Overview of Today's Topics on Control of Disease in Sheep and Goats

Dr. Paula Menzies October 27, 2007

Lots to Cover Today

- Gastrointestinal parasites
- Anthelmintic resistance
- Coccidiosis
- Pneumonia
- Pulpy kidney
- Abortion
- Maedi visna
- Johnes disease

What is Chronic Wasting Disease?

- Disease that causes weight loss / poor weight gains / low body condition score
 - With or without other signs of disease
- Whole group
 - Stage of production
 - Nutrition
 - Parasites (+ -)
- Individuals within the group
 - Competition
 - Chronic disease

BCS Goals by Stage of Production Description 2.5 - 3.0 Maintenance Dry period 0 to 180 Flushing & 3.0 - 3.5 3 wks before & 42 to 84 High ewes 4.0 - rams Early Mostly 90 days Moderate 2.5 - 3.0 placental growth gestation Late gestation Fetal & udder 3.0 - 3.542 days High growth Early lactation Nursing or milking 35 - 90 Very high 2.0 - 2.5 @ weaning or peak milk Commencial Company

What are the common causes?

- Competition
- Dental Disease
- Internal Parasites
 - Usually gastrointestinal parasites
- Maedi Visna / Caprine Arthritis Encephalitis
- Johne's Disease
- Caseous Lymphadenitis
- Scrapie (with or without neurological signs)
- Contagious Ovine Footrot (with lameness)

Competition

- Inadequate feeder
- Species incompatibility
- Mixing of sizes/ages Breed incompatibility
- · Mixing of classes

Dental Disease

- Broken mouth
 - Loss of incisors due to gingivitis or old age
- Periodontal disease
 - Gingivitis
 - Molar loss
 - Secondary bone infection

Control of Internal Parasites in Sheep and Goats

Dr. Paula Menzies

Presented to Manitoba Sheep and Goat Symposium October 27, 2007

Sheep and Goats Get Lots of Parasites

- External
 - Lice
 - Mange
 - Keds
 - Fly larvae
- Internal
 - Protozoal (cryptosporidia, coccidia)
 - Tapeworms intermediate and definitive host
 - Nematodes
 - Liver flukes

Coccidiosis

- Eimeria fairly host specific
 - E. crandallis, E ovina & E. ovinoidalis most pathogenic to lambs
 - E. arloingi & E ninkohlyaki most pathogenic to
- Many other species less pathogenic

Coccidiosis

- 4-6 wks of age up to yearlings
- Acute
 - Bloody diarrhea
 - Dehydration
 - Death
- · Chronic disease
 - Pasty stool
- Poor arowth
- Risk Factors
 - Contaminated environment
 - Naïve animals
 - Other disease, e.g. pneumonia

Sources of Infection

- Oocytes (eggs) in environment
- Chronically infected lambs and kids
- Periparturient egg rise (PPER) from does and ewes______

Diagnosis

- · Feces from affected animals
- Fecal egg count
 - > 5,000 eggs per gram of feces
 - Low levels always present and not significant
- Post mortem
 - Intestine affected

Treatment & Control

- In an outbreak can treat with sulfonamides or amprolium orally
 - drawbacks
- Control
 - Deliver an anticoccidial drug starting before time of risk
 - Kids and Lambs 2 weeks of age for 90 days
 - PPER last trimester of pregnancy to weaning
 - Feeding management

Anticoccidial Drugs - Vet Script

DRUG	Active Ingredient	Dosage BW/day	Delivered to animal	Comments
Sulfas	Sulfadimidine / Sulfamethazine	25 - 140 mg/kg	In water; 4 days on 3 off & repeat	Higher dose for treatment only
Amprol	Amprolium	10-20 mg/k g	In water or feed; 5- 21 days; at 50 mg/kg orally once as treatment	Resistance & PEM toxicity reported
Rumensin	Monensin	1.0 mg/kg	In feed 11-22 gm/tonne; for 8 to 12 wks	Narrow safety range for sheep
Bovatec	Lasalocid	1.0 mg/kg	In feed 36 gm/tonne for 8 to 12 wks ad lib feeding	Approved for sheep Moderate toxicity
Deccox	Decoquinate	0.5 – 1.0 mg/kg	6% premix in feed @ 1.5 kg/tonne for min of 75 days	Low toxicity; immunity poor if treated < 3 cycles

Tapeworms

- Sheep & goats are adult host
- Intermediate host is free living oribatid mites found on pasture
- Any clinical effects?
 - Generally not
 - Heavy infestations may interfere with gut motility
 - Associated with pulpy kidney outbreaks?
 - Can be seen in feces
- Otherwise incidental finding

Tapeworms of Dogs

- Intermediate host of dog tapeworms
- Infected dog or coyote sheds tapeworm eggs on pasture or feed
- Eggs eaten by sheep
- Migrate
 - Cysticercus tenucollis to liver mostly
 - Cysticercus ovis muscle of diaphragm, heart and skeletal muscle
- No effect on sheep but at slaughter...
- If dead sheep fed to dogs or scavanged
 - Cycle is complete

Control of Gastrointestinal Parasites in Sheep and Goats

Haemonchus

- How does it kill?
 - 1 worm sucks 0.05 ml blood / day
 - 1000 worms suck 50 ml blood / day
 - A 50 lb lamb has only 1750 ml of blood
 - 1000 worms will drain ½ its blood supply in ~ 2 weeks
- Environmental survival
 - 7 days to 5 weeks to reach infective stage
 - Moisture, warmth, light
 - L3 survive for weeks on pasture
 - Eggs and L3 killed by hard frost and cold but
 - One adult worm can produce 10,000 eggs per day

Ostertagia

- Teladorsagia circumcincta
 - Brown stomach worm small
- Clinical Picture
 - Lives in abomasum and sucks proteinaceous fluid
 - Prefers cooler weather (September?)
 - Bottle jaw
 - Diarrhea watery
 - Thin and poor doing
 - Abomasum can be permanently harmed

Ostertagia - abomasum

Others

- Trichostrongyle black scour worm
 - Clinically like ostertagia
- Nematodirus
 - Only in youngstock
 - Doesn't need pasture to develop
- Many others but these are the "Biggies"

How Are Parasites Controlled?

- Important to understand infection in the animal and
- Life cycle on the pasture
- Strategic parasite control requires understanding the normal epidemiology of the parasite

What is Hypobiosis?

- During the winter, the parasites in the animal
 - Produce fewer eggs
 - Go into arrested development
 - Wait for the correct conditions to contaminate environment, i.e. spring and birth of new victims
- Checking the manure for eggs during the winter may give a false negative reading

Sources of Pasture Contamination with Eggs

- *** Summer pasture build-up from infected lambs and kids
 - This is the most important source
- Overwintered eggs & L3
 - Except for haemonchus which overwinters poorly
 - Deep snow cover improves survival of other GIN
- Periparturient spring rise of egg production
 Pregnant ewes and does
- Manure contamination of feed and grazing
 - from manure piles & manure spreading on pasture
- The eggs and larvae on pasture termed "Refugia"

Periparturient Egg Rise

- PPER
 - \sim 2 weeks prior to lambing / kidding & 6-8 wks after
 - Relaxation of immunity allows arrested nematodes to increase egg production
 - Major source of spring pasture contamination for GIN
 - Reduced by high level nutrition in late gestation
- · Self cure
 - Occasional occurs in adult sheep but not a substitute
 - for control
 - Not common in goats

What Dewormers Can Be Used

- Licensed for sheep:
 - Ivermectin for sheep drench and injectable
- Licensed for goats:
 - Nothing
- Rest of use is extra label drug use
 - Prescription by a licensed veterinarian.
- Must withhold milk in lactating animals where milk is used for human consumption

Dewormers in the Arsenal?

- Benzimidazoles (white drenches)
 - Fenbendazole (Safeguard) cattle drench
 - Albendazole (Valbazen) cattle drench
- Levamisole
 - Not readily available anymore
- Avermectins
 - Ivermectin (Many trade names) sheep drench and injectable
 - Eprinomectin (Eprinex) cattle pour-on
 - Moxidectin (Dectomax) cattle injectable

What happens when we de-worm?

- · Perfect world:
 - Kill 99% of parasites
 - Some residual activity to slow down reinfection
 - But...
- Not so perfect world:
 - Now animal only has genetically resistant parasites in gut which still shed eggs
 - Will not lose resistance over time
- What happens on pasture under intensive deworming programs?

Why do De-wormers Fail?

- Didn't give a sufficient dose of the product
 - Animal didn't get enough dewormer to effectively kill the parasites
- Parasites are resistant to dewormer
 - Anthelmintic resistance = AR

How do we know that the de-wormer has failed?

- Still seeing clinical disease 2 to 3 weeks after de-worming
- 2 weeks after de-worming, large numbers of eggs in feces
 - < 10 days may get temporary suppression of egg production
 - ->21 days may see eggs from new infection

Drench Response Test

- Take fecals from representative proportion of animals
 - 10 from adults
 - 10 from youngstock
- De-worm at same time
- Take fecals again 14 days later
- If poor decline possible resistance

Fecal Egg Count Reduction Test

- Randomly assign youngstock to treatment groups (1 per de-wormer class) + a control group (no treatment)
- As with drench response test but must do quantitative counts (eggs per gram of feces) rather than qualitative (e.g. 1+, 2+)
- Compare reduction to the control group

How can we control parasites and avoid AR?

- Smart Drenching
- 1. Find out if AR is in your flock
- 2. Make sure that animals receive correct dose
- 3. Withhold feed prior to treating
- Treat only those animals that need it or only when needed
- Pasture management to reduce refugia of eggs and larvae

Receiving the Correct Dose

- Route of Administration
 - Don't use cattle pour-on products as a pour-on
 - May not be absorbed well leading to under dosing
 - Don't use injectable products
 - Too long residual activity leading to survive of partially resistant GIN
- Repeat dose rather than "overdose"
 - More is not always better too long residual activity leading to selection for genetic resistance
 - Treat twice 12 hours apart only for benzimidazoles

Receiving the Correct Dose

- Dosages for sheep are the same as for cattle
- Goats must be dosed at:
 - 1.5 X cattle dose for levamisole
 - 2 X cattle dose for other drugs

Receiving the Correct Dose

- Estimate the weight accurately
 - Weigh individuals and dose to heavier weights
- Calibrate drench gun so delivering the amount needed
- Administer with a proper drench gun to back of throat

Withholding Feed

- Prior to treatment
- This may slow transit time of the drug so it works better
- 12 to 24 hours for benzimidazoles, ivermectin and moxidectin

Should we ?

- Use 2 de-wormers at the same time?
 - Only if AR has been proven and only on the advice of a veterinarian
- Rotate de-wormers?
 - Don't rotate quickly, e.g. more frequently than once / year

How Do We Know When De-Worming is Needed?

- Know normal risk periods for disease
 - E.g. mid-July during warm and wet summer
 - E.g. before lambing / kidding PPER
- · See clinical disease
 - Bottle jaw
 - Diarrhea
 - Anaemia FAMACHA
- Egg counts in feces from routine sampling at known risk periods

What is FAMACHA?

- Scoring system for assessing anaemia
 Due to infection with haemonchus
- Developed in S. Africa
 - Vets are trained to use and train producers
 - Lots of labour required
- Check flock every 2 to 3 weeks
 - Only deworm those that are anaemic
- Useful if haemonchus is your biggest problem
 Not useful for other parasite infections
- Monitoring egg counts in feces might be better in Canada

Why not treat whole flock?

- · Not every animal is equally parasitized
 - Genetics
 - Immunity
- If treat everybody, only resistant parasites are left to produce eggs
 - Eventually only resistant parasite eggs in the pastures
- If treat only heavily infected animals
 - Are treating the "BIG SHEDDERS"
 - Rest of animals still shedding non-resistant parasite eggs but not large numbers
- Refugia on pasture is mixed population
 - Greatly slows down development of resistance

What About Fecal Egg Counts?

- More accurate estimate of total worm burden but...
- Indicates status of group not individual
- For our climate best to check parasite burden
 - Mid to late July depending on temperature and moisture and previous parasite burden information
- How
 - 10% of group or 10 animals
 - Individual samples
 - From each group, e.g. young stock and adults

Environmental Management Reducing the Level of Refugia on Pasture

- Pasture rotation is good but...
- Weather determines survival of eggs & L3
- Summer when are pastures safe
 - Cool and wet up to 6 months
 - Hot and dry 3 months
- Winter when are pastures safe
 - Cold and open likely only a few weeks
 - Snow covered still not safe after the entire winter
 - Except haemonchus we think

Environmental Management

- Rotate weaned lambs and kids ahead of adults
 Adults can tolerate heavy loads better than youngstock
- Rotate pastures quickly and graze intensively
 - Not for parasite control but for forage management
 - 30 days between grazing optimal for plant growth
 - Avoid overgrazing as this encourages grazing near fecal pellets or too close to ground
- Expose the larvae and eggs to UV light
- Clip / groom pastures to break up heavy thatch
- Avoid the high risk time of day for larval migration
 - Don't graze until after dew is off grass

Environmental Management

- Manage PPER
 - De-worm periparturient ewes and does before grazing
 - Supplement with protein
 - Avoid those pastures for young-stock
- Allow goats browsing opportunities
 - Shrubby pasture
 - Reduces exposure to parasites
- Plow, till and reseed heavily contaminated pastures don't use for hay
- · Rotate pasture with cattle or horses
 - Different parasite species

Biosecurity

- Even if control on an individual farm is perfect
- Easy to purchase resistant nematodes
- Devise a treatment protocol with vet to aggressively treat additions while in isolation
 - Keep inside so don't contaminate pastures
 - Recheck with fecals 14 days after treatment

What About Alternative Methods?

- Should be science-based
- Should do no harm
- Pasture plants containing condensed tannins
 - Reduce intakes & growth but maybe some reduction in egg shedding
- Copper oxide wire particles
 - Only in copper deficient areas
 - Very risky to sheep if not deficient

Alternative Methods?

- Nematophagus fungi
 - Feed fungal spores (Duddingtonia flagrans)
 - Fungi grow in feces on pasture
 - Trap and infect newly hatched larvae
 - Must be fed daily for 60 days or given in bolus
- Genetic resistance
 - Some breeds more resistant
 - Select resistant sheep within a breed
 - Ram selection based on fecal egg count?

Control of Gastrointestinal Parasites in Sheep and Goats

