## Field Scale Evaluations of Nitrogen Sources, Timing and Placement for Zero-tilled Winter Wheat

## J.Heard (Manitoba Agriculture and Food), B.Fraser (Manitoba Zero Till Research Association) and R.Gares (PFRA)

#### Background

- Nitrogen continues to be the most important and costly input for production of high yielding and high quality winter wheat.
- Producers continue to search out lower cost alternatives to the standard of spring broadcast ammonium nitrate (34-0-0).
- The Manitoba Zero Till research Association (MZTRA) has conducted 6 field scale studies over the past 5 years to address these questions.

Particularly enticing is the possibility of late fall anhydrous ammonia ( $NH_3$ ) injection vs surface or broadcast N applications, since:

- fall NH<sub>3</sub> is the least cost N source
- application to cold soils should keep N in the NH<sub>3</sub> form so leaching and denitrification loss is minimal
- injection will eliminate volatilization or spring run-off losses

### **Materials and Methods**

- Studies were done on a Newdale clay loam soil at the MZTRA in 1997-99 and Jim Nevin farm in 2000-2001.
- Individual treatments were 30' wide and 200-440' long in a RCB design replicated 3-4 times (Table 1).
- Seeding, fertilizing, spraying and harvest operations were done with commercial farm equipment. Yields were recorded by yield monitor and weigh wagon. Samples were tested for protein.

| Study          | 1997   | 1998   | 1999a     | 1999b     | 2000     | 2001   |
|----------------|--------|--------|-----------|-----------|----------|--------|
| Location       | MZTRA  | MZTRA  | MZTRA     | MZTRA     | Nevin    | Nevin  |
| Plot size      | 30x440 | 30x195 | 30x230    | 30x500    | 30x300   | 30x300 |
| # reps         | 3      | 3      | 3         | 4         | 4        | 4      |
| N rate lb N/ac | 100    | 100    | 100       | 100       | 100      | 120    |
| Fall N dates   | -      | -      | Oct 27/98 | Oct 27/98 | Nov 2/99 | -      |
| Spring N dates | Apr 30 | Apr 30 | Apr 27    | Apr 28    | Apr 18   | May 4  |

#### Table 1. Site data summarized

### Analysis

Yield and protein results were analyzed using ANOVA and tested for significance at the 5% probability level.

In Figures 2-3 and 6-9 different letters above bars in charts indicate significant differences at the 5% level, "ns" indicates no significant differences.



### **Fertilizer Application**

• Granular fertilizer (ammonium nitrate and urea) was applied with a 15' wide Valmar applicator

• UAN solution (28-0-0) was applied in a dribble on 12" spacings (Fig 1) spokewheel UAN solution was applied to 2001 crop with a commercial applicator from Redfern's Farm Supply

• anhydrous ammonia (NH<sub>3</sub>) was fall applied to the 1999 crop with Atom Jet Knives in 16" row spacings perpendicular to the direction of seeding

• NH<sub>3</sub> was applied to the 2001 crop in the spring with Ponik disc openers in 8" row spacings since fall 2000 was too wet



Figure 1. Dribble banded UAN on 12" centres (left) and spoke wheel applicator (right).

#### Results

#### Nitrogen Sources

• There were no significant yield or protein differences among ammonium nitrate, urea or dribble UAN at any sites (Figure 2-3).

 UAN spoke wheel application performed equal to UAN dribbled and granular form in 2001.

• NH<sub>3</sub> performed poorer than other N forms in 1999a and 2001 in yield and protein. • Wheat protein levels were high (>11.5%) in 1997-2000, suggesting sufficient N was applied to optimize yield regardless of source, which may have masked any N source differences.





Figure 3. N source and placement on Protein

#### Why the problem with NH<sub>3</sub>?

• In fall 1998 knife application of NH<sub>3</sub> threw soil on established wheat and reduced spring emergence by 25% (Figure 4). Despite aggressive tillering there were still yield differences.

• In spring 2001 disc application of NH<sub>3</sub> into very moist soil had inadequate slot closure, and apparent N loss sufficient to reduce yield and protein (Figure 5).

Figure 4. Reduced plant stands on right with fall knifed NH<sub>3</sub>

Figure 5. NH<sub>3</sub> placement with Ponik disc opener in spring 2001

1999a





#### N Timing

- and 6% less for UAN) and protein (Figures 6-7).
- protein between fall and spring applications.



Figure 6. Effect of N timing and splitting on yield

#### **Urease inhibitor**

- minimize hydrolysis and volatilization losses
- protein (Figures 8-9)



yield

#### Summary

- benefit to Agrotain.
- unsealed slots.
- documented in whole field applications (Figures 10-12)



Figure 10. Bourgault mid row banding injection of  $NH_3$ 



### Acknowledgements

Nevin Farms, Reduced Tillage Initiative (Simplot, Monsanto, Ducks Unlimited, Manitoba Farm Business Council, Agriculture and Agri-Food Canada and Manitoba Agriculture and Food), Covering New Ground (CNG), Canada-Manitoba Agreement on Agricultural Sustainability (CMAAS), Bel-Tech Agri

• Fall applied N was always inferior to spring applications in yield (7% less for urea

• In fall 1999 (site 2000) it remained warm and dry after application on Nov 2, which may have permitted volatilization loss of urea portions of urea and UAN.

• Split N applications (1/2 in fall + 1/2 in spring) were intermediate in yield and

Figure 7. Effect of N timing and splitting on protein.

# • Urea and UAN may be treated with the urease inhibitor Agrotain to delay or

• Agrotain produced a slight, but insignificant increase in yield and no effect on

• All sources of N performed equally. Volatilization losses of urea-N forms appear to be minimal with early spring application under cool conditions. There was no

• The poor performance with NH<sub>3</sub> was related to stand damage and loss of N from

• Equipment modifications should overcome these  $NH_3$  challenges, and are being