<0.10		0.10	mg/kg	28-NOV-19	29-NOV-19	R4928687
Sodium (Na)	245		50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Strontium (Sr)	45.4		0.50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Sulfur (S)	<1000		1000	mg/kg	28-NOV-19	29-NOV-19	R4928687
Thallium (TI)	0.217		0.050	mg/kg	28-NOV-19	29-NOV-19	R4928687
Tin (Sn)	<1.0		1.0	mg/kg	28-NOV-19	29-NOV-19	R4928687
Titanium (Ti)	386		1.0	mg/kg	28-NOV-19	29-NOV-19	R4928687
Tungsten (W)	<0.50		0.50	mg/kg	28-NOV-19	29-NOV-19	R4928687
Uranium (U)	0.741		0.050	mg/kg	28-NOV-19	29-NOV-19	R4928687
Vanadium (V)	38.8		0.20	mg/kg	28-NOV-19	29-NOV-19	R4928687
Zinc (Zn)	56.7		2.0	mg/kg	28-NOV-19	29-NOV-19	R4928687
Zirconium (Zr)	4.6		1.0	mg/kg	28-NOV-19	29-NOV-19	R4928687
Available Ammonia-N & Nitrate-N (2N KCI)	4.0		1.0	ing/kg	20110115	20110110	114920007
Available Ammonium-N							
Available Ammonium-N	3.3		1.0	mg/kg	28-NOV-19	28-NOV-19	R4928074
Available Nitrate-N (2N KCI)							
Available Nitrate-N	<2.0		2.0	mg/kg	28-NOV-19	28-NOV-19	R4928348
Basic Salinity							
SAR and Cations in saturated soil							
Calcium (Ca)	60.9		5.0	mg/L	28-NOV-19	28-NOV-19	R4928300
Potassium (K)	<5.0		5.0	mg/L	28-NOV-19	28-NOV-19	R4928300
Magnesium (Mg)	26.9		5.0	mg/L	28-NOV-19	28-NOV-19	R4928300
Sodium (Na)	9.9		5.0	mg/L	28-NOV-19	28-NOV-19	R4928300
SAR	0.27		0.10	SAR	28-NOV-19	28-NOV-19	R4928300
pH and EC (Saturated Paste)							
% Saturation	64.8		1.0	%	27-NOV-19	28-NOV-19	R4928008
pH in Saturated Paste	7.82		0.10	pН	27-NOV-19	28-NOV-19	R4928008
Conductivity Sat. Paste	0.46		0.10	dS m-1	27-NOV-19	28-NOV-19	R4928008
_2386158-8 TP03 6-24							
Sampled By: DK on 21-NOV-19 @ 11:30							
Matrix: SOIL							
Miscellaneous Parameters							
Total Kjeldahl Nitrogen	0.053		0.020	%	28-NOV-19	29-NOV-19	R4928949
Total Nitrogen by LECO	0.050		0.020	%	27-NOV-19	27-NOV-19	R4927526
	0.000		0.020	/0	27-100-19	21-110-19	174921020

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2386158-8 TP03 6-24							
Sampled By: DK on 21-NOV-19 @ 11:30							
Matrix: SOIL							
Particle Size							
% Sand % Silt	22.0		1.0	%		02-DEC-19	R4930017
% Silt % Clay	54.0		1.0	%		02-DEC-19 02-DEC-19	R4930017
Texture	24.0 Silt Ioam		1.0	%		02-DEC-19 02-DEC-19	R4930017
Available Ammonia-N & Nitrate-N (2N KCI)	Siit ioam					02-DEC-19	R4930017
Available Ammonium-N							
Available Ammonium-N	1.6		1.0	mg/kg	28-NOV-19	28-NOV-19	R4928074
Available Nitrate-N (2N KCI)							
Available Nitrate-N	<2.0		2.0	mg/kg	28-NOV-19	28-NOV-19	R4928348
L2386158-9 TP03 24-60							
Sampled By: DK on 21-NOV-19 @ 11:30							
Matrix: SOIL							
Particle Size							
% Sand	9.0		1.0	%		02-DEC-19	R4930017
% Silt	43.0		1.0	%		02-DEC-19	R4930017
% Clay	48.0		1.0	%		02-DEC-19	R4930017
Texture	Silty clay					02-DEC-19	R4930017
L2386158-10 TP03 60-72							
Sampled By: DK on 21-NOV-19 @ 11:30							
Matrix: SOIL							
Particle Size							
% Sand	<1.0		1.0	%		02-DEC-19	R4930017
% Silt	16.0		1.0	%		02-DEC-19	R4930017
% Clay	84.0		1.0	%		02-DEC-19	R4930017
Texture	Clay					02-DEC-19	R4930017
	1			1	1	<u> </u>	I

Sample Parameter Qualifier Key: Qualifier Description DLHC Detection Limit Raised: Dilution required due to high concentration of test analyte(s). SAR:DL SAR is incalculable due to undetectable Na. Detection Limit represents maximum possible SAR value. **Test Method References:** ALS Test Code Matrix Method Reference** **Test Description B-HOTW-SK** CSSS (2008) Ch.9 Soil Available Boron, Hot Water Hot water is used to extract the plant-available and potentially plant-available boron from soil. Boron in the extract is determined by ICP-OES. HG-200.2-CVAA-SK Soil Mercury in Soil by CVAAS EPA 200.2/1631E (mod) Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAAS. K-AVAIL-SK Soil Available Potassium Comm. Soil Sci. Plant, 25 (5&6) Plant available potassium is extracted from the soil using Modified Kelowna solution. Potassium in the soil extract is determined by flame emission at 770 nm. Metals in Soil by CRC ICPMS MET-200.2-CCMS-SK Soil EPA 200.2/6020A (mod) Soil/sediment is dried, disaggregated, and sieved (2 mm). Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS. Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including Al, Ba, Be, Cr, S, Sr, Ti, TI, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion. N-TOT-LECO-SK Soil Total Nitrogen by combustion method CSSS (2008) 22.4 The sample is ignited in a combustion analyzer where nitrogen in the reduced nitrous oxide gas is determined using a thermal conductivity detector. N-TOTKJ-COL-SK Soil Total Kjeldahl Nitrogen CSSS (2008) 22.2.3 The soil is digested with sulfuric acid in the presence of CuSO4 and K2SO4 catalysts. Ammonia in the soil extract is determined colrimetrically at 660 nm. NH4-AVAIL-SK Soil Available Ammonium-N CSSS Carter 6.2 / Comm Soil Sci 19(6) Ammonium (NH4-N) is extracted from the soil using 2 N KCI. Ammonium in the extract is mixed with hypochlorite and salicylate to form indophenol blue, which is determined colorimetrically by auto analysis at 660 nm. NO3-AVAIL-KCL-SK Available Nitrate-N (2N KCI) CSSS (1993) 4.2, 4.3 Soil Available Nitrate and Nitrite are extracted from the soil using a 2N KCl solution. Nitrate is guantitatively reduced to nitrite by passage of the sample through a copperized cadmium column. The nitrite (reduced nitrate plus original nitrite) is then determined by diazotizing with sulfanilamide followed by coupling with N-(1-naphthyl) ethylenediamine dihydrochloride. The resulting water soluble dye has a magenta color which is measured at colorimetrically at 520nm. Reference: Carter, Martin. Soil Sampling and Methods of Analysis. Can. Soc. Soil Sci.(1993) methods 4.2, 4.3 PO4-AVAIL-OLSEN-SK Soil Available Phosphate-P by Olsen CSSS (2008) 8 Plant available phosphorus is extracted from air dried soil using a fixed ratio bicarbonate extraction. Phosphorus is determined by colorimetry. PSA-1-ED CSSS 55.3-Hydrometer Soil Particle Size Soil samples are oven dried, ground to pass a 2 mm sieve, and soaked in Calgon solution for a minimum of 16 hours. Soil suspensions are measured for particle size by distribution using a hydrometer after specified settling times. SAR-CALC-SK SAR and Cations in saturated soil APHA 3120B Soil A soil extract is generated using our saturated paste procedure. Ca, Mg, Na and K in a saturated soil extract are determined by ICP-OES. SAT/PH/EC-SK Soil pH and EC (Saturated Paste) CSSS 15/CSSC 3.14 A saturated paste is generated by adding water to soil with mixing until the following criteria are met: The sample paste glistens as it reflects light. The sample flows slightly when container is tipped, and slides freely and cleanly off the spatula. A trench carved in the soil surface will close readily upon jarring the container. There should be no free layer of water on top of the sample. An aliguot of the sample is obtained, dried at 105C and saturation percentage is determined pH of a saturated soil paste is measured using a pH meter.

The EC is measured using a conductivity meter on the filtered extract.

Test Method References:

ALS Test Code	Matrix	ix Test Description Method Reference**					
SO4-AVAIL-SK	Soil	Available Sulfate-S	REC METH SOIL ANAL - AB. AG(1988)				
Plant available sulfate in the soil is extracted using a weak calcium chloride solution. Sulfate in the extract is determined by ICP-OES. This extraction may also produce organic sulfur in the extracts when organic soils are analyzed.							
** ALS test methods may incorporate modifications from specified reference methods to improve performance.							

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
ED	ALS ENVIRONMENTAL - EDMONTON, ALBERTA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder:	L238615	8	Report Date: 27	7-MAR-20	Pa	ge 1 of 10
Client:	WSP Canada Inc. 1600 Buffalo Place Winnipeg MB R3T 6E	38						
Contact:	DARREN KEAM							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
B-HOTW-SK	Soil							
Batch WG3231458 Boron (B), H	R4929553 -1 DUP Hot Water Ext.	L2386158-4 0.64	0.58		mg/kg	9.5	30	29-NOV-19
WG3231458 Boron (B), H	-3 IRM Hot Water Ext.	SAL814	87.2		%		70-130	29-NOV-19
WG3231458 Boron (B), H	-4 LCS Hot Water Ext.		101.1		%		70-130	29-NOV-19
WG3231458 Boron (B), H	-2 MB Hot Water Ext.		<0.20		mg/kg		0.2	29-NOV-19
HG-200.2-CVA	A-SK Soil							
Batch WG3230348 Mercury (Hg		TILL-1	110.1		%		70-130	29-NOV-19
WG3230348 Mercury (Hg		L2386158-1 0.0199	0.0185		mg/kg	7.1	40	29-NOV-19
WG3230348 Mercury (Hg			99.5		%		80-120	29-NOV-19
WG3230348 Mercury (Hg			<0.0050		mg/kg		0.005	29-NOV-19
K-AVAIL-SK	Soil							
Batch	R4928083							
WG3228633 Available Po	otassium	FARM2005	99.9		%		70-130	27-NOV-19
WG3228633 Available Po	otassium		94.3		%		80-120	27-NOV-19
WG3228633 Available Po			<20		mg/kg		20	27-NOV-19
MET-200.2-CC	MS-SK Soil							
Batch	R4928687							
WG3230348 Aluminum (J		TILL-1	95.0		%		70-130	29-NOV-19
Antimony (S			102.2		%		70-130	29-NOV-19
Arsenic (As))		96.6		%		70-130	29-NOV-19
Barium (Ba))		95.2		%		70-130	29-NOV-19
Beryllium (B	Be)		92.3		%		70-130	29-NOV-19
Boron (B)			2.7		mg/kg		0-8.2	29-NOV-19
Bismuth (Bi)		93.4		%		70-130	29-NOV-19
Cadmium (0	Cd)		97.2		%		70-130	29-NOV-19

		Workorder	: L238615	58 R	eport Date: 2	7-MAR-20	Pag	e 2 of 1
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-SK	Soil							
Batch R492868	37							
WG3230348-3 CRM	Λ	TILL-1						
Calcium (Ca)			91.4		%		70-130	29-NOV-19
Chromium (Cr)			94.8		%		70-130	29-NOV-19
Cobalt (Co)			95.5		%		70-130	29-NOV-19
Copper (Cu)			96.2		%		70-130	29-NOV-19
Iron (Fe)			93.1		%		70-130	29-NOV-19
Lead (Pb)			94.0		%		70-130	29-NOV-19
Lithium (Li)			90.2		%		70-130	29-NOV-19
Magnesium (Mg)			96.7		%		70-130	29-NOV-19
Manganese (Mn)			95.9		%		70-130	29-NOV-19
Molybdenum (Mo)			93.4		%		70-130	29-NOV-19
Nickel (Ni)			96.5		%		70-130	29-NOV-19
Phosphorus (P)			99.0		%		70-130	29-NOV-19
Potassium (K)			99.1		%		70-130	29-NOV-19
Selenium (Se)			0.28		mg/kg		0.11-0.51	29-NOV-19
Silver (Ag)			0.22		mg/kg		0.13-0.33	29-NOV-19
Sodium (Na)			98.6		%		70-130	29-NOV-19
Strontium (Sr)			92.1		%		70-130	29-NOV-19
Thallium (TI)			0.125		mg/kg		0.077-0.18	29-NOV-19
Tin (Sn)			1.0		mg/kg		0-3.1	29-NOV-19
Titanium (Ti)			85.8		%		70-130	29-NOV-19
Tungsten (W)			0.13		mg/kg		0-0.66	29-NOV-19
Uranium (U)			91.0		%		70-130	29-NOV-19
Vanadium (V)			94.6		%		70-130	29-NOV-19
Zinc (Zn)			94.4		%		70-130	29-NOV-19
Zirconium (Zr)			1.0		mg/kg		0-1.8	29-NOV-19
WG3230348-2 DUF)	L2386158-1						
Aluminum (Al)		8280	7730		mg/kg	6.9	40	29-NOV-19
Antimony (Sb)		0.10	<0.10	RPD-NA	mg/kg	N/A	30	29-NOV-19
Arsenic (As)		1.83	1.66		mg/kg	9.9	30	29-NOV-19
Barium (Ba)		65.4	58.0		mg/kg	12	40	29-NOV-19
Beryllium (Be)		0.29	0.27		mg/kg	6.1	30	29-NOV-19
Boron (B)		11.5	10.3		mg/kg	11	30	29-NOV-19
Bismuth (Bi)		<0.20	<0.20	RPD-NA	mg/kg	N/A	30	29-NOV-19
Cadmium (Cd)		0.173	0.159		mg/kg	8.3	30	29-NOV-19

		Workorder:	L2386158	B Re	port Date: 2	7-MAR-20	Pa	age 3 of 1
Fest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-SK	Soil							
Batch R4928687	7							
WG3230348-2 DUP Calcium (Ca)		L2386158-1 89300	85200		mg/kg	4.7	30	29-NOV-19
Chromium (Cr)		16.6	15.3		mg/kg	8.2	30	29-NOV-19
Cobalt (Co)		4.28	3.75		mg/kg	13	30	29-NOV-19
Copper (Cu)		8.34	7.75		mg/kg	7.3	30	29-NOV-19
Iron (Fe)		9460	8630		mg/kg	9.2	30	29-NOV-19
Lead (Pb)		4.96	4.53		mg/kg	9.1	40	29-NOV-19
Lithium (Li)		9.0	8.6		mg/kg	4.4	30	29-NOV-19
Magnesium (Mg)		48400	44800		mg/kg	7.7	30	29-NOV-19
Manganese (Mn)		361	317		mg/kg	13	30	29-NOV-19
Molybdenum (Mo)		0.25	0.23		mg/kg	8.4	40	29-NOV-19
Nickel (Ni)		11.0	10.1		mg/kg	8.4	30	29-NOV-19
Phosphorus (P)		682	625		mg/kg	8.7	30	29-NOV-19
Potassium (K)		1550	1380		mg/kg	11	40	29-NOV-19
Selenium (Se)		0.25	<0.20	RPD-NA	mg/kg	N/A	30	29-NOV-19
Silver (Ag)		<0.10	<0.10	RPD-NA	mg/kg	N/A	40	29-NOV-19
Sodium (Na)		122	115		mg/kg	6.2	40	29-NOV-19
Strontium (Sr)		46.0	43.0		mg/kg	6.7	40	29-NOV-19
Sulfur (S)		<1000	<1000	RPD-NA	mg/kg	N/A	30	29-NOV-19
Thallium (TI)		0.097	0.078		mg/kg	21	30	29-NOV-19
Tin (Sn)		<1.0	<1.0	RPD-NA	mg/kg	N/A	40	29-NOV-19
Titanium (Ti)		170	144		mg/kg	16	40	29-NOV-19
Tungsten (W)		<0.50	<0.50	RPD-NA	mg/kg	N/A	30	29-NOV-19
Uranium (U)		0.644	0.589		mg/kg	8.9	30	29-NOV-19
Vanadium (V)		20.2	18.0		mg/kg	11	30	29-NOV-19
Zinc (Zn)		26.3	24.3		mg/kg	7.8	30	29-NOV-19
Zirconium (Zr)		1.7	1.5		mg/kg	9.0	30	29-NOV-19
WG3230348-4 LCS Aluminum (Al)			98.9		%		80-120	29-NOV-19
Antimony (Sb)			104.2		%		80-120	29 NOV-19
Arsenic (As)			98.7		%		80-120	29-NOV-19 29-NOV-19
Barium (Ba)			98.5		%		80-120	29-NOV-19 29-NOV-19
Beryllium (Be)			93.1		%		80-120	29-NOV-19
Boron (B)			86.6		%		80-120	29-NOV-19 29-NOV-19
Bismuth (Bi)			93.3		%		80-120	29-NOV-19 29-NOV-19

		Workorder	L238615	8	Report Date: 2	7-MAR-20	Pa	age 4 of 1
est N	latrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-SK	Soil							
Batch R4928687								
WG3230348-4 LCS Cadmium (Cd)			99.1		%		80-120	29-NOV-19
Calcium (Ca)			95.3		%		80-120	29-NOV-19
Chromium (Cr)			96.9		%		80-120	29-NOV-19
Cobalt (Co)			95.7		%		80-120	29-NOV-19
Copper (Cu)			93.6		%		80-120	29-NOV-19
Iron (Fe)			102.5		%		80-120	29-NOV-19
Lead (Pb)			96.6		%		80-120	29-NOV-19
Lithium (Li)			93.4		%		80-120	29-NOV-19
Magnesium (Mg)			101.5		%		80-120	29-NOV-19
Manganese (Mn)			98.3		%		80-120	29-NOV-19
Molybdenum (Mo)			96.0		%		80-120	29-NOV-19
Nickel (Ni)			95.7		%		80-120	29-NOV-19
Phosphorus (P)			103.9		%		80-120	29-NOV-19
Potassium (K)			105.8		%		80-120	29-NOV-19
Selenium (Se)			97.3		%		80-120	29-NOV-19
Silver (Ag)			101.7		%		80-120	29-NOV-19
Sodium (Na)			99.1		%		80-120	29-NOV-19
Strontium (Sr)			99.2		%		80-120	29-NOV-19
Sulfur (S)			99.98		%		80-120	29-NOV-19
Thallium (TI)			93.9		%		80-120	29-NOV-19
Tin (Sn)			101.3		%		80-120	29-NOV-19
Titanium (Ti)			96.7		%		80-120	29-NOV-19
Tungsten (W)			97.0		%		80-120	29-NOV-19
Uranium (U)			94.6		%		80-120	29-NOV-19
Vanadium (V)			98.1		%		80-120	29-NOV-19
Zinc (Zn)			96.2		%		80-120	29-NOV-19
Zirconium (Zr)			94.3		%		80-120	29-NOV-19
WG3230348-1 MB Aluminum (Al)			<50		mg/kg		50	29-NOV-19
Antimony (Sb)			<0.10		mg/kg		0.1	29-NOV-19 29-NOV-19
Arsenic (As)			<0.10		mg/kg		0.1	29-NOV-19
Barium (Ba)			<0.50		mg/kg		0.5	29-NOV-19
Beryllium (Be)			<0.10		mg/kg		0.5	29-NOV-19
			-0.10				0.1	20-INOV-18

		Workorder: L2	2386158	Report Date: 2	7-MAR-20	Pa	age 5 of 1
Test	Matrix	Reference R	tesult Qua	alifier Units	RPD	Limit	Analyzed
MET-200.2-CCMS-SK	Soil						
Batch R4928	687						
WG3230348-1 M	В						
Bismuth (Bi)			<0.20	mg/kg		0.2	29-NOV-19
Cadmium (Cd)			<0.020	mg/kg		0.02	29-NOV-19
Calcium (Ca)			<50	mg/kg		50	29-NOV-19
Chromium (Cr)			<0.50	mg/kg		0.5	29-NOV-19
Cobalt (Co)			<0.10	mg/kg		0.1	29-NOV-19
Copper (Cu)			<0.50	mg/kg		0.5	29-NOV-19
Iron (Fe)			<50	mg/kg		50	29-NOV-19
Lead (Pb)			<0.50	mg/kg		0.5	29-NOV-19
Lithium (Li)			<2.0	mg/kg		2	29-NOV-19
Magnesium (Mg)			<20	mg/kg		20	29-NOV-19
Manganese (Mn)		<	<1.0	mg/kg		1	29-NOV-19
Molybdenum (Mo)		<	<0.10	mg/kg		0.1	29-NOV-19
Nickel (Ni)		<	<0.50	mg/kg		0.5	29-NOV-19
Phosphorus (P)		<	<50	mg/kg		50	29-NOV-19
Potassium (K)		<	<100	mg/kg		100	29-NOV-19
Selenium (Se)		<	<0.20	mg/kg		0.2	29-NOV-19
Silver (Ag)		<	<0.10	mg/kg		0.1	29-NOV-19
Sodium (Na)		<	<50	mg/kg		50	29-NOV-19
Strontium (Sr)		<	<0.50	mg/kg		0.5	29-NOV-19
Sulfur (S)		<	<1000	mg/kg		1000	29-NOV-19
Thallium (TI)		<	<0.050	mg/kg		0.05	29-NOV-19
Tin (Sn)		<	<1.0	mg/kg		1	29-NOV-19
Titanium (Ti)		<	<1.0	mg/kg		1	29-NOV-19
Tungsten (W)		<	<0.50	mg/kg		0.5	29-NOV-19
Uranium (U)		<	<0.050	mg/kg		0.05	29-NOV-19
Vanadium (V)		<	<0.20	mg/kg		0.2	29-NOV-19
Zinc (Zn)		<	<2.0	mg/kg		2	29-NOV-19
Zirconium (Zr)		<	<1.0	mg/kg		1	29-NOV-19
N-TOT-LECO-SK	Soil						
Batch R4927	7526						
WG3228458-2 IR Total Nitrogen by Ll		08-109_SOIL	91.5	%		80-120	27-NOV-19
WG3228458-4 LC Total Nitrogen by LI	CS ECO	SULFADIAZINE	99.4	%		90-110	27-NOV-19
						-	

WG3228458-3 MB

				-	•				
		Workorder:	L238615	8	Report Date: 2	7-MAR-20	Page 6 of 10		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
N-TOT-LECO-SK	Soil								
Batch R4927526 WG3228458-3 MB Total Nitrogen by LECO			<0.020		%		0.02	27-NOV-19	
Batch R4928917 WG3229994-2 IRM		08-109_SOIL							
Total Nitrogen by LECO			105.1		%		80-120	29-NOV-19	
WG3229994-4 LCS Total Nitrogen by LECO		SULFADIAZII	NE 100.5		%		90-110	29-NOV-19	
WG3229994-3 MB Total Nitrogen by LECO			<0.020		%		0.02	29-NOV-19	
Batch R5041787 WG3298277-2 DUP Total Nitrogen by LECO		L2386158-7 0.172	0.171		%	0.5	20	26-MAR-20	
WG3298277-3 IRM Total Nitrogen by LECO		08-109_SOIL	87.0		%		80-120	26-MAR-20	
WG3298277-5 LCS Total Nitrogen by LECO		SULFADIAZII	NE 101.7		%		90-110	26-MAR-20	
WG3298277-4 MB Total Nitrogen by LECO			<0.020		%		0.02	26-MAR-20	
N-TOTKJ-COL-SK	Soil								
Batch R4928949									
WG3228542-2 IRM Total Kjeldahl Nitrogen		08-109_SOIL	97.4		%		80-120	29-NOV-19	
WG3228542-3 LCS Total Kjeldahl Nitrogen			91.6		%		80-120	29-NOV-19	
WG3228542-4 MB Total Kjeldahl Nitrogen			<0.020		%		0.02	29-NOV-19	
NH4-AVAIL-SK	Soil								
Batch R4928074									
WG3228613-1 DUP Available Ammonium-N		L2386158-7 3.3	3.1		mg/kg	5.0	20	28-NOV-19	
WG3228613-3 IRM Available Ammonium-N		SAL814	104.9		%		70-130	28-NOV-19	
WG3228613-4 LCS Available Ammonium-N			92.1		%		80-120	28-NOV-19	
WG3228613-2 MB Available Ammonium-N			<1.0		mg/kg		1	28-NOV-19	
	• •								

NO3-AVAIL-KCL-SK

Soil

		Workorder:	L2386158	B Re	port Date: 2	7-MAR-20	Pag	ge 7 of 1
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO3-AVAIL-KCL-SK	Soil							
Batch R4928348								
WG3228614-1 DUP Available Nitrate-N		L2386158-7 <2.0	<2.0	RPD-NA	mg/kg	N/A	30	28-NOV-19
WG3228614-3 IRM Available Nitrate-N		SAL814	95.5		%		70-130	28-NOV-19
WG3228614-4 LCS Available Nitrate-N			96.6		%		70-130	28-NOV-19
WG3228614-2 MB Available Nitrate-N			<2.0		mg/kg		2	28-NOV-19
PO4-AVAIL-OLSEN-SK	Soil							
Batch R4928926								
WG3231463-1 DUP Available Phosphate-P		L2386158-7 7.8	6.2		mg/kg	23	30	29-NOV-19
WG3231463-3 IRM Available Phosphate-P		FARM2005	87.0		%		80-120	29-NOV-19
WG3231463-4 LCS Available Phosphate-P			109.3		%		80-120	29-NOV-19
WG3231463-2 MB Available Phosphate-P			<1.0		mg/kg		1	29-NOV-19
PSA-1-ED	Soil							
Batch R4930017								
WG3232473-3 DUP % Sand		L2386158-4 20.0	18.0	J	%	2.0	5	02-DEC-19
% Silt		52.4	53.6	J	%	1.2	5	02-DEC-19
% Clay		27.6	28.4	J	%	0.8	5	02-DEC-19
WG3232473-2 IRM % Sand		ALS SAL 2019	9 43.0		%		36.3-46.3	02-DEC-19
% Silt			35.0		%		30.2-40.2	02-DEC-19
% Clay			22.0		%		18.5-28.5	02-DEC-19
WG3232473-1 MB % Sand			<1.0		%		1	02-DEC-19
% Silt			<1.0		%		1	02-DEC-19
% Clay			<1.0		%		1	02-DEC-19
SAR-CALC-SK	Soil							
Batch R4928300								
WG3229867-5 IRM		ALS SAL 2019						
Calcium (Ca)			103.1		%		70-130	28-NOV-19

		Workorder	L238615	58	Report Date: 2	7-MAR-20	Page 8 of 10		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
SAR-CALC-SK	Soil								
Batch R4928300)								
WG3229867-5 IRM		ALS SAL 20							
Magnesium (Mg)			90.4		%		70-130	28-NOV-19	
Sodium (Na)			104.3		%		70-130	28-NOV-19	
WG3229867-4 LCS Calcium (Ca)			102.8		%		70-130	28-NOV-19	
Potassium (K)			98.9		%		70-130	28-NOV-19	
Magnesium (Mg)			99.3		%		70-130	28-NOV-19	
Sodium (Na)			103.7		%		70-130	28-NOV-19	
WG3229867-2 MB									
Calcium (Ca)			<5.0		mg/L		5	28-NOV-19	
Potassium (K)			<5.0		mg/L		5	28-NOV-19	
Magnesium (Mg)			<5.0		mg/L		5	28-NOV-19	
Sodium (Na)			<5.0		mg/L		5	28-NOV-19	
SAT/PH/EC-SK	Soil								
Batch R4928008	3								
WG3229867-5 IRM		ALS SAL 20 ⁴			0/		00.400		
% Saturation			96.0		%		80-120	28-NOV-19	
pH in Saturated Paste			7.35		рН		7.01-7.61	28-NOV-19	
Conductivity Sat. Paste			96.8		%		80-120	28-NOV-19	
WG3229867-4 LCS % Saturation			100.3		%		80-120	28-NOV-19	
pH in Saturated Paste			6.95		pH		6.66-7.06	28-NOV-19	
Conductivity Sat. Paste)		98.4		%		80-120	28-NOV-19	
WG3229867-2 MB								20110110	
% Saturation			<1.0		%		1	28-NOV-19	
Conductivity Sat. Paste)		<0.10		dS m-1		0.1	28-NOV-19	
SO4-AVAIL-SK	Soil								
Batch R4928303	5								
WG3228616-3 IRM Available Sulfate-S		SAL814	99.2		%		70-130	28-NOV-19	
WG3228616-2 MB Available Sulfate-S			<4.0		mg/kg		4	28-NOV-19	

Workorder: L2386158

Report Date: 27-MAR-20

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L2386158

Report Date: 27-MAR-20

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Leachable Anions & Nutrient	s						
Total Nitrogen by combustic	on method						
	7	21-NOV-19 11:30	26-MAR-20 00:00	28	126	days	EHT
Plant Available Nutrients							
Available Nitrate-N (2N KCl))						
	1	21-NOV-19 11:30	26-NOV-19 12:00	3	5	days	EHT
	2	21-NOV-19 11:30	27-NOV-19 17:00	3	6	days	EHT
	4	21-NOV-19 11:30	26-NOV-19 12:00	3	5	days	EHT
	5	21-NOV-19 11:30	26-NOV-19 12:00	3	5	days	EHT
	7	21-NOV-19 11:30	26-NOV-19 12:00	3	5	days	EHT
	8	21-NOV-19 11:30	26-NOV-19 12:00	3	5	days	EHT

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2386158 were received on 21-NOV-19 15:38.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

٩.

n____

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

COC Number: 1	14 -	L2386158
P		

Page of

	www.alsolobal.com																			
Report To				Report Format	/Di		17 -		ct'Serv	Ace Lev	el Selo	w (Ru	sh Turr	Bround	c time ((IAI) is	not ave	ilsbie f	or all tes	;ts)
Company:	WSP Canada Group Limited	Select R	leport Fo	mat: 🖸 PDF	EXCEL	(T EDD (DIGITAL)	R	🗆 Reg	ular (Sta	andard	FAT # re	iceived	by 3 p	m - bu	isiness d	days)				
Contact:	Darren Keam	Quality C	Quality Control (QC) Report with Report F Yes F No						rity (2-4	i bos. da	ays il rec	ceived	by Spr	:) 50%	surcha	nge - co	muact AL	.S to co	nfina T	AT
Address:	1600 Buffaio Place	Criteria	Enteria on Report - provide details below if box checked 🛛 🗧 🛄 Emer-						ндерсу	(1-2 bu	s. days :	f recei	ved by	3pni) :	100% si	uichaig	e - čonu	BCT ALS	to conf	TAT UTA
	_	Select D	lect Distribution: 🕢 FMAIL 🔲 MAIL 🗍 FAX						ie day u	r weeko	nd eme	rgency	- cont	ext ALS	S to cont	finn TA	T and s:	a charg	e	
Phone:	204-259-1488	Email 1 (mail 1 or Fax_darren.keam@wsp.com					ily Dat	e Req	uired f	or E2,E	É or P	-					*		
		Email 2						Anaiysis Request												
Invoice To	Same as Report To Pres T No			Invoice Di	stribution			India	Indicate Filterod (F). Preserved (P) or Filtered and Preserved (F/P) below											
	Copy of Invoice with Report Yes TNo	Select in	woice Dis	stribution: 🛛 E	MAIL 🗋 MAI	L L) FAX							R			2				
Company:		Email 1 (or Fax a	pWest@wsp.con	1							eta's	Ţ		1					
Contact:		Email 2										N N			-					ę
	Project Information		Oil a	ind Gas Require	d Flelds (clie	nt use)	z					CW	R R	5			₩			aine
ALS Quote #:	Q37455	Approve	r ID:		Cost Center:		Nitrate-N					C C	14	1	F					out
Job #:	181-03988-00	GL Acco	ount:		Routing Cod	e:						alei	18	2	4	1				of C
PO/AFE:	181-03988-00	Activity (Code:] ×	Olsen	_			िंद	ueț.	1	·					jêr
LSD:		Location	Location:					ō	Situr	s-a		Ξ	dro /	-	4 4 }				j	Number of Containers
ALS Lab Wo	rk Order # (lab use only)	ALS Co	ntact:		Sampler: D.Keam		Available Ammonia-N	ate-P b	tvailable Potassium	e Sulfale-s	SAR	. Boron (in-holwater), CCME Meta	Solt Texture (Hydrometer)	5		-				4
ALS Sample #	Sample Identification and/or t			Date	Time	Sample Type	railab!	Phosphate-P	/ailabi	Available	p∺ EC,	Mercury.	oti ⊺ex	Ц¥ L		4				
(lab use only)	(This description will appear or	i the report)		(dd-mmm-yy)	(hh:mm)		╉┋			- ×	<u>à</u>	1 2	۲×	$ \Sigma $	₩.	4				
<u> </u>	1001 0-6			21/11/19	1130 au	 Soil 		~	6				Ľ	4¥		ļ				
	TPO1 6-24	· · · · · · · · · · · · · · · · · · ·			<u> </u>	Soil	-	<u> </u>	L				V	V						
5	TPO1 24-7260			1		Soil		ł												1
4	TROZ 0-6			1		Soil	V	1	1	\checkmark		V	17	∇						1
\neg	TROZ 6-24			1		Soil	V					1	17	V		1			1	1
6	TPOZ 24-5260					Soil	1					†	17			+	-			
1	TRO3 0-6					Soll	1	V	\checkmark	V	V	V	V							1
8	TRO3 6-24					Soil							V	7	TP	1			I	1
4	TPO3 24-1260					Soil	1				<u> </u>	ţ	$\overline{\nabla}$	1						1
10	TRO3 60-72	······································			_	Soil				****			\forall		1					1
						Soli														
						Soil														
Drinking	Water (DW) Samples ¹ (client use)	Special Instructions	s / Specif	/ Criteria to add o	n report (ciler	l Use)	<u> </u>	•		SAMP	LE CO	NDIT		_	ECEIV		ab use Yes	-		
		gricultural Land Use					Froze		Vor	H	Nio				ervation				No	
Are samples to	res E No - No	d to subsamp	o use					Ice packs Yes No Custody seal intact Yes No Cooling Initiated												
-	r human drinking water use?	n io sur sur T								 ТЕМ₽₽	RATURI	es •c	T		FINAL	1000	RTFM	PËRAT	URES	÷C
F Y	1						RINITIAL COOLER TEMPERATURES *C FINAL COOLER TEMPERATURES *C						<u>~</u>							
	SHIPMENT RELEASE (chent usp)	ixii	ITIAL SH	IDMENT DECER	TION (lab nez	- only)	FINAL SHIPMENT RECEPTION (lab use only)													
Dalago Al bur																				
	21/10/19 4151		Nov 2	1 ^{Time} 3:58																
REFER TO BAC	K PAGE FOR ALS LOCATIONS AND SAMPLING INFO	MATION		WH	ITE LABORA	TORY COPY YE	LOW	- CLIEI	VT CO	PΥ					N4.5 N 7	0176+ -09 Fr	ochūt Janua	n 7014		

Failure to complete all portions of this form may detay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Tarms and Conscions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

WSP Canada Inc. ATTN: DARREN KEAM 1600 Buffalo Place Winnipeg MB R3T 6B8 Date Received:17-APR-20Report Date:01-MAY-20 14:35 (MT)Version:FINAL REV. 2

Client Phone: 204-477-6650

Certificate of Analysis

Lab Work Order #: L2437956

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc:

181-03988-01 181-03988-01

Comments:

1-MAY-2020 Added MU for NO3

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

2437956-1 GIMLI BIOSOLIDS 2020 Sampled By: CLIENT on 16-APR-20 @ 16:00 Matrix: GRAB Miscellaneous Parameters Moisture Boron (B), Hot Water Ext. Mercury (Hg) Total Kjeldahl Nitrogen Total Nitrogen by LECO Metals in Soil by CRC ICPMS Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba) Beryllium (Be)	85.4 16.5 0.299 6.7 6.92 18900	DLM DLHC	0.10 1.0 0.0050	% mg/kg	27-APR-20	21-APR-20	Decesso
Sampled By: CLIENT on 16-APR-20 @ 16:00 Matrix: GRAB Miscellaneous Parameters Moisture Boron (B), Hot Water Ext. Mercury (Hg) Total Kjeldahl Nitrogen Total Nitrogen by LECO Metals in Soil by CRC ICPMS Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba)	16.5 0.299 6.7 6.92 18900		1.0 0.0050	mg/kg	27-APR-20		DEGEGGE
Matrix: GRAB Miscellaneous Parameters Moisture Boron (B), Hot Water Ext. Mercury (Hg) Total Kjeldahl Nitrogen Total Nitrogen by LECO Metals in Soil by CRC ICPMS Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba)	16.5 0.299 6.7 6.92 18900		1.0 0.0050	mg/kg	27-APR-20		DEGEORG
Miscellaneous Parameters Moisture Boron (B), Hot Water Ext. Mercury (Hg) Total Kjeldahl Nitrogen Total Nitrogen by LECO Metals in Soil by CRC ICPMS Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba)	16.5 0.299 6.7 6.92 18900		1.0 0.0050	mg/kg	27-APR-20		DEAGAAG
Boron (B), Hot Water Ext. Mercury (Hg) Total Kjeldahl Nitrogen Total Nitrogen by LECO Metals in Soil by CRC ICPMS Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba)	16.5 0.299 6.7 6.92 18900		1.0 0.0050	mg/kg	27-APR-20		DEOFOOC
Boron (B), Hot Water Ext. Mercury (Hg) Total Kjeldahl Nitrogen Total Nitrogen by LECO Metals in Soil by CRC ICPMS Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba)	16.5 0.299 6.7 6.92 18900		1.0 0.0050	mg/kg	27-APR-20		R5059621
Mercury (Hg) Total Kjeldahl Nitrogen Total Nitrogen by LECO Metals in Soil by CRC ICPMS Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba)	0.299 6.7 6.92 18900		0.0050			27-APR-20	R5067078
Total Kjeldahl Nitrogen Total Nitrogen by LECO Metals in Soil by CRC ICPMS Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba)	6.7 6.92 18900	DLHC		malka	20-APR-20	24-APR-20	R5063258
Total Nitrogen by LECO Metals in Soil by CRC ICPMS Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba)	6.92 18900	DLHC		mg/kg		-	
Metals in Soil by CRC ICPMS Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba)	18900		1.2	%	23-APR-20	24-APR-20	R5065804
Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba)			0.020	%	23-APR-20	23-APR-20	R5061682
Antimony (Sb) Arsenic (As) Barium (Ba)			50				DECENCIÓ
Arsenic (As) Barium (Ba)	0.40		50	mg/kg	20-APR-20	20-APR-20	R5058931
Barium (Ba)	0.49		0.10	mg/kg	20-APR-20	20-APR-20	R5058931
	11.0		0.10	mg/kg	20-APR-20	20-APR-20	R5058931
Derylliulli (De)	195		0.50	mg/kg	20-APR-20	20-APR-20	R5058931
Boron (B)	0.17		0.10	mg/kg	20-APR-20	20-APR-20	R5058931
Bismuth (Bi)	89.6		5.0	mg/kg	20-APR-20	20-APR-20	R5058931
Cadmium (Cd)	10.8 0.491		0.20 0.020	mg/kg	20-APR-20 20-APR-20	20-APR-20 20-APR-20	R5058931
Calcium (Ca)	0.491 18400		0.020 50	mg/kg mg/kg	20-APR-20 20-APR-20	20-APR-20 20-APR-20	R5058931 R5058931
Chromium (Cr)	25.1				20-APR-20 20-APR-20	20-APR-20 20-APR-20	
Cobalt (Co)	25.1 1.84		0.50 0.10	mg/kg mg/kg	20-APR-20 20-APR-20	20-APR-20 20-APR-20	R5058931 R5058931
Copper (Cu)	1.64		0.10	mg/kg	20-APR-20 20-APR-20	20-APR-20 20-APR-20	R5058931
Iron (Fe)	6510		0.50 50	mg/kg	20-APR-20 20-APR-20	20-APR-20 20-APR-20	R5058931
Lead (Pb)	10.4		0.50	mg/kg	20-APR-20 20-APR-20	20-APR-20 20-APR-20	R5058931
Lithium (Li)	<2.0		2.0	mg/kg	20-APR-20 20-APR-20	20-APR-20 20-APR-20	R5058931
Magnesium (Mg)	9400		2.0	mg/kg	20-APR-20	20-APR-20	R5058931
Manganese (Mn)	73.7		20 1.0	mg/kg	20-APR-20	20-APR-20	R5058931
Molybdenum (Mo)	16.7		0.10	mg/kg	20-APR-20	20-APR-20	R5058931
Nickel (Ni)	15.4		0.10	mg/kg	20-APR-20	20-APR-20	R5058931
Phosphorus (P)	18100		50	mg/kg	20-APR-20	20-APR-20	R5058931
Potassium (K)	2800		100	mg/kg	20-APR-20	20-APR-20	R5058931
Selenium (Se)	3.19		0.20	mg/kg	20-APR-20	20-APR-20	R5058931
Silver (Ag)	0.91		0.20	mg/kg	20-APR-20	20-APR-20	R5058931
Sodium (Na)	1780		50	mg/kg	20-APR-20	20-APR-20	R5058931
Strontium (Sr)	189		0.50	mg/kg	20-APR-20	20-APR-20	R5058931
Sulfur (S)	11600		1000	mg/kg	20-APR-20	20-APR-20	R5058931
Thallium (TI)	0.054		0.050	mg/kg	20-APR-20	20-APR-20	R5058931
Tin (Sn)	11.3		2.0	mg/kg	20-APR-20	20-APR-20	R5058931
Titanium (Ti)	30.6		1.0	mg/kg	20-APR-20	20-APR-20	R5058931
Tungsten (W)	<0.50		0.50	mg/kg	20-APR-20	20-APR-20	R5058931
Uranium (U)	2.96		0.050	mg/kg	20-APR-20	20-APR-20	R5058931
Vanadium (V)	2.52		0.20	mg/kg	20-APR-20	20-APR-20	R5058931
Zinc (Zn)	447		2.0	mg/kg	20-APR-20	20-APR-20	R5058931
Zirconium (Zr)	16.5		1.0	mg/kg	20-APR-20	20-APR-20	R5058931
Available Ammonia-N & Nitrate-N (2N KCI)			-	5 0			
Available Ammonium-N Available Ammonium-N	4910	DLM	740	mg/kg	23-APR-20	23-APR-20	R5061782
Note: Samples analyzed as received and calculated to dry				5-5			
Available Nitrate-N (2N KCI) Available Nitrate-N	34.4	DLM	2.0	mg/kg	28-APR-20	28-APR-20	R5068379

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

Reference Information

Sample Parameter Qualifier Key:

	Description			
DLHC	Detection Lim	t Raised:	Dilution required due to high concentra	tion of test analyte(s).
DLM	Detection Lim	t Adjusted	due to sample matrix effects (e.g. che	emical interference, colour, turbidity).
DUP-H	Duplicate resu	lts outside	e ALS DQO, due to sample heterogene	bity.
est Method	References:			
ALS Test Cod	e Ma	trix 1	est Description	Method Reference**
B-HOTW-SK	Soil	/	Available Boron, Hot Water	CSSS (2008) Ch.9
Hot water is us	sed to extract the	plant-avai	able and potentially plant-available bo	ron from soil. Boron in the extract is determined by ICP-OES.
HG-200.2-CVA	A-WP Soil	1	Mercury in Soil	EPA 200.2/1631E (mod)
Soil samples a	are digested with r	nitric and h	hydrochloric acids, followed by analysis	by CVAAS.
MET-200.2-CC	CMS-WP Soil	ſ	Metals in Soil by CRC ICPMS	EPA 200.2/6020B (mod)
			l sieved (2 mm). Strong Acid Leachab analysis is by Collision / Reaction Cell	le Metals in the <2mm fraction are solubilized by heated digestion wit ICPMS.
partially recove	ered (matrix depe	ndent), ind		s. Silicate minerals are not solubilized. Some metals may be only N, and Zr. Elemental Sulfur may be poorly recovered by this method. g, storage, or digestion.
MOISTURE-W	'P Soil	c	% Moisture	CCME PHC in Soil - Tier 1 (mod)
			% Moisture mined gravimetrically after drying to co	
Moisture conte	ent in solid matrice	es is deter		
Moisture conte	ent in solid matrice SK Soil	es is deter	mined gravimetrically after drying to co	onstant weight at 105°C.
Moisture conte N-TOT-LECO- The sample is	ent in solid matrice SK Soil ignited in a comb	es is deter	mined gravimetrically after drying to co	onstant weight at 105°C. CSSS (2008) 22.4
Moisture conte N-TOT-LECO- The sample is N-TOTKJ-COL The soil is dige	ent in solid matrice SK Soil ignited in a comb SK Soil	es is deter - ustion ana	mined gravimetrically after drying to co Fotal Nitrogen by combustion method alyzer where nitrogen in the reduced ni Fotal Kjeldahl Nitrogen	onstant weight at 105°C. CSSS (2008) 22.4 trous oxide gas is determined using a thermal conductivity detector.
N-TOT-LECO- The sample is N-TOTKJ-COL	ent in solid matrice SK Soil ignited in a comb -SK Soil ested with sulfuric	es is deter ustion ana acid in th	mined gravimetrically after drying to co Fotal Nitrogen by combustion method alyzer where nitrogen in the reduced ni Fotal Kjeldahl Nitrogen	onstant weight at 105°C. CSSS (2008) 22.4 trous oxide gas is determined using a thermal conductivity detector. CSSS (2008) 22.2.3
Moisture conte N-TOT-LECO- The sample is N-TOTKJ-COL The soil is dige nm. NH4-AVAIL-Sł Ammonium (N	ent in solid matrice SK Soil ignited in a comb SK Soil ested with sulfuric K Soil IH4-N) is extracted	es is deter ustion ana acid in th d from the	mined gravimetrically after drying to co Fotal Nitrogen by combustion method alyzer where nitrogen in the reduced ni Fotal Kjeldahl Nitrogen e presence of CuSO4 and K2SO4 cata Available Ammonium-N	onstant weight at 105°C. CSSS (2008) 22.4 trous oxide gas is determined using a thermal conductivity detector. CSSS (2008) 22.2.3 alysts. Ammonia in the soil extract is determined colrimetrically at 660
Moisture conte N-TOT-LECO- The sample is N-TOTKJ-COL The soil is dige nm. NH4-AVAIL-Sł Ammonium (N blue, which is	ent in solid matrice SK Soil ignited in a comb c-SK Soil ested with sulfuric K Soil IH4-N) is extracted determined colori	es is deter ustion and acid in th d from the metrically	mined gravimetrically after drying to co Fotal Nitrogen by combustion method alyzer where nitrogen in the reduced ni Fotal Kjeldahl Nitrogen e presence of CuSO4 and K2SO4 cata Available Ammonium-N soil using 2 N KCI. Ammonium in the	onstant weight at 105°C. CSSS (2008) 22.4 trous oxide gas is determined using a thermal conductivity detector. CSSS (2008) 22.2.3 alysts. Ammonia in the soil extract is determined colrimetrically at 660 CSSS Carter 6.2 / Comm Soil Sci 19(6)
Moisture conte N-TOT-LECO- The sample is N-TOTKJ-COL The soil is dige nm. NH4-AVAIL-Sł Ammonium (N blue, which is NO3-AVAIL-K(Available Nitra through a copp	ent in solid matrice SK Soil ignited in a comb c-SK Soil ested with sulfuric K Soil (H4-N) is extracted determined colori CL-SK Soil tte and Nitrite are perized cadmium N-(1-naphthyl) eth	es is deter ustion and acid in th d from the metrically extracted column.	mined gravimetrically after drying to co Fotal Nitrogen by combustion method alyzer where nitrogen in the reduced ni Fotal Kjeldahl Nitrogen e presence of CuSO4 and K2SO4 cata Available Ammonium-N soil using 2 N KCI. Ammonium in the by auto analysis at 660 nm. Available Nitrate-N (2N KCI) from the soil using a 2N KCI solution. I The nitrite (reduced nitrate plus original	onstant weight at 105°C. CSSS (2008) 22.4 trous oxide gas is determined using a thermal conductivity detector. CSSS (2008) 22.2.3 alysts. Ammonia in the soil extract is determined colrimetrically at 660 CSSS Carter 6.2 / Comm Soil Sci 19(6) extract is mixed with hypochlorite and salicylate to form indophenol

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
WP	ALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADA

Chain of Custody Numbers:

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
---------------	--------	-------------------------	--------------------

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

			Workorder:	L2437956	6 F	Report Date:	01-MAY-20	Pa	ige 1 of 8
Client: Contact:	WSP Canad 1600 Buffalo Winnipeg M DARREN KE	Place IB R3T 6B8							
Test		latrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
B-HOTW-SK Batch	S R5067078	Soil							
WG331254			L2437956-1 16.5	11.5	DUP-H	mg/kg	36	30	27-APR-20
WG331254 Boron (B),	44-3 IRM , Hot Water Ext.		SAL814	80.0		%		70-130	27-APR-20
WG331254 Boron (B),	44-4 LCS , Hot Water Ext.			94.2		%		70-130	27-APR-20
WG331254 Boron (B),	44-2 MB , Hot Water Ext.			<0.20		mg/kg		0.2	27-APR-20
HG-200.2-CV	AA-WP S	Soil							
Batch	R5063258								
WG331026 Mercury (H			CANMET TILL	-1 109.4		%		70-130	24-APR-20
WG331026 Mercury (H			L2437956-1 0.299	0.299		mg/kg	0.1	40	24-APR-20
WG331026 Mercury (H				109.5		%		80-120	24-APR-20
WG331026 Mercury (H				<0.0050		mg/kg		0.005	24-APR-20
MET-200.2-C	CMS-WP S	Soil							
Batch	R5058931								
WG331025 Aluminum			CANMET TILL	-1 104.9		%		70-130	20-APR-20
Antimony	(Sb)			103.6		%		70-130	20-APR-20
Arsenic (A	As)			103.8		%		70-130	20-APR-20
Barium (B	sa)			101.5		%		70-130	20-APR-20
Beryllium	(Be)			96.6		%		70-130	20-APR-20
Boron (B)				2.7		mg/kg		0-8.2	20-APR-20
Bismuth (I	Bi)			97.1		%		70-130	20-APR-20
Cadmium	(Cd)			99.2		%		70-130	20-APR-20
Calcium (Ca)			87.9		%		70-130	20-APR-20
Chromium	n (Cr)			96.8		%		70-130	20-APR-20
Cobalt (Co	0)			102.7		%		70-130	20-APR-20
Copper (C	Cu)			109.0		%		70-130	20-APR-20
Iron (Fe)				104.1		%		70-130	20-APR-20
Lead (Pb)				98.0		%		70-130	20-APR-20
Lithium (L	i)			92.1		%		70-130	20-APR-20

		Workorder	: L243795	00	Report Date: 0	1-MAY-20	Paç	ge 2 of
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WP	Soil							
Batch R5058931	1							
WG3310254-4 CRM		CANMET TI						
Magnesium (Mg)			107.7		%		70-130	20-APR-20
Manganese (Mn)			107.3		%		70-130	20-APR-20
Molybdenum (Mo)			96.2		%		70-130	20-APR-20
Nickel (Ni)			102.7		%		70-130	20-APR-20
Phosphorus (P)			100.8		%		70-130	20-APR-20
Potassium (K)			79.6		%		70-130	20-APR-20
Selenium (Se)			0.36		mg/kg		0.12-0.52	20-APR-20
Silver (Ag)			0.23		mg/kg		0.12-0.32	20-APR-20
Sodium (Na)			85.1		%		70-130	20-APR-20
Strontium (Sr)			89.7		%		70-130	20-APR-20
Thallium (TI)			0.118		mg/kg		0.075-0.17	5 20-APR-20
Tin (Sn)			0.9		mg/kg		0-3.1	20-APR-20
Titanium (Ti)			78.3		%		70-130	20-APR-20
Tungsten (W)			0.14		mg/kg		0-0.66	20-APR-20
Uranium (U)			98.3		%		70-130	20-APR-20
Vanadium (V)			97.3		%		70-130	20-APR-20
Zinc (Zn)			99.2		%		70-130	20-APR-20
Zirconium (Zr)			0.7		mg/kg		0-1.8	20-APR-20
WG3310254-6 DUP		L2437956-1						
Aluminum (Al)		18900	18400		mg/kg	2.7	40	20-APR-20
Antimony (Sb)		0.49	0.48		mg/kg	3.0	30	20-APR-20
Arsenic (As)		11.0	10.9		mg/kg	1.3	30	20-APR-20
Barium (Ba)		195	192		mg/kg	1.2	40	20-APR-20
Beryllium (Be)		0.17	0.18		mg/kg	4.8	30	20-APR-20
Boron (B)		89.6	88.5		mg/kg	1.2	30	20-APR-20
Bismuth (Bi)		10.8	10.5		mg/kg	3.2	30	20-APR-20
Cadmium (Cd)		0.491	0.533		mg/kg	8.2	30	20-APR-20
Calcium (Ca)		18400	18200		mg/kg	1.2	30	20-APR-20
Chromium (Cr)		25.1	23.7		mg/kg	5.9	30	20-APR-20
Cobalt (Co)		1.84	1.81		mg/kg	1.8	30	20-APR-20
Copper (Cu)		1650	1630		mg/kg	0.7	30	20-APR-20
Iron (Fe)		6510	6470		mg/kg	0.6	30	20-APR-20
Lead (Pb)		10.4	13.6		mg/kg	27	40	20-APR-20
Lithium (Li)		<2.0	<2.0	RPD-I		N/A	30	20-APR-20

		Workorder:	L243795	6 Re	eport Date: 0	1-MAY-20	Pa	age 3 of
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WP	Soil							
Batch R505893	1							
WG3310254-6 DUP		L2437956-1	0400					
Magnesium (Mg)		9400	9190		mg/kg	2.2	30	20-APR-20
Manganese (Mn)		73.7	73.0		mg/kg	1.0	30	20-APR-20
Molybdenum (Mo)		16.7	16.6		mg/kg	0.7	40	20-APR-20
Nickel (Ni)		15.4	15.1		mg/kg	2.0	30	20-APR-20
Phosphorus (P)		18100	17700		mg/kg	2.3	30	20-APR-20
Potassium (K)		2800	2760		mg/kg	1.7	40	20-APR-20
Selenium (Se)		3.19	3.26		mg/kg	2.3	30	20-APR-20
Silver (Ag)		0.91	0.83		mg/kg	9.0	40	20-APR-20
Sodium (Na)		1780	1730		mg/kg	2.8	40	20-APR-20
Strontium (Sr)		189	184		mg/kg	2.7	40	20-APR-20
Sulfur (S)		11600	11500		mg/kg	1.6	30	20-APR-20
Thallium (Tl)		0.054	<0.050	RPD-NA	mg/kg	N/A	30	20-APR-20
Tin (Sn)		11.3	11.4		mg/kg	0.2	40	20-APR-20
Titanium (Ti)		30.6	32.3		mg/kg	5.5	40	20-APR-20
Tungsten (W)		<0.50	<0.50	RPD-NA	mg/kg	N/A	25	20-APR-20
Uranium (U)		2.96	2.86		mg/kg	3.5	30	20-APR-20
Vanadium (V)		2.52	2.48		mg/kg	1.5	30	20-APR-20
Zinc (Zn)		447	441		mg/kg	1.2	30	20-APR-20
Zirconium (Zr)		16.5	16.2		mg/kg	1.9	30	20-APR-20
WG3310254-2 LCS								
Aluminum (Al)			102.7		%		80-120	20-APR-20
Antimony (Sb)			101.1		%		80-120	20-APR-20
Arsenic (As)			103.5		%		80-120	20-APR-20
Barium (Ba)			106.5		%		80-120	20-APR-20
Beryllium (Be)			97.8		%		80-120	20-APR-20
Boron (B)			96.2		%		80-120	20-APR-20
Bismuth (Bi)			94.3		%		80-120	20-APR-20
Cadmium (Cd)			106.4		%		80-120	20-APR-20
Calcium (Ca)			101.8		%		80-120	20-APR-20
Chromium (Cr)			105.8		%		80-120	20-APR-20
Cobalt (Co)			106.2		%		80-120	20-APR-20
Copper (Cu)			107.5		%		80-120	20-APR-20
Iron (Fe)			102.3		%		80-120	20-APR-20
Lead (Pb)			97.2		%		80-120	20-APR-20

		Workorder	: L243795	56	Report Date: 0	1-MAY-20	Pa	age 4 of
lest .	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WP	Soil							
Batch R5058931	l							
WG3310254-2 LCS Lithium (Li)			98.4		%		80-120	20-APR-20
Magnesium (Mg)			115.5		%		80-120	20-APR-20
Manganese (Mn)			103.4		%		80-120	20-APR-20
Molybdenum (Mo)			99.3		%		80-120	20-APR-20
Nickel (Ni)			105.0		%		80-120	20-APR-20
Phosphorus (P)			108.7		%		80-120	20-APR-20
Potassium (K)			106.7		%		80-120	20-APR-20
Selenium (Se)			108.3		%		80-120	20-APR-20
Silver (Ag)			100.1		%		80-120	20-APR-20
Sodium (Na)			108.8		%		80-120	20-APR-20
Strontium (Sr)			105.3		%		80-120	20-APR-20
Sulfur (S)			98.6		%		70-130	20-APR-20
Thallium (TI)			94.5		%		80-120	20-APR-20
Tin (Sn)			99.6		%		80-120	20-APR-20
Titanium (Ti)			101.1		%		80-120	20-APR-20
Tungsten (W)			98.3		%		70-130	20-APR-20
Uranium (U)			103.9		%		80-120	20-APR-20
Vanadium (V)			105.9		%		80-120	20-APR-20
Zinc (Zn)			102.2		%		80-120	20-APR-20
Zirconium (Zr)			95.8		%		80-120	20-APR-20
WG3310254-1 MB								
Aluminum (Al)			<50		mg/kg		50	20-APR-20
Antimony (Sb)			<0.10		mg/kg		0.1	20-APR-20
Arsenic (As)			<0.10		mg/kg		0.1	20-APR-20
Barium (Ba)			<0.50		mg/kg		0.5	20-APR-20
Beryllium (Be)			<0.10		mg/kg		0.1	20-APR-20
Boron (B)			<5.0		mg/kg		5	20-APR-20
Bismuth (Bi)			<0.20		mg/kg		0.2	20-APR-20
Cadmium (Cd)			<0.020		mg/kg		0.02	20-APR-20
Calcium (Ca)			<50		mg/kg		50	20-APR-20
Chromium (Cr)			<0.50		mg/kg		0.5	20-APR-20
Cobalt (Co)			<0.10		mg/kg		0.1	20-APR-20
Copper (Cu)			<0.50		mg/kg		0.5	20-APR-20
Iron (Fe)			<50		mg/kg		50	20-APR-20

		Workorder:	L243795	6	Report Date: 07	1-MAY-20	Pa	age 5 of 8
ſest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WP	Soil							
Batch R5058931								
WG3310254-1 MB								
Lead (Pb)			<0.50		mg/kg		0.5	20-APR-20
Lithium (Li)			<2.0		mg/kg		2	20-APR-20
Magnesium (Mg)			<20		mg/kg		20	20-APR-20
Manganese (Mn)			<1.0		mg/kg		1	20-APR-20
Molybdenum (Mo)			<0.10		mg/kg		0.1	20-APR-20
Nickel (Ni)			<0.50		mg/kg		0.5	20-APR-20
Phosphorus (P)			<50		mg/kg		50	20-APR-20
Potassium (K)			<100		mg/kg		100	20-APR-20
Selenium (Se)			<0.20		mg/kg		0.2	20-APR-20
Silver (Ag)			<0.10		mg/kg		0.1	20-APR-20
Sodium (Na)			<50		mg/kg		50	20-APR-20
Strontium (Sr)			<0.50		mg/kg		0.5	20-APR-20
Sulfur (S)			<1000		mg/kg		1000	20-APR-20
Thallium (TI)			<0.050		mg/kg		0.05	20-APR-20
Tin (Sn)			<2.0		mg/kg		2	20-APR-20
Titanium (Ti)			<1.0		mg/kg		1	20-APR-20
Tungsten (W)			<0.50		mg/kg		0.5	20-APR-20
Uranium (U)			<0.050		mg/kg		0.05	20-APR-20
Vanadium (V)			<0.20		mg/kg		0.2	20-APR-20
Zinc (Zn)			<2.0		mg/kg		2	20-APR-20
Zirconium (Zr)			<1.0		mg/kg		1	20-APR-20
MOISTURE-WP	Soil							
Batch R5059621								
WG3310642-3 DUP Moisture		L2437956-1 85.4	85.4		%	0.0	20	21-APR-20
WG3310642-2 LCS Moisture			99.9		%		90-110	21-APR-20
WG3310642-1 MB Moisture			<0.10		%		0.1	21-APR-20
N-TOT-LECO-SK	Soil							
Batch R5061682 WG3309524-2 IRM Total Nitrogen by LECO		08-109_SOIL	107.1		%		80-120	23-APR-20
• /					70		00-120	23-APK-20
WG3309524-4 LCS Total Nitrogen by LECO		SULFADIAZIN	e 98.3		%		90-110	23-APR-20

		Workorder:	L243795	6	Report Date: 01-	MAY-20	Pa	ge 6 of 8
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
N-TOT-LECO-SK Batch R5061682 WG3309524-3 MB Total Nitrogen by LECO	Soil		<0.020		%		0.02	23-APR-20
N-TOTKJ-COL-SK Batch R5065804 WG3312412-2 IRM	Soil	08-109 SOIL						
Total Kjeldahl Nitrogen WG3312412-3 LCS Total Kjeldahl Nitrogen			103.6 101.6		%		80-120 80-120	24-APR-20 24-APR-20
WG3312412-4 MB Total Kjeldahl Nitrogen			<0.020		%		0.02	24-APR-20
NH4-AVAIL-SK	Soil							
Batch R5061782 WG3311897-1 DUP Available Ammonium-N WG3311897-3 IRM Available Ammonium-N		L2437956-1 4910 SAL814	4790 98.8		mg/kg %	2.5	20 70-130	23-APR-20 23-APR-20
WG3311897-4 LCS Available Ammonium-N			96.0		%		80-120	23-APR-20
WG3311897-2 MB Available Ammonium-N			<1.0		mg/kg		1	23-APR-20
NO3-AVAIL-KCL-SK Batch R5068379 WG3312197-3 IRM	Soil	CAL 044						
Available Nitrate-N		SAL814	100.3		%		70-130	28-APR-20
WG3312197-4 LCS Available Nitrate-N			100.0		%		70-130	28-APR-20
WG3312197-2 MB Available Nitrate-N			<2.0		mg/kg		2	28-APR-20

Workorder: L2437956

Report Date: 01-MAY-20

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DUP-H	Duplicate results outside ALS DQO, due to sample heterogeneity.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L2437956

Report Date: 01-MAY-20

Hold Time Exceedances:

ALS Product Description	Sample ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Plant Available Nutrients							
Available Nitrate-N (2N KCI)							
	1	16-APR-20 16:00	21-APR-20 16:00	3	5	days	EHT
Legend & Qualifier Definitions	5:						

EHTR: Exceeded ALS recommended hold time prior to sample receipt. Field Measure EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2437956 were received on 17-APR-20 12:20.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain of Custody (COC) / Analytical Request Form

COC Number: 14 - L2437956

Page ____ of

ALS Environmental	
www.alsglobat.com	

Canada Toli Free: 1 800 666 9878

WebP Conside Group Limited Select Report Report Report Protocol Limited R If Separe (Resource To Report Repor		www.alsglobal.com								·····					سمغر								
Dampin Keam Condy Commit Coll (by particule Report IF No P Description Conduction IF I Dampin Keam Condy Commit Coll (by particule Report IF No P Description Conduction IF I Dampin Keam Condy Commit Coll (by particule Report IF No Description Conduction IF I P Description Conduction IF I Description Conduction II Description Conduction I	Report To		Report Format / Distribution					Select Servisë Level Below (Rush Turnaround Time (TAT) is not available for all lests)															
Date Direction Service Direction Service and been to contain Product on Status Product on Service and Se	Company:	WSP Canada Group Limited																					
Induc guind : Lab Solute () Darbudon (2) PAL	Contact:	Darren Keam		Quality Control (QC) Report with Report P Yes P No																			
Dense Zuk-286-1489 Email 1 or Fax, desem Leam@exp.com Specify Date Routine (FE), E, 0°, F Verdee To Series as Report To Image: Press of the work of the report To Image: Press of the work of the report To Image: Press of the work of the report To Image: Press of the work of the report To Image: Press of the work of the report To Image: Press of the work of the report To Image: Press of the work of the report To Image: Press of the work of the report To Image: Press of the work of the report To Image: Press of the work of the report To Image: Press of the work of the report To Image: Press of the work of the report To Image: Press of the work of the report To Image: Press of the work of the report To Image: Press of the work of the report To Image: Press of the work of the report To Image: Press of the work of the report To Image: Press of the report To Ima	Address:	1600 Buffalo Place		Criteria on Report - provice details below if box checked					-														
Analysis Request Analysis Request Corp of Invoice with Report The Statest Invoice DataBuildon Note to Plane of Description (P) Note Corp of Invoice with Report The The Dimate The Plane of Description (P) Note Note to Plane of Description (P) Note Note to Plane of Description (P) Note Original X Corp of Invoice with Report Corp of Information Endl 2 Invoice DataBuildon Note to Plane of Description (P) Note Number Description Cost Context Point Information Endl 2 Cost Context Point Information Endl 2 Report FD: Report FI No R																							
volde To Same as Report To T Yes T Ao Invasice DataBuilding Data Mail Life Active Time of the research (P) between the restance of th	Phone:	204-259-1488		Email 1 or Fax darren keam@wsp.com						Speci	ity Dat	e Req	uired f	or E2,E			L						
Copy of Invoce with Report If weil			Email 2																				
Ompuny WSP Canada Group Limited Emsi 1 of Fax spees66(\$)wsp.com Image: Computed information Emsi 1 of Fax spees6(\$)wsp.com Image: Computed information Image: Comp	Invoice To	Same as Report To T Yes	I No		ไกง	roice Dis	tribution	1		Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below													
Approvel/gwop.com Emult 2 US Outlot # C014dC C014 and Gase Required Pields (Ellent use)		Copy of Invoice with Report	T No	Select Invoice	Distribution:	: 🗹 E H	IAIL L	MAIL	📋 FAX						-		[
Project Information Off and Gas Required Pields (elfent use) 1.3 Outor # Content Approver E: Content Content 1.4 Stabses-01 Addity Code: Content Routing Code: 3.0 Laceation: Addity Code: Content: Routing Code: Content: 3.1 Lab Stabses-01 Addity Code: Sample Identification and/or Coordinates Environment in the report) Content: Sample Type 4.1 Lab Work Order # (tab use only) ALS Contect: Sample Type Sample Type Sample Type Sample Identification and/or Coordinates Content in the report) Time (dentification and/or Coordinates (dentification and/or Coordentification and/or Coordinates (dentifica	Company:	WSP Canada Group Limited		Email 1 or Fax	apwest@w	vsp.com											[
ALS Lab Work Order # (lab use only) ALS Contact: Sampler: 0	Contact:	Apwest@wsp.com		Email 2										}		1							2
ALS Lab Work Order # (lab use only) ALS Contact: Sampler: 0		Project Information		Ö	l and Gas F	Required	t Fields ((client u	18e)														aine
ALS Lab Work Order # (lab use only) ALS Contact: Sampler: 0	ALS Quote #:	Q37455		Approver ID:			Cost Ce	nler															out
ALS Lab Work Order # (lab use only) ALS Contact: Sampler: 0	Job #:	181-03988-01		GL Account:			Routing	Code:	•														e C
ALS Lab Work Order # (lab use only) ALS Contact: Sampler: 0	PO/AFE	181-03988-01		Activity Code:											dên	7							<u>Š</u>
ALS Lab Work Order # (lab use only) ALS Contact: Sampler: 0	LSD:			Location:							ŝ				E S	Bind							Wri
Gimili Biosolids 2020 I QI O Y Bit I GO V Bit R </td <td>ALS Lab Wo</td> <td>rk Order # (isb use only)</td> <td></td> <td colspan="3">ALS Contact:</td> <td colspan="3">Sampler:</td> <td></td> <td>iot-wate</td> <td>Actals</td> <td></td> <td>trogen</td> <td>eldahi N</td> <td>e Amm</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Z</td>	ALS Lab Wo	rk Order # (isb use only)		ALS Contact:			Sampler:				iot-wate	Actals		trogen	eldahi N	e Amm	-						Z
Gimili Biosolids 2020 I QI O Y Bit I GO V Bit R </td <td>AIS Samole #</td> <td>Sample Identificat</td> <td>ion and/or Coordinates</td> <td></td> <td>Dat</td> <td>tə</td> <td>Tir</td> <td>ne</td> <td></td> <td>ŝ</td> <td>E E</td> <td>μ.</td> <td>sture</td> <td>Ž</td> <td>Ŷ</td> <td>Habl</td> <td>-a</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	AIS Samole #	Sample Identificat	ion and/or Coordinates		Dat	tə	Tir	ne		ŝ	E E	μ.	sture	Ž	Ŷ	Habl	-a						
Cimil Biosolids 2020 I (0/0 / 30) I (6 : 00) Grab R	(izb use only)				(dd-mm	(hh.n	nm)	Sample Type	Mer	Berg	S.	Mo	Tota	Tol	Ava	N.							
Fill in date and time. Fill in date and time. Fill in date and ti		Gimli Biosolids 2028			100	4120	16:	8	Grab	R	R	R	R	R	R	R	R	T					
time. time. Image: state from a Regulated DW System? Special Instructions / Specify Criteria to add on report (client Use) Frozen SAMPLE CONDITION AS RECEIVED (lab use only) Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? Fine grain Image: state from a Regulated DW System? Fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: State from a Regulated DW System? Fine Received by Image: State from a Regulated DW System? Fine Received by <td></td> <td></td> <td></td> <td></td> <td>1.410</td> <td>4.6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td>					1.410	4.6								1		1	1	+					
time. time. Image: state from a Regulated DW System? Special Instructions / Specify Criteria to add on report (client Use) Frozen SAMPLE CONDITION AS RECEIVED (lab use only) Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? Fine grain Image: state from a Regulated DW System? Fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: State from a Regulated DW System? Fine Received by Image: State from a Regulated DW System? Fine Received by <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td><u> </u></td> <td>1</td> <td></td> <td>†</td> <td><u> </u></td> <td>1</td> <td>++</td> <td>Ť</td> <td>- 1</td> <td>f</td> <td></td>										+			<u> </u>	1		†	<u> </u>	1	++	Ť	- 1	f	
time. time. Image: state from a Regulated DW System? Special Instructions / Specify Criteria to add on report (client Use) Frozen SAMPLE CONDITION AS RECEIVED (lab use only) Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: state from a Regulated DW System? Fine grain Image: state from a Regulated DW System? Fine grain Image: state from a Regulated DW System? CCME agriduiture, fine grain Image: State from a Regulated DW System? Fine Received by Image: State from a Regulated DW System? Fine Received by <td></td> <td></td> <td>·</td> <td colspan="3"></td> <td colspan="2"></td> <td>+</td> <td></td> <td></td> <td>-</td> <td>+</td> <td></td> <td>+</td> <td></td> <td></td> <td>++</td> <td></td> <td></td> <td></td> <td></td>			·						+			-	+		+			++					
Drinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report (client Use) SAMPLE CONDITION AS RECEIVED (ab use only) Drinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report (client Use) Frozen Sife Obsorvations Yes No If Yes No CCME agriculture, fine grain CCME agriculture, fine grain Ice packs Yes No Ice packs Yes No Ice packs Final, COOLER TEMPERATURES *C Final,					F###N	date	and			+			_	 				–	+-+				
Drinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report (client Use) Frozen Sif Obsorvations Yes No re samples taken from a Regulated DW System? CCME agriculture, fine grain Ice packs Yes No Ice packs Yes No<				time.	time.					ļ	L	<u> </u>					⊢	_					
Drinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report (client Use) Frozen Sif Obsorvations Yes No re samples taken from a Regulated DW System? CCME agriculture, fine grain Ice packs Yes No Ice packs Yes No<																							
Drinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report (client Use) Frozen Sif Obsorvations Yes No re samples taken from a Regulated DW System? CCME agriculture, fine grain Ice packs Yes No Ice packs Yes No<				,				I								Τ							
Drinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report (client Use) Frozen Sif Obsorvations Yes No re samples taken from a Regulated DW System? CCME agriculture, fine grain Ice packs Yes No Ice packs Yes No<		·····								1	1	<u> </u>	T	1		1		1					
Drinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report (client Use) Frozen Sif Obsorvations Yes No re samples taken from a Regulated DW System? CCME agriculture, fine grain Ice packs Yes No Ice packs Yes No<		· · · · · · · · · · · · · · · · · · ·	·····							+		 	<u></u>	+		1	<u> </u>	+	++			·····	
Drinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report (client Use) Frozen Sif Obsorvations Yes No re samples taken from a Regulated DW System? CCME agriculture, fine grain Ice packs Yes No Ice packs Yes No<		·											·	ŀ	+		+	╉─┤				-	
Drinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report (client Use) Frozen Sif Obsorvations Yes No re samples taken from a Regulated DW System? CCME agriculture, fine grain Ice packs Yes No Ice packs Yes No<							ļ			_	 		ļ	ļ	ļ	. 	.	 					
Drinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report (client Use) Frozen Sif Obsorvations Yes No re samples taken from a Regulated DW System? CCME agriculture, fine grain Ice packs Yes No Ice packs Yes No<		• •												L	L		L	<u> </u>					
Drinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report (client Use) Frozen Sif Obsorvations Yes No re samples taken from a Regulated DW System? CCME agriculture, fine grain Ice packs Yes No Ice packs Yes No<										1													
Intersemples taken from a Regulated DW System? CCME agriculture, fine grain Ice packs Yes No Custody seal intact Yes No If Yes F No Intersemples for human drinking water use? Final COOLER TEMPERATURES 'C Final COOLER TEMPERATURES 'C Final COOLER TEMPERATURES 'C Final COOLER TEMPERATURES 'C If Yes No INITIAL SHIPMENT RECEPTION (lab use only) Final SHIPMENT RECEPTION (lab use only) Final SHIPMENT RECEPTION (lab use only) SHIPMENT RELEASE (client use) Initiated Initiated Initiated Initiated Released by: Date: Time: Received by: Date: Time: Date:			Dates 1-3 f.	natructions / C	in rates in	to add a		cliant the	(a)				SAMP	LECO	NDIT						only	}	
Image: Second State Sta	Drinking	nsurdenons / Sper	any Griteria	10 200 0	1 1900H (1	CHAUL OS																	
Initial cooler temperatures *C Final cooler temperatures *C F Yes F No SHIPMENT RELEASE (client use) INITIAL SHIPMENT RECEPTION (lab use only) Released by: Date: Time: Received by: C Date: Time: Time:				grain									No		Cusi	ody s	seal in	nact	Yes		No		
F Yes No SHIPMENT RELEASE (dient use) INITIAL SHIPMENT RECEPTION (lab use only) Released by: Date: Time: Received by: C/M 17-42 (2:20 Received by: Date:	E Y																						
SHIPMENT RELEASE (client use) INITIAL SHIPMENT RECEPTION (lab use only) SHIPMENT RELEASE (client use) INITIAL SHIPMENT RECEPTION (lab use only) Released by: Date: Time: Date: Time: Received by: Date: III Provide the second by: Date: Time:	Are samples for human drinking water use?			·												FINAL COOLER TEMPERATURES C							
Released by: Date: Time: Received by: CM Date: Time: Time: Date: Time: Time: Date: Time: Date: Time: Date: Time: Time: Date: Time: T	[["Y	es TNo						6.8															
		SHIPMENT RELEASE (client use)			SHIPMENT	RECEPT	· · · · · · · · · · · · · · · · · · ·						Fłł	AL S	IIPM	NT R					ly)		
	Released by:	Date:	Time: Receiv	red by: AM			Date:		Time:	Rece	elved i	¢¥:	Ĉ				Dat	e		Time:			
TEER TO BACK PAGE FOR ALS LOCATORS AND SAMPLING INFORMATION WHITE - LABORATORY COPY YELLOW - CLIENT COPY			I	and the second se							CHE	ir 64	av				L						

REFER TO BACK PAGE FOR ALS LOCANONS AND SAMPLING INFORMATION

Failure to complete at portions of this form may delay analysis. Please III This form i. ECIBLY, By the use of this form the user acknowledges and agrees with the Terres and Conditions as specified on the back page of the white - report copy.

f. If any water samples are taken from a Regulated Drinking Water (DW) System, please subminuting an Authorized DW COC form,

Sign here when shipping