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Introduction
A mapping project at Halfway Lake in the Thompson nickel belt (TNB) was initiated in the summer 

of 2022 with shoreline mapping (Figure GS2025-4-1). Significant discrepancies were found between 
previous mapping and the 2022 results, which led to the logging of archival and recent drillcore from 
the area in 2023, 2024 and 2025 (Couëslan, 2022a, 2023). The drillcore data suggests a correlation 
between the metasedimentary rocks at Halfway Lake and the Ospwagan group, with close similarities 
to the stratigraphic sequence at the Thompson mine (cf. Bleeker, 1990; Couëslan, 2023). Samples of 
metasedimentary rocks, along with all of the major rock units at Halfway Lake, were submitted for 
lithogeochemical and isotopic analyses to better characterize and strengthen this correlation with 
the Ospwagan group. The main focus of this report is the analytical results for mafic, metasedimen-
tary and granitoid rocks. The geochemical results and analytical methods can be found in Couëslan 
and Janssens (2025b) and in Data Repository Item DRI2025029 (Couëslan and Janssens, 2025c)1. The 

Summary
A mapping project, initiated at Halfway Lake in 2022, continued with the examination of lithogeo-

chemical and isotopic analyses of outcrop and drillcore samples collected during the 2022–2025 field 
seasons. Mafic volcanic rocks collected from south-central Halfway Lake share a geochemical affinity 
with mid-ocean–ridge basalts and are likely correlative with the Bah Lake assemblage of the Ospwa-
gan group. Amphibolite layers contained within the sedimentary rocks at Halfway Lake likely represent 
mafic dikes or sills and have a mid-ocean–ridge to back-arc–basalt affinity. They are assumed to be 
correlative with mafic intrusions of the ca. 1880 Ma Molson dike swarm. A monzonitic pluton located 
along the southeastern shore of Halfway Lake has a high-K calcalkaline affinity and is geochemically 
and isotopically similar to the ca. 1835 Ma Bucko pluton south of Wabowden. A garnet-bearing gran-
ite–tonalite pluton that occurs in western Halfway Lake shares an affinity with FII felsic rocks and was 
likely derived by melting of shallow- to mid-level crust in an extensional environment. The garnet-
bearing pluton could be contemporaneous with Bah Lake assemblage or Molson swarm mafic–ultra-
mafic magmatism.

The sedimentary stratigraphy at Halfway Lake appears to be correlative with the Ospwagan group 
and is similar to the Thompson mine sequence. Clastic rocks from the upper part of the sequence (P3 
member of the Pipe formation and Setting formation) are geochemically similar to Pipe formation 
pelite; however, Nd-model ages are anomalously young for Ospwagan group rocks. Detrital zircon 
recovered from the upper sequence yield dominant age-nodes that coincide with metamorphism in 
the adjacent Pikwitonei domain of the Superior craton. Calcareous semipelite of the Thompson for-
mation may be correlative to the T2 member, but shares geochemical similarities with Paint sequence 
rocks. A Nd-model age calculated for the calcareous semipelite is considered typical for Ospwagan 
group rocks.

Ultramafic rocks at Halfway Lake are frequently emplaced near sulphidic horizons at the bound-
ary between the Thompson and Pipe formations, which coincides with the ore horizons at the Pipe 
and Birchtree mines. Although whole-rock Sm-Nd isotope geochemistry has been proposed as an 
exploration tool for differentiating rock units in the northern Thompson nickel belt, the presence of 
anomalously young Nd-model ages for upper sequence Ospwagan group rocks at Halfway Lake sug-
gests a cautious approach should be taken. The FII felsic rock affinity of the garnet-bearing pluton 
could suggest a notional potential for volcanogenic massive-sulphide or epithermal mineralization.

In Brief:
•	 Supracrustal rocks at Halfway 

Lake are geochemically and 
stratigraphically similar to the 
Ospwagan group

•	 Whole-rock Nd-model ages of 
Pipe-Setting formations clastic 
rocks are anomalously young for 
Ospwagan group rocks

•	 Many ultramafic bodies in the 
Halfway Lake area occur at the 
Thompson formation-Pipe forma-
tion boundary, which correlates 
to the mine horizons at the Pipe 
and Birchtree mines

1 MGS Data Repository Item DRI2025029, containing the data or other information sources used to compile this report, is 
available online to download free of charge at https://manitoba.ca/iem/info/library/downloads/index.html, or on request 
from minesinfo@gov.mb.ca, or by contacting the Resource Centre, Manitoba Business, Mining, Trade and Job Creation, 360-
1395 Ellice Avenue, Winnipeg, Manitoba  R3G 3P2, Canada.

Lithogeochemistry and isotopic analyses of rocks from the Halfway 
Lake area, Thompson nickel belt, central Manitoba (parts of NTS 
63O1, 2)
by C.G. Couëslan
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Figure GS2025-4-1: Bedrock geology of the Halfway Lake area, central Manitoba (modified from Couëslan, 2022a). Lighter shade of colour indicates a 
body of water. Geology outside of the 2022 map area is from Macek et al. (2006). All co-ordinates are in UTM Zone 14, NAD83.
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U-Pb zircon data can be found in Couëslan (2025). For a review of 
the project objectives, as well as the regional and local geology, 
the reader is referred to Couëslan (2022a). All rocks reported in 
this study were subjected to amphibolite-facies metamorphism; 
however, the ‘meta-’ prefix is not used for rock names in an effort 
to simplify the text.

Whole-rock lithogeochemistry and Sm-Nd isotope 
geochemistry

Mafic rocks
Heterogeneous amphibolites, interpreted as volcanic rocks, 

form a large continuous unit in south-central Halfway Lake and 
are believed to be correlative with the Bah Lake assemblage (Fig-
ure  GS2025-4-1). They are characterized by intermediate Mg# 
values (molar Mg/[FeT+Mg]; 0.41–0.62). Silica contents range 
from 46.58 to 52.16 wt. %, total alkalis (Na2O+K2O) range from 
2.20 to 4.02 wt> % and molar K2O/Na2O ratios range from 0.11 
to 0.23. Chondrite-normalized rare-earth element (REE) profiles 
are relatively flat ([La/Yb]N  =  0.87–1.88), with the exception of 
a single sample ([La/Yb]N = 3.60; Figure GS2025-4-2a). Primitive 
mantle-normalized multi-element profiles are relatively smooth, 
with variable enrichment at Th and variable depletion at Nb (Fig-
ure GS2025-4-2b). No spatial pattern is associated with the varia-
tions in Nb anomalies; however, the two most enriched samples 
are both located toward the southern end of the heterogeneous 
amphibolite package.

Layers of garnet amphibolite occur within the clastic rocks of 
the upper sequence (Pipe and Setting formations) of the Ospwa-
gan group. The amphibolites are interpreted as mafic dikes or sills 
that intruded the sedimentary sequence. The Mg# values range 
from 0.28 to 0.64, with SiO2 contents of 45.51–53.89 wt. %. Total 
alkali content is generally low (0.95–1.97 wt. %), except for one 
sample that contains 3.40  wt.  %. Molar K2O/Na2O ratios range 
from 0.12 to 1.50. Chondrite-normalized REE profiles are rela-
tively flat ([La/Yb]N  = 1.00–1.90), and primitive mantle-normal-
ized profiles are characterized by variable to no enrichment at Th 
and variable anomalies at Nb (Figure GS2025-4-2c, d).

Layers of homogeneous amphibolite occur within the 
Archean orthogneiss and Ospwagan group, and are interpreted 
as Paleoproterozoic mafic dikes or sills. The Mg# values range 
from 0.38 to 0.65, with SiO2 contents of 48.01–52.13 wt. %. Total 
alkali content ranges from 1.72 to 4.00 wt. %, with molar K2O/
Na2O ratios of 0.16 to 0.58. Chondrite-normalized REE profiles 
are relatively flat ([La/Yb]N = 1.14–1.67), with one sample display-
ing a more negative slope ([La/Yb]N = 2.52; Figure GS2025-4-2e). 
Primitive mantle-normalized profiles show minor to no enrich-
ment at Th and minor to no depletion at Nb (Figure GS2025-4-2f).

Granitoids
A variety of granitoids are present in the Halfway Lake area, 

ranging from pegmatitic granite dikes that are present in almost 

all outcrops, to kilometre-scale bodies of monzonite and granite–
granodiorite. Only more substantial intrusions were investigated 
for geochemistry.

A monzonite pluton roughly 13  km long occurs along the 
southeastern shore of Halfway Lake (Figure  GS2025-4-1). Sam-
ples of monzonite have Mg# values of 0.64–0.66, and contain 
59.71–61.23 wt. % SiO2, 180–200 ppm Cr and 90–110 ppm Ni. 
The monzonite is metaluminous (alumina saturation index, 
ASI  =  0.77–0.78; Figure  GS2025-4-3), contains 7.13–7.33  wt.  % 
total alkalis, with K2O/Na2O ratios of 0.61–0.70, and is enriched 
in other large-ion lithophile-elements (LILEs; 2396–2417  ppm 
Ba, 1031–1064  ppm Sr). Chondrite-normalized REE profiles 
have steep negative slopes ([La/Yb]N  =  46.3–60.5) and primi-
tive mantle-normalized profiles are characterized by enrichment 
in LILEs and light rare-earth elements (LREEs), and relatively 
depleted in high-field strength elements (HFSEs; Figure GS2025-
4-4a, b). A sample of monzonite yielded an initial εNd value of 
–1.77, assuming a crystallization age of ca. 1835 Ma (see Discus-
sion) and a depleted-mantle Nd-model age (TDM) of ca. 2.34 Ga 
(Table GS2025-4-1).

A garnet-bearing pluton at least 12 km long occurs along the 
western shore of Halfway Lake and ranges from granitic in the 
south to tonalitic in the north (Figure GS2025-4-1). The age of 
intrusion is not well constrained. It is characterized by a weak 
gneissosity and previous mapping suggests that it is intruded 
by mafic dikes of the ca. 1880  Ma Molson swarm (Macek et 
al., 2006; Heaman et al., 2009). The pluton becomes increas-
ingly ferruginous from tonalite (Mg#  =  0.19–0.25) to granite 
(Mg#  =  0.11–0.12). Similar trends are observed with many 
of the LILEs, with the total alkalis increasing from the tonalite 
(3.86–4.13 wt. %) to the granite (6.98–7.08 wt. %), as the pluton 
becomes more enriched in potassium (K2O/Na2O = 0.08–0.15 and 
1.05–1.09, respectively) and Ba increasing from 179–229 ppm to 
1488–1664 ppm, respectively. Alumina saturation also increases 
from the tonalite (ASI  =  0.85–0.94) to the granite (ASI  =  1.03–
1.08; Figure GS2025-4-3). However, no trend is observed related 
to the SiO2 content, which varies from 71.95 to 75.64  wt.  %, 
and Sr concentrations are relatively uniform from tonalite to 
granite (159–264  ppm). Chondrite-normalized REE profiles are 
characterized by negative-sloping LREEs ([La/Sm]N = 2.40–4.12) 
and relatively flat heavy rare-earth elements (HREEs; [Gd/Yb]
N = 0.89–1.11; Figure GS2025-4-4c). Primitive mantle-normalized 
multi-element profiles are characterized by depletion at Nb, P, Ti 
and V (Figure GS2025-4-4d). Both tonalitic and granitic profiles 
are relatively enriched in Th; however, granitic and granodioritic 
profiles are also enriched in Ba and K.

A folded pluton or series of granodioritic to granitic intru-
sions with a combined length of at least 2.5  km underlies a 
series of points, islands and reefs in northern Halfway Lake 
(Figure GS2025-4-1). The pluton grades from biotite-bearing to 
hornblende-bearing. The Mg# values range from 0.27 to 0.33, 
with 69.97–70.55 wt. % SiO2. The rocks are weakly peraluminous 
(ASI = 1.00–1.05; Figure GS2025-4-3) with 8.56–8.87 wt. % total 
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Figure GS2025-4-2: Chondrite-normalized rare-earth element profiles (left column) and primitive mantle-normalized multi-element profiles (right 
column) for mafic rocks from the Halfway Lake area: a), b) heterogeneous amphibolite; c), d) garnet amphibolite; e), f) homogeneous amphibolite. 
Normalizing values for chondrite and primitive mantle are from McDonough and Sun (1995). Reference values for Bah Lake assemblage area are from 
Zwanzig (2005). Reference values for Molson dikes are for analyses with 1 <(La/Yb)N <3 and are sourced from Burnham et al. (2009), Heaman et al. 
(2009), Ciborowski et al. (2017) and Couëslan (2016, 2021a, b; unpublished data, 2014).
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alkalis, K2O/Na2O ratios of 0.45–0.56, and high concentrations of 
Sr and Ba (1857–2306 ppm and 4381–5266 ppm, respectively). 
Chondrite-normalized REE profiles have negative slopes ([La/Yb]
N = 16.8–45.8), with variable enrichment of Eu ([Eu/Eu*]N = 0.88–
1.66; Figure  GS2025-4-4e). Primitive mantle-normalized pro-
files display relative enrichments at Ba, K, Sr and Zr, and relative 
depletions at Nb, P, Ti and V (Figure GS2025-4-4f).

A granite–granodiorite pluton or series of intrusions is inter-
calated with rocks of the Bah Lake assemblage in south-central 
Halfway Lake. The Mg# values range from 0.26 to 0.33, with 
70.89–72.91  wt.  % SiO2. The rocks are weakly peraluminous 
(ASI = 1.00–1.02; Figure GS2025-4-3) with 8.12–8.42 wt. % total 
alkalis and K2O/Na2O ratios of 0.29–0.64. Barium concentrations 
are enriched but vary considerably from 1606 to 4110  ppm, 



37Report of Activities 2025

Figure GS2025-4-3: Granitoids from the Halfway Lake area and syenitic to monzonitic rocks from the Thompson nickel belt plotted on the alumina 
saturation-index diagram (Maniar and Piccoli, 1989). Reference values for the Bucko pluton are from Burnham et al. (2009) and H.V. Zwanzig (unpub-
lished data, 2003). Reference values for the Partridge Crop Lake pluton are from Couëslan and Janssens (2025a) and C.G. Couëslan (unpublished data, 
2014). Reference values for the Paint Lake area syenites are from Couëslan (2016).
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whereas Sr is more consistent at 1104–1302 ppm. Chondrite-nor-
malized REE profiles have negative slopes ([La/Yb]N = 3.60–18.3), 
with variable enrichment or depletion at Eu ([Eu/Eu*]N = 0.55–
1.65; Figure GS2025-4-4g). Primitive mantle-normalized profiles 
are characterized by relative enrichments at Ba, K, Sr and Zr, and 
relative depletions at Nb, P, Ti and V (Figure GS2025-4-4h).

Sedimentary rocks
The Setting formation of the Ospwagan group is defined as 

the clastic sedimentary rocks deposited above the uppermost 
iron formation of the P3 member of the Pipe formation (Zwanzig 
et al., 2007). The stratigraphy of the P3 member of the Pipe for-
mation at Halfway Lake is similar to that of the Thompson mine 
and consists largely of interbedded quartzite, wacke and pelite, 
with only local iron formation. This makes differentiating Set-
ting formation from Pipe formation clastic rocks difficult. There-
fore, clastic rocks of the P3 member and Setting formation will 
be referred to simply as ‘upper sequence’ rocks in this report. 
Multi-element profiles normalized to the average P2  member 
pelite (Zwanzig et al., 2007) are relatively flat for upper sequence 
pelites, with minor variability for Th, K and LREEs (Figure GS2025-
4-5a, b). The P2  pelite-normalized profiles of upper sequence 
wacke are typically flat; however, one sample is notably depleted 
in Th and LREEs and enriched in HREEs (Figure GS2025-4-5c, d). 
Two wacke samples from the upper sequence yielded TDM ages of 
ca. 2.46 Ga and 2.71 Ga (Table GS2025-4-1).

The lower Thompson formation at Halfway Lake consists 
largely of calcareous semipelite, locally interlayered with calcsili-
cate (Couëslan, 2023). The semipelite is similar to the T2 member 
as described by Bleeker (1990) and Zwanzig et al. (2007), which 

occurs as a relatively thin (1–4 m) unit at the Thompson mine. 
This suggests that unlike elsewhere in the TNB, the T2  mem-
ber could make up a significant portion of Thompson formation 
stratigraphy in the Halfway Lake area. The P2 pelite-normalized 
profiles of the calcareous semipelite are flat to weakly negative 
sloping, with relative depletions at K, Zr and Ti, and strong enrich-
ment at Sr and P (Figure GS2025-4-5e, f). A sample of Thomp-
son formation calcareous semipelite yielded a TDM of ca. 2.94 Ga 
(Table GS2025-4-1).

Detrital zircon U-Pb geochronology
Two samples of upper sequence clastic rocks were submit-

ted for detrital zircon U-Pb isotope analyses. The results and 
description of the methods can be found in Couëslan (2025). 
For this report, analyses were filtered to results of detrital-core 
analyses (no rims or mixed core-rim analyses) that are <5% dis-
cordant, with 207Pb/206Pb age errors <100 Ma (2σ). Sample 108-
22-118 consists dominantly of arkose and was collected from a 
point in southwestern Halfway Lake. The outcrop is composed of 
interlayered arkose and arkosic wacke, with local pegmatite dikes 
and boudinaged layers of plagioclase amphibolite. The sample 
yielded zircon grains of variable size and morphology. Most grains 
consist of rounded to subrounded, equant to elongate crystals 
and crystal fragments. A total of 112 analyses were made on 
detrital zircon grains with 90 analyses considered after filtering. 
A probability-density distribution (PDD) curve of the 207Pb/206Pb 
ages defines a dominant node at ca. 2640 Ma, with minor Paleo-
proterozoic nodes older than ca. 2215 Ma and minor Meso- to 
Paleoarchean nodes as old as ca. 3480 Ma (Figure GS2025-4-6a). 
A cumulative distribution curve of the detrital zircon ages yields 
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Figure GS2025-4-4: Chondrite-normalized rare-earth element profiles (left column) and primitive mantle-normalized multi-element profiles (right 
column) for granitoids from the Halfway Lake area: a), b) monzonite compared with syenites from the Paint Lake and Partridge Crop Lake areas and 
the Bucko pluton; c), d) garnet-bearing pluton; e), f) granodiorite–granite from northern Halfway Lake; g), h) granite from south-central Halfway Lake. 
Data sources: Bucko pluton, Burnham et al. (2009) and H.V. Zwanzig (unpublished data, 2003); Paint Lake area syenites, Couëslan (2016); Partridge 
Crop Lake syenite, Couëslan and Janssens (2025a) and C.G. Couëslan (unpublished data, 2014).
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Sample number Rock type Sm 
(ppm)

Nd 
(ppm)

147Sm/144Nd1 143Nd/144Nd2 2σ abs. 
uncert.

T��³ 
(Ga)

εNd4

108-22-039 Archean Bt-Hbl gneiss 2.00 10.92 0.11108 0.511025 0.000010 3.12 -1.64

108-22-097 Monzonite 6.52 41.28 0.0954 0.511325 0.000010 2.34 -1.77

108-22-111 Thompson formation calcareous semi-
pelite

4.86 32.17 0.0913 0.510766 0.000010 2.94

108-22-118 Ospwagan group, upper sequence arkose 5.30 31.47 0.1018 0.511328 0.000010 2.46

108-22-157A Ospwagan group, upper sequence arkosic 
wacke

1.50 10.08 0.0898 0.510928 0.000010 2.71

1 Estimated error is better than 1.0%
2 Presented relative to 143Nd/144Nd = 0.512095 for the JNdi-1 standard
3 Depleted-mantle Nd-model ages (TDM) calculated according to the linear model of Goldstein et al. (1984)
4 εNd values at 2700 Ma for 108-22-039 and 1835 Ma for 108-22-097, calculated using present-day chondritic ratios of 143Nd/144Nd = 0.512638 and 147Sm/144Nd = 0.1967

Sample locations can be found in Couëslan and Janssens (2025b)

Abbreviations: abs., absolute; uncert., uncertainty

Table GS2025-4-1: Summary of Sm-Nd isotopic data for selected samples from the Halfway Lake area.

an interquartile range (middle 50% of data) of 2600–2700  Ma 
(Figure GS2025-4-6b).

Sample 108-22-157A consists of interbedded arkosic wacke 
and arkose. It was collected from an island in central Halfway 
Lake. The outcrop consists of arkosic quartzite with interbeds of 
arkosic wacke and local boudins of plagioclase amphibolite. Local 
veins of pseudotachylite cut the compositional layering at a low-
angle. A total of 118 detrital zircon grains were analyzed with 96 
analyses considered after filtering. A PDD curve of the 207Pb/206Pb 
ages defines a dominant node at ca. 2650 Ma, with minor Paleo-
proterozoic nodes as young as ca. 1940  Ma and Mesoarchean 
nodes as old as ca. 2955 Ma (Figure GS2025-4-6c). The interquar-
tile range of the detrital zircon ages is relatively narrow (2623–
2692 Ma; Figure GS2025-4-6d).

Discussion

Mafic rocks
The volcanic rocks from Halfway Lake all plot within the 

ocean-floor field in the Zr-Ti-Y diagram (Figure  GS2025-4-7a); 
however, the normalized profiles appear to define two trends. 
One trend is relatively flat, whereas the other is more enriched 
and negative sloping (Figure  GS2025-4-2a, b). Two trends are 
also evident in the Zr-Nb-Y and La-Y-Nb discrimination diagrams, 
with the majority of samples plotting within the normal mid-
ocean–ridge basalt (N-MORB) field and back-arc–basalt fields, 
and two samples trending toward increasing enrichment into 
the enriched mid-ocean–ridge basalt (E-MORB) and continen-
tal basalt fields (Figure  GS2025-4-7b, c). Previous work on the 
Bah Lake assemblage of the Ospwagan group by Zwanzig (2005) 
subdivided the volcanic rocks into an N-MORB–like high-Mg suite 
and an E-MORB–like enriched suite (Figure GS2025-4-2a, b). The 
profiles of the two suites are similar to the two trends defined by 

the mafic volcanic rocks at Halfway Lake and support the inter-
pretation that they could be correlative with the Bah Lake assem-
blage.

The normalized profiles of the garnet-bearing mafic 
dikes are relatively flat and suggestive of a MORB affinity (Fig-
ure GS2025-4-2c, d), and are similar to the profiles of homoge-
neous amphibolite samples hosted in Ospwagan group rocks 
(Figure GS2025-4-2e, f). Variable anomalies at Th and Nb could 
indicate interaction with more evolved crust. Samples of gar-
net amphibolite and homogeneous amphibolite plot within the 
ocean-floor–basalt and MORB fields of the discrimination dia-
grams of Pearce and Cann (1973) and Meschede (1986), and over-
lap with the back-arc–basalt field of Cabanis and Lecolle (1989; 
Figure GS2025-4-7a–c). The normalized profiles and results from 
discrimination diagrams are similar to those of mafic dikes of the 
Molson swarm, which have been interpreted as the result of a 
mantle plume, passive mantle upwelling or back-arc magmatism 
(Figure  GS2025-4-2c–f; Figure  GS2025-4-7a–c; Heaman et al., 
2009; Ciborowski et al., 2017). The main difference between the 
garnet amphibolite and the homogeneous amphibolite appears 
to be related to alkali content. The garnet amphibolite typically 
contains <2  wt.  % total alkalis with a K2O/Na2O ratio typically 
>0.3, whereas the homogeneous amphibolite typically contains 
>2 wt. % total alkalis with a K2O/Na2O ratio <0.2.

The homogeneous appearance of the Archean-hosted 
amphibolite suggests that it is likely of Paleoproterozoic age. The 
normalized profiles of the samples have notably steeper nega-
tive slopes than the other amphibolite samples ([La/Yb]N = 2.5 vs. 
1.14–1.66), as well as negative anomalies at Nb and Ti, which 
could suggest an arc affinity (Figure  GS2025-4-2e, f). However, 
the Archean-hosted sample is also characterized by a relatively 
flat normalized HREE profile ([Gd/Yb]N = 1.16), which is similar 
to the other homogeneous amphibolite and garnet amphibolite 
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Figure GS2025-4-5: Average P2 member pelite-normalized multi-element profiles for sedimentary rocks from the Halfway Lake area compared with 
other sedimentary rocks from the Thompson nickel belt: a) upper sequence pelite and P2 member pelite; b) upper sequence pelite and Paint sequence 
pelite; c) upper sequence wacke, Setting formation wacke and P2 member pelite; d) upper sequence wacke and Paint sequence wacke; e) Thompson 
formation semipelite, calcsilicate and M2 member semipelite; f) Thompson formation semipelite and Paint sequence wacke. Normalizing values are 
from Zwanzig et al. (2007). Reference values for pelite from the P2 member of the Pipe formation, wacke from the Setting formation and semipelite 
from the M2 member of the Manasan formation are from Zwanzig et al. (2007) and Couëslan (2016). Reference values for the Paint sequence pelite 
and wacke are from Couëslan (2016) and Couëslan and Janssens (2025a). Reference values for the calcsilicate from the T1 member of the Thompson 
formation are from Couëslan (2003), Zwanzig et al. (2007) and Couëslan (2021b).
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samples ([Gd/Yb]N = 1.06–1.48). The enrichment in LREEs and Th 
could be the result of crustal interaction/assimilation, possibly 
combined with a slightly more enriched mantle source, similar 
to the enriched Bah Lake assemblage sample discussed above. 
This interpretation is consistent with discrimination diagrams in 
which the Archean-hosted sample plots toward the E-MORB and 
continental basalt fields (Figure GS2025-4-7b, c).

Granitoids
The primitive mantle-normalized profiles of granitoids from 

the Halfway Lake area are typical of arc or crustal-derived melts 
(Figure GS2025-4-4b, d, f, h). The garnet-bearing granite–tonalite 
pluton is geochemically distinct from the other granitic to grano-

dioritic intrusions in that it defines a trend from tholeiitic to cal-
calkaline affinity on the K2O–SiO2 diagram (Figure GS2025-4-8a). 
All other granitoids plot in the calcalkaline field(s). The garnet-
bearing pluton is also characterized by flat HREE profiles ([Gd/
Yb]N = 0.89–1.11 compared with >1.25 for other granitoids; Fig-
ure GS2025-4-4c). This is a characteristic of FII felsic rocks, which 
are interpreted to form from mid-level, high-temperature partial 
melting of crust in extensional environments (Figure  GS2025-
4-8b, c; Hart et al., 2004; Piercey, 2011). The garnet-bearing 
tonalite also shares some characteristics with FIII felsic rocks, 
including high SiO2 content (>75  wt.  %), and a tholeiitic affin-
ity, which are characteristic of partial melts generated at higher 
crustal levels (Hart et al., 2004; Piercey, 2011). Partial melting in 
extensional environments is typically driven by mantle upwelling 
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and the emplacement of mafic to ultramafic magmas. Emplace-
ment of the garnet-bearing pluton could therefore be contempo-
raneous with magmatism related to the Bah Lake assemblage or 
the Molson dike swarm. Samples were collected from drillcore 
for U–Pb zircon geochronology in June 2025 to test this theory.

A number of syenitic to monzonitic plutons occur within 
the TNB in the Paint Lake area, Bucko-Resting lakes area and at 
Partridge Crop Lake. The plutons in the Paint Lake area and at 
Partridge Crop Lake are typically more magnesian (Mg# = 0.65–
0.76), enriched in Cr (270–460  ppm), Ni (100–280  ppm) and 
LILEs (Na2O+K2O  =  7.32–9.99  wt.  %, 1166–1479 ppm Sr, 4299–
5377 ppm Ba) than the Halfway Lake monzonite (Couëslan, 2016; 
Couëslan and Janssens, 2025a; C.G. Couëslan, unpublished data, 
2014). The Paint Lake and Partridge Crop Lake plutons also have 
a lower peralkalinity index (molar Al2O3/[Na2O+K2O]  =  0.91–
1.2 compared with >1.4) and a more shoshonitic affinity (Fig-
ure GS2025-4-3; Figure GS2025-4-8a, d). The Paint Lake syenite 
yielded a U-Pb zircon age of 1883 ±5 Ma, which is interpreted 
as a magmatic crystallization age (Couëslan, 2016). The plutons 
from the Paint Lake area and Partridge Crop Lake are character-
ized by strongly negative εNd values of –14.3 to –15.0 (calculated 
at 1880 Ma) and relatively old depleted-mantle Nd-model ages 
of ca. 3.09–3.36  Ga (Couëslan, 2016; unpublished data, 2017), 
which contrast with the much less evolved Sm-Nd isotope geo-
chemistry of the Halfway Lake pluton (sample 108-22-097, 
Table GS2025-4-1).

The Bucko pluton is a relatively large monzodioritic to mon-
zonitic pluton that stretches approximately 25 km from the Bucko 
Lake area in the north to the Manibridge mine area in the south. 
The Bucko pluton has a high-K calcalkaline affinity, and has Mg# 
values (0.57–0.62) and concentrations of Cr and Ni (90–141 ppm 
and 52–71  ppm, respectively) that are similar to the Halfway 
Lake pluton (Figure  GS2025-4-8a, d). The Bucko pluton is also 
characterized by similar total alkali contents (Na2O+K2O = 6.35–
7.84 wt. %) and ASI values (0.76–0.83) as the Halfway Lake pluton 
(Figure GS2025-4-3). The Bucko pluton has a magmatic crystal-
lization age of ca. 1835 Ma (Bleeker et al., 1995), with an εNd 
value of –1.4 (calculated at ca. 1845 Ma) and a depleted-mantle 
Nd-model age of ca. 2.49 Ga (Percival et al., 2004). Given the sim-
ilarities in geochemistry and Nd-model ages, a similar magmatic 
crystallization age could be assumed for the Halfway Lake pluton, 
which results in an εNd value of –1.77 (Table  GS2025-4-1). An 
εNd value, calculated at 1835 Ma, of –1.77 Ga suggests a weakly 
evolved source or that the monzonite was derived from a juve-
nile magma that interacted with evolved crust.

Similarities were noted between the Bucko pluton and 
Archean sanukitoids (Percival et al., 2004); however, they also 
have characteristics that are transitional between the high-silica 
and low-silica adakites of Martin et al. (2005). Sanukatoid and 
adakite magmas are typically associated with subduction zone 
processes. This challenges current understanding of the subduc-
tion polarity at ca. 1835 Ma, which places the Superior craton as 
the under-riding plate (Bleeker, 1990; White et al., 2002).

Sedimentary rocks
One of the original intentions behind the mapping project 

at Halfway Lake was to investigate if Paint sequence rocks were 
present along strike from the Phillips–Paint lakes area (Couës-
lan, 2016, 2022b). A method using average P2 member pelite-
normalized multi-element profiles to compare and contrast 
sedimentary rock units in the TNB was devised by Zwanzig et al. 
(2007). Average P2-normalized profiles of pelite from Halfway 
Lake are relatively flat and more similar to the profiles of pelite 
from the P2 member than pelite from the Paint sequence, which 
can be characterized by relative depletions at Th and P, and rela-
tive enrichments at Sr, V, Sc and Cr (Figure GS2025-4-5a, b). The 
majority of wacke samples from the upper sequence at Halfway 
Lake have similarly flat normalized multi-element profiles (Fig-
ure GS2025-4-5c). This contrasts with normalized profiles of the 
Paint sequence wacke, which can have negative slopes and be 
relatively depleted in Th and K, and is typically enriched in Sr, P 
and Cr (Figure GS2025-4-5d).

The calcareous semipelite of the Thompson formation 
at Halfway Lake is assumed to consist of a clastic component 
(likely siltstone or wacke) along with a calcareous component 
(sedimentary carbonate). A multi-element profile could there-
fore be expected with characteristics falling between those 
of the M2  member semipelite of the underlying Manasan for-
mation and those of the Thompson formation calcsilicate 
(Figure GS2025-4-5e). Instead, the normalized profile of the cal-
careous semipelite can appear more similar to that of the Paint 
sequence wacke, with relative depletions in K and enrichments 
in Sr, P and, in some cases, Cr (Figure GS2025-4-5f). This could 
imply a similar clastic source is shared by Thompson formation 
rocks at Halfway Lake and the Paint sequence, whether or not 
it suggests a direct stratigraphic relationship (e.g., lateral facies 
change). However, it should also be noted that Thompson forma-
tion calcsilicates and marbles from the Halfway Lake area display 
similar relative enrichments in P, which could imply that P is part 
of the calcareous sedimentary component rather than the clastic 
component (Couëslan and Janssens, 2025b).

The TDM of the Thompson formation calcareous semipelite 
(ca. 2.94  Ga) is typical for Ospwagan group rocks (ca. 2.82–
3.16  Ga) and near the lower end for analyzed Paint sequence 
rocks (ca. 2.95–3.57 Ga; Figure GS2025-4-9). In contrast, the TDM 
ages for the upper sequence wackes from Halfway Lake are sig-
nificantly younger (ca. 2.46–2.71 Ga) than previous model ages 
determined for the Ospwagan group and overlap with model ages 
of the Burntwood group of the adjacent Kisseynew domain (ca. 
2.13–2.62 Ga). The younger model ages for the upper sequence 
wacke suggest a less evolved (possibly younger) crustal compo-
nent than observed elsewhere in the Ospwagan group. Recent 
work suggests that there may be a general younging of Paint 
sequence Nd-model ages toward the south (Figure  GS2025-4-
9; Couëslan, 2022b). Initial results suggest a similar relationship 
may exist in the Archean basement, with generally older model 
ages in the north (possibly coinciding with Hudson Bay terrain-
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derived crust) and younger model ages in the south (possibly 
coinciding with North Caribou terrain-derived crust; Couëslan, 
2021a, 2022b). It is possible that the same pattern could exist 
within the Ospwagan group, with older model ages in the north 
and younger model ages in the south; however, more sampling of 
all the rock suites in the south is required to provide a statistically 
robust dataset to confirm this hypothesis.

The dominant detrital zircon age nodes for the upper 
sequence wacke samples 108-22-118 and 108-22-157A are 
2640  Ma and 2650  Ma, respectively (Figure  GS2025-4-6a, 
c). These nodes coincide with U-Pb metamorphic zircon and 
monazite ages from the adjacent Pikwitonei granulite domain 
of the Superior craton (Heaman et al., 2011; Guevara et al., 
2020; Couëslan, 2021a). This supports previous interpretations 
that the clastic detritus that formed the Ospwagan group was 
sourced mainly from the Superior craton (Bleeker, 1990; Bleeker 
and Hamilton, 2001; Rayner et al., 2006; Böhm et al., 2007; 
Zwanzig et al., 2007). However, these dominant age nodes are 
significantly younger than the dominant age node for a compila-
tion of previously analyzed Ospwagan group detrital zircon (ca. 
2700 Ma; Figure GS2025-4-6e). Although there is overlap of the 
interquartile ranges between the Ospwagan group compilation 
(2684–2797 Ma) and the upper sequence rocks of Halfway Lake 
(2600–2700 Ma and 2623–2692 Ma; Figure GS2025-4-6b, d, f), it 
is relatively minor. The dominant node and interquartile ranges 
of the Halfway Lake rocks are closer to those of the compilation 
of Paint sequence detrital zircon (Figure GS2025-4-6g, h).

Economic considerations
The stratigraphic relationships and lithogeochemistry of the 

supracrustal rocks at Halfway Lake suggest that they are correla-
tive with the Ospwagan group rather than the Paint sequence 
(Couëslan, 2023; this study). Although not discussed in this 
study, many of the ultramafic bodies at Halfway Lake appear to 
be emplaced near sulphidic horizons at the boundary between 
the Thompson and Pipe formations, which coincides with the ore 
horizons at the Pipe and Birchtree mines (Couëslan, 2023). Con-
ductors along this horizon, with or without significant ultramafic 
rock and that have been thickened along regional fold hinges, are 
prospective targets for Ni exploration (Bleeker, 1990; Lightfoot et 
al., 2017).

Böhm et al. (2007) demonstrated the use of Sm-Nd whole-
rock geochemistry as an exploration tool for distinguishing Osp-
wagan group rocks from the less prospective Archean basement 
and Burntwood group in the northern TNB. However, the Nd-
model age results from this study included two samples consider-
ably younger than previous analyses from the Ospwagan group, 
one of which could be considered typical of the Burntwood group 
(Figure GS2025-4-9). These results underline the importance of 
collecting a suitable sample size. Further work is required to see 
if there could be a shift to younger Nd-model ages in Ospwagan 
group rocks toward the south in the TNB, which could restrict the 
use of Sm-Nd isotope geochemistry as an exploration tool to the 
northern portions of the TNB.

The garnet-bearing granite–tonalite pluton in western Half-
way Lake shares a geochemical affinity with FII felsic rocks, which 
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can be spatially associated with VMS systems. If the pluton was 
emplaced contemporaneously with the mafic–ultramafic mag-
matism of the Bah Lake volcanic assemblage, it would imply at 
least a notional potential for VMS mineralization. Outside of the 
submarine volcanic environment, FII felsic rocks can be found 
associated with epithermal deposits in extensional/rift environ-
ments (Hart et al., 2004). However, epithermal mineralization 
is considered to form at shallow crustal levels (<1000  m; Pan-
teleyev, 1988), and would likely have poor preservation potential 
in the relatively high metamorphic-grade rocks of the TNB.
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