

RED RIVER FLOODWAY LONG-TERM MONITORING PROGRAM 2016 PROGRAM A – ANNUAL REPORT DELIVERABLE D1

FINAL - REV 0

KGS Group 16-0300-002 February 2017

PREPARED BY:

REVIEWED BY:

Michael P. Smith, M.Sc., P.Geo. Senior Hydrogeologist

Marci Friedman Hamm, P.Geo. Senior Hydrogeologist

APPROVED BY:

J. Bert Smith, P.Eng., FEC Principal

Kontzamanis Graumann Smith MacMillan Inc.

February 22, 2017

File No: 16-0300-002

3rd Floor 865 Waverley Street Winnipeg, Manitoba R3T 5P4 204.896.1209 fax: 204.896.0754 www.kgsgroup.com

Manitoba Infrastructure 600 – 215 Garry Street Winnipeg, Manitoba R3C 3P3

ATTENTION: Ms. Jackie Dunn Project Manager

RE: Red River Floodway Long-Term Monitoring Program 2016 Program A - Annual Report Final – Rev 0, February 2017

Dear Ms. Dunn:

KGS Group is pleased to provide two (2) paper copies and one (1) electronic copy on DVD of the 2016 Program A – Annual Report, which is part of the Red River Floodway Long-Term Monitoring Program. This report summarizes activities for 2016.

We appreciate the opportunity to provide ongoing services to the Manitoba Infrastructure.

Sincerely,

Stan man

Ø. Bert Smith, P.Eng.

MPS/jr Enclosure

TABLE OF CONTENTS

1.0	INTRODUCTION	1 1
2.0	 METHODOLOGY 2.1 SURFACE WATER 2.2 WELL PUMPING METHOD MODIFICATIONS 2.3 GROUNDWATER 2.4 TRANSDUCER GROUNDWATER LEVEL AND QUALITY PROGRAM 2.5 QUALITY ASSURANCE / QUALITY CONTROL (QA/QC) 	
3.0	SURFACE WATER RESULTS AND ASSESSMSENT	9
4.0	 GROUNDWATER RESULTS	11 12 12
5.0	 GROUNDWATER RESULTS AND ASSESSMENT	14 15 17 17
6.0	SPRING TREATMENT AREAS	20
7.0	WELL DISINFECTION	23
8.0	LONG-TERM MONITORING	24
9.0 Tabi	STATEMENT OF LIMITATIONS AND CONDITIONS 9.1 THIRD PARTY USE OF REPORT 9.2 GEO-ENVIRONMENTAL STATEMENT OF LIMITATIONS	25

TABLES FIGURES APPENDICES

LIST OF TABLES

- D1-1 2016 Monitoring Well and Surface Water Field Parameters
- D1-2 2016 General Groundwater Quality Data
- D1-3 2016 General Surface Water Quality Data Floodway Channel
- D1-4 2016 Groundwater Quality Assessment Instrumented Wells
- D1-5 2016 Groundwater Quality Assessment Non-Instrumented Wells

LIST OF FIGURES

D1-1 Program A Monitoring Well Locations

LIST OF APPENDICES

Appendix D1-A CURRENT TRANSDUCER PROGRAM

D1-A-1 – Rev. 0	Water Elevation and Temperature Readings at K09-12316 (Floodway Outlet)
D1-A-2 – Rev. 0	Water Elevation and TemperatureReadings at K09-12012 (Church Road)
D1-A-3 – Rev. 0	Water Elevation and Temperature Readings at K11-12014 (PTH 59N Bridge West Side)
D1-A-4 – Rev. 0	Water Elevation and Temperature Readings at K11-12015 (PTH 59N Bridge West Side)
D1-A-5 – Rev. 0	Water Elevation and Temperature Readings at K13-12321 (Rockhaven Road)

Appendix D1-B HISTORICAL TRANSDUCER PROGRAM

HM66-3 - Rev. 5	Water Elevation and Temperature Readings at K09-12316 (Floodway Outlet)
HM66-13 - Rev. 5	Rev. A Water Elevation, Conductivity and Temperature Readings at K09-12012 (Church Road)
HM66-37 - Rev. 6	Rev. A Water Elevation, Conductivity and Temperature Readings at K11-12014 (PTH 59N Bridge West Side)
HM66-38 - Rev. 6	Rev. A Water Elevation, Conductivity and Temperature Readings at K11-12015 (PTH 59N Bridge West Side)
HM66-43 - Rev. 5	Rev. A Water Elevation, Conductivity and Temperature Readings at Spring 7A1 (Kildare)
HM66-45 - Rev. 2	Rev. A Water Elevation and Temperature Readings at K13-12321 (Rockhaven Road)

Manitoba Infrastructure	
Red River Floodway Long-Term Monitoring Program	December 2016
2016 Program A – Annual Report Deliverable D1 – Draft – Rev A	KGS 16-0300-002

Appendix D1-C 2016 INSPECTION OF SPRING TREATMENT AREAS

Table D1-C-1	2016 Inspection of Spring Treatment Areas
Table D1-C-2	Field Documentation
Table D1-C-3	Additional Photographs and Video (Included on DVD)

Appendix D1-D LABORATORY REPORTS

1.0 INTRODUCTION

1.1 ENVIRONMENT ACT LICENCE REQUIREMENTS

This 2016 Program A Annual Report, is submitted in response to the requirements for annual monitoring in accordance with Clause 27 and Clause 30 of Environmental Licence No. 2691 dated July 8, 2005 and described in the Manitoba Floodway Authority memorandum HM72 Rev 1 Post-construction and Long-term Monitoring Program, issued April 2013. Revisions to the Long-term Monitoring Program were given in HM99, the 2013 to 2014 Post-construction Monitoring Program Comprehensive Annual Report February 2015. Background information and historic data that is not included in this report can be found in the annual groundwater Monitoring Data Analysis Reports 2005 through 2015. There was no monitoring program in 2012.

1.2 SCOPE OF WORK

The objectives of the project are to carry out long term monitoring, testing and reporting on groundwater conditions within and adjacent to the Red River Floodway (Floodway) in accordance with the Provincial commitment to flood protection and as required under the Red River Floodway's Operating License (Environment Act License No. 2691). The current work program, overseen through Manitoba Infrastructure (MI) includes a monitoring period from Spring 2016 through Fall 2018, outlined in KGS Group proposal 15-000-1555. The Three Year Project Scope of Work includes the following annual activities:

- Spring and Summer Flood Monitoring Program A (or B if required);
- Inspection of Treated Groundwater Springs;
- Annual Well Disinfection, Inspection/Maintenance/Repair Programs and Channel Inspections;
- Reporting.

This report (Deliverable D1) contains reporting for Program A Annual Report (Task 1) which also includes the inspection of treated groundwater springs and the annual well disinfection. The 2016 Annual Inspection and Maintenance Report (Task 2) was submitted as Deliverable

D2. Tables and Figures are labelled using the deliverable numbers to create a unique products. For example, Appendix D1-A indicates Appendix A of the Deliverable D1 report.

In 2016, The Red River Floodway was not operated, nor was there any Red River flow into the Floodway Channel. Therefore, the requirements for Long-term Monitoring Program A (Task 1) (as outlined in proposal 15-000-1555) were initiated in Spring 2016. This included sampling of 5 instrumented wells for inorganic parameters and bacteria two times: at the peak flow of the Red River at the Inlet Control Structure; and post-melt (several weeks after peak flow) along with sampling of 7 additional core monitoring wells once during the peak flow of the Red River. Note that the timing of award of the project and early spring melt prevented incorporation of a prespring melt sampling program in 2016. Sampling of surface water is required once at two locations (PTH 59N Bridge and PTH 44 Bridge) during the peak flow in the Red River; however an additional sample was taken after the melt to help interpret the post-melt groundwater data.

In addition to the Spring Flood Monitoring Program A (Task 1) in 2016, KGS Group also conducted an inspection of treated groundwater springs and an annual well disinfection program as described in this report. The 2016 Annual Inspection and Maintenance Report has been submitted separately and also includes the channel bottom inspection.

The detailed 2016 program was as follows:

- Spring melt monitoring conducted on March 28 to 30, 2016. The Red River elevation remained elevated at between El. 225.2 m and El. 225.5 m during the March 28 to 30, 2016 sampling period. The peak flow was measured by the stage elevation of the Red River at the Water Survey of Canada (Station G 05OC021 Above the Red River Floodway Control Structure) which was El. 228.77 m on March 18, 2016.
- Well Pump Servicing on March 28 to 30 (in conjunction with Spring Melt Sampling);
- Follow up bacteria monitoring conducted on April 21, 2016;
- Post-melt monitoring on June 2, 2016;
- Annual Groundwater Springs Inspection on August 8 to 11, 2016;
- Annual Well Disinfection Program on September 27, 2016.

The 2016 program represents the second year of the Long-term Monitoring Program, however it is the first year falling under Manitoba Infrastructure direction. In 2016, surface water monitoring of the Floodway Channel was carried out at locations near the PTH 44 Bridge and PTH 59N Bridge. The 2016 long-term monitoring program used wells designated in the monitoring program for Program A Task 1 as shown on Figure D1-1.

1.3 AQUIFER CHARACTERIZATION

The carbonate aquifer found along the Floodway Channel is part of a regional groundwater flow system from eastern Manitoba. The confined carbonate bedrock aquifer has natural variations in water quality, with the conductivity ranging from moderate to high (1,000 to 2,000 μ S/cm). Conductivity is a measure of dissolved solids, such as calcium, magnesium, chloride, sodium and sulphate. Near the Floodway Inlet, local mixing with saline groundwater found west of the Red River, results in higher conductivity groundwater (greater than 3,000 μ S/cm) with increased chloride and sodium.

Lower conductivity values are found in the bedrock aquifer where it is influenced by the Birds Hill surficial granular aquifer, from CPR Keewatin Bridge to Church Road. The Birds Hill sand and gravel surficial aquifer is a local unconfined aquifer near PTH 59N Bridge. The bedrock aquifer beneath and surrounding the Birds Hill deposit has lower groundwater conductivity due to the freshwater recharge through the sand and gravel.

Natural variations in groundwater quality by location and with the seasons must be considered when the baseline and ongoing water quality results are evaluated during construction activities and Floodway operation events. One way to detect whether there is surface water intrusion into the groundwater aquifer is to monitor an indicator parameter such as conductivity which, along with other parameters, can be used to evaluate this contrast. In the vicinity of the Bird's Hill sand and gravel surficial aquifer, recharge from precipitation results in groundwater with lower conductivity (500 μ S/cm to 1,000 μ S/cm) than is found in other areas of the carbonate aquifer.

The intrusion of surface water into the groundwater is most readily detected when there is a contrast between the chemistry of the samples. Most groundwater conductivity values were found to be greater than surface water conductivity values measured during annual spring

Floodway operation. Red River conductivity values are historically lowest during spring flood events, such as in the spring of 2005, 2006, 2007, 2009, 2010, 2011, 2013 and 2014. In this situation, groundwater conductivity would be expected to decrease, if surface water intruded.

During summer Floodway operation in 2005, summer floodway use in 2007, and summer Floodway operation in 2010 and 2011, conductivity values of surface water from the Red River diverted in the floodway were slightly higher than in the spring, and higher than the natural groundwater conductivity levels in some areas near the CPR Keewatin Bridge, PTH 59N Bridge and Church Road. These areas have naturally low groundwater conductivity in the bedrock aquifer. Floodway Channel surface water conductivity was also higher during the summer precipitation events in June 2008, than during the spring melt, with no Floodway operation in April 2008. An increase in groundwater conductivity might occur in summer, if surface water intrudes into the groundwater at this time.

In the spring 2015 flood, one time sampling in the Floodway Channel during the spring melt on April 6, 2015 (no Floodway flow or Floodway operation) showed that the conductivity of the local surface water in the Floodway Channel was low in April, and increased in May as the surface water input decreased and the groundwater base flow became a greater percentage of the flow system.

In the spring of 2016, the conductivity during the spring melt on March 28 to 30, 2016 (no floodway flow or floodway operation) showed a low conductivity for the local surface water in the floodway channel. An increase was seen in June 2016 as the percentage of groundwater base flow increased.

2.0 METHODOLOGY

2.1 SURFACE WATER

Surface water samples in 2016 were taken in the Floodway Channel at the PTH 44 and PTH 59 Bridges. Grab samples were collected from the channel. Samples were taken directly into sample bottles attached to an extension pole. KGS Group recorded field parameters (dissolved oxygen, specific conductivity, temperature and pH) using the YSI Pro meter. Results for the field parameters are shown in Table D1-1. Laboratory analysis data are shown in Table D1-3. Original laboratory reports are given in Appendix D. Laboratory results are given in mg/L unless indicated otherwise.

2.2 WELL PUMPING METHOD MODIFICATIONS

In 2016, wells were purged using a combination of small diameter submersible pumps (either dedicated to the well or portable) and dedicated inertial pumps (Waterra tubing with foot valves). Five of the wells (K13-12321, K09-12316, K09-12012, K11-12014 and K11-12015) contained dedicated submersible pumps, previously installed in 2015. At the time of the March 2016 sampling event, operational issues were observed with all five of these pumps, most likely related to the length of time each were submerged within each well. New replacement pumps were installed in three of the wells (K13-12321, K09-12316, K09-12316, K09-12012). A portable small diameter submersible well pump was used for sampling at K11-12014 and K11-12015.

In the subsequent follow up bacteria sampling event in April, 2016, a dedicated small diameter submersible (Whale pump) well pump was installed in K11-12015, replacing the Waterra and foot valve installed in March.

Note that after the well disinfection program in November 2016, as approved by MI, all dedicated well pumps were removed for inside storage at KGS Group over the winter, to protect against long-term precipitation of carbonate groundwater within the pump during submergence over the winter months, prior to the next Spring Pre-melt Event.

2.3 **GROUNDWATER**

Monitoring well groundwater samples were taken from 12 monitoring wells in March 2016. Subsequently 5 of the 12 monitoring wells were sampled in June. All wells were located within the Floodway Right-of-Way. One of the wells sampled is a water supply well for Inlet Control Structure. Water samples are taken from an inside tap, however the water is not used for drinking. Well locations are shown on Figure D1-1. Monitoring wells are not used for drinking water supply. A supplementary groundwater sampling event was also conducted at 5 of the 12 wells in April, 2016 for bacteria, as follow up to the March sampling event.

In order to ensure groundwater samples were representative of the natural formation water, the monitoring wells were purged a minimum of three (3) well volumes, or until groundwater parameters (conductivity and temperature) stabilized. Field measurements were taken at the start of purging and at set intervals of 5 to 10 minutes. Stable groundwater parameters were achieved at all sample locations within 20 minutes.

Field measurements for pH, conductivity and dissolved oxygen were taken during each sampling period. Groundwater samples were stored in a cooler chest at 4°C for transport to the laboratory. The samples were analyzed at ALS Laboratory in Winnipeg, Manitoba. Metal samples were filtered and acidified in the laboratory, since iron and manganese were not analyzed.

Results for the field parameters are shown in Table D1-1. Laboratory analysis data are shown in Table D1-2. Original laboratory reports are given in Appendix D. Laboratory results are given in mg/L, unless otherwise noted.

2.4 TRANSDUCER GROUNDWATER LEVEL AND QUALITY PROGRAM

Continuous measurements of groundwater elevation and temperature were collected from the previous May 2015 download to September 2016 in the 5 instrumented monitoring wells. Transducers were installed at depth so that the tips were in the open bedrock or screened zone. Transducers and pumps installed in these wells are owned by MI. Transducer results are shown

in Appendix D1-A. Historical transducer data, reported in the most recent previous Red River Floodway 2015 Long-term Monitoring Program Report (HM101) is compiled in Appendix D1-B.

2.5 WELL DISINFECTION PROGRAM

The methodology employed for the well disinfection program included the following for each location:

- Recorded water level measurement from the top of the PVC well casing;
- Temporarily removed the dedicated transducer;
- For wells with dedicated submersible pumps, the pumps were removed, labelled and placed in a dedicated bags for winter storage at KGS Group;
- Added a calculated amount of household bleach to the well to raise the chlorine level in the well water to 200 ppm;
- Operated a temporary submersible well and pumped the well until discharge water had a chlorine odour (approximately 10 minutes);
- Removed the temporary inertial pump from the well;
- Closed and locked each well.

2.6 QUALITY ASSURANCE / QUALITY CONTROL (QA/QC)

Standardized sampling procedures and protocols were used during the sampling event to ensure representative samples were collected in a controlled manner so that scientifically defendable comparisons can be made.

Chain of Custody – KGS Group ensured all Chain-of-Custody procedures were properly undertaken and holding times were not exceeded.

Sample Collection – Samples were collected directly from the dedicated pump outlet, which is sealed in the well. Disposable latex gloves were worn when handling each piece of equipment and groundwater sample, using a new pair for each sample collection. Samples were collected in clean containers (supplied by the lab) and stored at the appropriate temperature using the proper preservatives. Any equipment replacement in the five instrumental wells was disinfected prior to installation.

Laboratory Qualification – ALS Environmental of Winnipeg, Manitoba, is a Canadian Association for Laboratory Accreditation Inc. (CALA) accredited analytical testing laboratory. Criteria and guidelines used for assessment of analytical data were clearly established with the laboratory to ensure the appropriate detection limits were used.

Duplicate Samples – Duplicate groundwater samples were submitted at a frequency of 10% for the total samples submitted to assess the quality of the laboratory analysis. The field duplicates

were labelled such that the laboratory did not know the samples were duplicates. Laboratory standards and duplicates are run regularly by ALS and are on file.

Field Equipment – Field equipment such as field chemistry meters and transducers (if they include conductivity) are calibrated prior to use or installation.

3.0 SURFACE WATER RESULTS AND ASSESSMENT

In 2016 Red River water did not enter the Floodway; however local surface water sources and spring melt did enter the channel.

Based on historical data collected, the cold temperature of the Red River at the beginning of the spring melt is generally useful as an indicator of surface water infiltration when the river or overland surface water runoff temperature is a few degrees above freezing and the groundwater temperature is higher. As the spring melt advances over time, water from the spring melt starts to warm, increasing in temperature as the peak passes. Historically, a decrease in temperature has been observed in groundwater with the initial onset of spring melt. For surface water sampling during the 2016 spring flood, the first surface water samples (temperatures ranging between 6.3 and 9.3°C) were collected after the peak of the flood passed, with groundwater at the time between 6.1 and 9.9°C; therefore, the initial low spring melt water temperature (historically less than 5°C) was not observed within that data set (Table D1-1).

Surface water conductivity of the channel flow was lower during the spring melt on March 30, 2016 (407 to 549 μ S/cm), than after the melt on June 2, 2016 (665 to 718 μ S/cm). The increase in conductivity reflects the increasing percentage of groundwater baseflow and/or post melt runoff contribution relative to a reduced contribution from lower conductivity snow melt.

The spring melt concentration of nitrate plus nitrite as nitrogen (N) measured in the Floodway Channel at PTH59 was 0.405 mg/L. After the spring melt the nitrogen concentration increased 10 times to 4.62 mg/L. Both concentrations were below the CCME criteria in drinking water of 10 mg/L for nitrate plus nitrite (as N) of 10 mg/L. Concentrations measured in 2016 at PTH44 ranged between 0.73 and 1.28 mg/L. For both PTH44 and PTH59, ammonia values during the spring melt were <0.010 to 0.072 mg/L, while TKN values were 0.75 to 1.87 mg/L.

Bacteria concentrations reflected surface water influences. Bacterial counts for total coliform increased from March (between 980 and 2,790 MPN/100 mL) to June (between 26,100 and 41,100 MPN/100 mL). Counts for *E. coli* also increased from March (between 139 and 630 MPN/100 mL) and June (1,210 and 1,440 MPN/100 mL). The increase in counts between March and June reflect a combination of increasing exposure to point sources, lower flow within

the channel and warmer temperatures. Values observed in 2016 were generally higher than historically seen in recent years.

Overall, the surface water quality parameter results highlighted above reflect the influence of the spring melt in late March and the return to post-melt conditions characterized by an increased contribution of groundwater baseflow. These changes occurred with increases in conductivity, alkalinity, hardness, and sulphate in the post-melt June 2016 results compared with the March results.

4.0 **GROUNDWATER RESULTS**

Groundwater quality results from wells measured in 2016 are discussed below. Results for samples collected during spring melt are compared to samples collected post-melt. In general, lower parameters observed during the spring melt period versus the post-melt period would reflect possible surface water influence on groundwater within the monitoring wells sampled. With the passing of the spring melt period, concentrations would tend to increase, reflecting a return to groundwater flow at these locations from the surrounding aquifer.

4.1 FLOODWAY OUTLET AND PTH 44

At the Floodway Outlet, monitoring wells located 65 m (K09-12316), and 350 m (K13-12321) north of the expanded channel within the Right-of-Way, showed some evidence of surface water intrusion from the floodway in 2016 at various levels. Hydrographs showed a slight rise in groundwater elevation during the spring melt with little change in temperature (Appendix D1-A-1 and D1-A-5).

Well K09-12316, closest to the channel, had the most stable water quality of the two locations (with minor changes in conductivity and hardness). In contrast, the well close to Rockhaven Road (K13-12321) had lower concentrations of many parameters in March 2016 (during the spring melt period) in comparison to values in June 2016 (post-melt), including conductivity, alkalinity, bicarbonate, hardness, TDS, calcium, magnesium, sodium and chloride and sulphate as shown on Table D1-2. Nitrate plus nitrite (as N) also showed a lower concentration at K13-12321 during the spring melt from locally elevated background values (Tables D1-2 and D1-4). The greater changes in the Rockhaven R1 well, which is further from the Floodway, points to local recharge north of the Floodway, or influence of the Red River as a source of the water quality change seen in this well.

Total Coliform were detected at both well locations during the March spring melt period (11 MPN/100 mL at K13-12321 and 22 MPN/100 mL at K09-12316), with lower counts observed after the spring melt (1 MPN/100 mL or less at K13-12321 and 4 MPN/100 mL or less at K09-12316). The fact that the total coliform concentration decreased after the spring-melt indicated potential surface water contribution to both wells. *E. coli* bacteria was not detected during the

March spring melt period, however it was detected during a resampling event in April at K09-12316 (2 MPN/100 ml). No detectable E. coli was observed in the June post-melt event.

4.2 HAY ROAD TO DUNNING ROAD

At the bedrock well within the Right-of-Way at Church Road (K09-12012), there was no observable difference in parameter concentrations between the spring melt March 2016 and post-melt June 2016 samples, indicating no of surface water intrusion. Groundwater elevation showed a small rise, while temperature remained constant (Appendix D1-A-2). Nitrate plus nitrite (as N) remained below detection. Total Coliform and *E. coli* bacteria were below detection (<1 MPN/100 mL) at these locations on all dates sampled. Dissolved oxygen values were low (below 0.2 mg/L) on all dates.

At PTH 44 Bridge (U09-13571), lower parameters concentrations were observed in 2016 during the spring melt event than during recent historical pre-melt events including conductivity, hardness, TDS, calcium, magnesium, sodium, chloride and sulphate.

At Hay, Ludwick and Dunning Roads, there was no change observed in parameter concentrations between spring melt March 2016 and pre-melt historical 2013 results.

4.3 PTH 59N BRIDGE AREA

Near Bray Road, north of PTH59N, K11-12016 showed a decreasing conductivity between the 2016 spring melt period and historical 2013 pre-melt, reflecting a change in water quality and potential surface water intrusion. Alternately the actual pre-melt concentration in 2016 may been lower than the 2013 value used for comparison. The magnitude of this possible effect is discussed in Section 5.1.

At the bedrock well located upstream of PTH 59N bridge, and 250 m west of the expanded channel at the west Right-of-Way boundary (K11-12014), a slight increase in groundwater level was seen, with no large change in temperature (Appendix D1-A-3). Parameter concentrations were generally lower in the spring melt versus post-melt monitoring, however differences were relatively small (Table D1-2 and Table D1-4). Dissolved oxygen was low (<0.5 mg/L) during all dates. A water quality change was seen in this well.

Manitoba Infrastructure Red River Floodway Long-Term Monitoring Program 2016 Program A – Annual Report Deliverable D1 – Final – Rev 0

At the bedrock well located upstream of PTH 59N bridge and 60 m west of the west channel slope within the Right-of-Way (K11-12015), increases in parameters were generally observed between the March spring melt to June 2016 post-melt events, including, but not limited to conductivity, bicarbonate, hardness, TDS, sulphate, calcium, magnesium and sodium. Nitrate plus nitrite (as N) increased as the other parameters decreased during the spring melt, as was typically seen during years of Floodway operation. Dissolved oxygen was similar (between 0.99 and 1.49 mg/L) during the spring melt and post-melt sampling. The change in water quality at K11-12015 is attributed to either local recharge, or limited short-term local surface water infiltration from the channel.

Total Coliform bacteria were identified at both K11-12014 and K11-12015 during the March spring melt and June post-melt periods. For *E. coli* bacteria, a detectable count of 1 MPN/100 mL was observed at K09-12015 in March. During a resampling event in April, no *E. coli* was identified at K09-12015, however a detectable count of 1 MPN/100 mL was observed at K11-12014. *E-coli* was not detected in either location in the subsequent June 2016 sampling event.

The water level response at the well closest to the channel (K11-12015) was consistent with monitoring in previous years with local spring melt flow in the channel resulting in a short-term elevation response at this location due to recharge and the potential for surface water to infiltrate through the sand and gravel in the channel, to the bedrock (Appendix D1-A-4). However, no change in temperature was observed.

Near McGregor Farm Road at K13-12322, lower parameter concentrations were observed in 2016 during the spring melt event in comparison to the recent historical 2013 pre-melt event including but not limited to, conductivity, hardness, TDS and sulphate.

4.4 KEEWATIN BRIDGE AND AREA TO THE SOUTH

At the inlet control structure (GO50C006), lower parameter concentrations were observed in 2016 during the spring melt event in comparison to the most recent historical pre-melt event in 2011 including conductivity, hardness and chloride, suggesting potential surface water intrusion.

5.0 GROUNDWATER RESULTS AND ASSESSMENT

5.1 CONDUCTIVITY CHANGES

Conductivity changes are being used as an indicator of surface water influence on groundwater quality, as conductivity is a parameter that is readily measured. Conductivity changes reflect the changes in major ions contributing to the dissolved solids.

If surface water intrudes into the aquifer, the mixing would result in changes observed in groundwater conductivity. Groundwater conductivity decreases with the addition of surface waters in most areas. Changes are most readily observed in areas where groundwater is more mineralized and thus has higher conductivity than surface water, which is typically the case during the spring. Conversely, increases in groundwater conductivity would be seen in areas where baseline groundwater conductivity is less than that of surface waters.

In addition to the floodway, potential surface water infiltration sources in the area include ponds and open sand and gravel quarries, creeks, and the Red River (primarily near the Floodway Outlet).

The magnitude of the water quality change is described by a range in the percentage change in conductivity as follows: Type A (>50% change); Type B (25 to 50% change); Type C (10 to 25% change); Type D (5 to 10% change). Tables D1-4 and D1-5 shows the 2016 water quality assessment based on changes in conductivity. For instrumented well (Table D1-4), spring melt samples (March) were compared with post-melt samples (June) since pre-melt samples could not be collected in 2016. For the remaining 7 non-instrumented monitoring wells, (Table D1-5), spring melt samples were compared with recent historical pre-melt samples. The wells selected for sampling for the Long-Term monitoring program were in areas with higher potential for surface water intrusion due to hydrogeologic conditions, or locations near other surface water sources (such as the Floodway Outlet).

In 2016, 5 monitoring wells (wells with installed transducers) were sampled in two events for water chemistry and bacteria. From the spring melt monitoring period to the post-melt monitoring period in 2016, a change in groundwater quality was seen in 4 of the 5 wells (80%)

sampled. One location (K09-12012) near Church Road, did not have an observable change recorded. All of these wells are within the Floodway Right-of-Way.

Changes found from spring melt to post-melt were classified as follows:

- Type B (25 to 50% change) for 1 well (20% of the total) located inside of the Right-of-Way at the Outlet at Rockhaven Road (K09-12321).
- Type C (10 to 25% change) for 2 wells (40% of the total) located inside of the Right-of-Way at the Outlet (K09-12316) and PTH 59N west side (K11-12015).
- Type D (5 to 10% change) for 1 well (20%) located inside of the Right-of-Way at the PTH 59N Bridge west side at west Right-of-Way (K11-12014).

For the remaining 7 core monitoring wells, which only required measurement during the spring melt period, 4 of the wells (57%) showed an observable change as follows:

- Type C (10 to 25% change) for 3 wells (43% of the total) located inside of the Right-of-Way at the Outlet the PTH44 bridge (U09-13571), just south of PTH59 (K09-12322) and at the outlet (G050C006).
- Type D (5 to 10% change) for 1 well (14%) located inside of the Right-of-Way at the PTH 59N Bridge west side at west Right-of-Way (K11-12016).

5.2 BACTERIA

In 2016, Total coliform bacteria was identified at five of the six sample locations tested (K13-12321, K09-12316, K11-12014, K11-12015 and the Inlet control structure), with levels generally decreasing between spring melt and post-melt events (where measured), suggesting influence of surface water intrusion and return to groundwater flow towards the channel post-melt.

Notification to Manitoba Infrastructure

During the initial March spring melt sampling event, *E. coli* was detected in one sample at K11-12015. Notification to Manitoba Infrastructure was conducted as required, in the Long Term Monitoring Plan. This detection was not considered a "change in conditions" which would

require reporting to Manitoba Sustainable Development Water Stewardship Division, for the following reasons:

- The Floodway was not operated in spring 2016, therefore any changes in groundwater quality are attributed to other sources including recharge and local runoff in the channel.
- *E. coli* has been detected previously at K11-12015 PTH 59 N west side near the channel in 2013, and 2014.

Based on a review of the other water quality parameters tested, no other change in conditions in the monitoring wells were found as defined in the sampling plan. A follow-up April sampling event was approved by MI and completed.

E. coli was detected on April 14, 2016 in 2 monitoring wells:

- Floodway outlet, near channel K09-12316 (*E. coli* 2 MPN/100 mL)
- PTH 59N near west Floodway Right of Way K11-12014 (E. coli 1 MPN/100 mL).

The *E. coli* previously detected at monitoring well K11-12015 in the late March sampling was not detected in this follow up sampling. As per the sampling plan, the *E. coli* detections were reported to MI. These detections were not considered a "change in conditions" which would require reporting to Manitoba Sustainable Development Water Stewardship, for the following reasons:

- The Floodway was not operated this spring, therefore any changes in groundwater quality were attributed to other sources including recharge and local runoff in the channel.
- *E. Coli* has been detected previously at K09-12316 Outlet channel in 2014, 2013 and 2011
- *E. Coli* has been detected previously at K11-12014 PTH 59 N west side near west Floodway Right of Way in 2014, and 2011

Total coliform readings were found at all 5 of the monitoring wells on March 30 from (9 to 22 CFU/100 mL), but were found at fewer locations on April 21 (three) and at lower concentrations (1 to 4 MPN/100 mL). *E. coli* was not detected in any monitoring wells during the final June post-melt sampling event.

5.3 NITRATE PLUS NITRITE AS (NITROGEN)

Nitrate plus nitrite (as N) concentrations were below the Canadian Drinking Water Quality Guidelines (CDWQG) of 10 mg/L at all monitoring wells tested. Seven (7) of the 12 sample locations had concentrations below detection (<0.0051 to <0.051 mg/L) in 2016, either for spring melt sampling only, or spring melt and post-melt events.

Higher concentrations of nitrate plus nitrite (as N) were observed during the spring melt than the post-melt (June) for K11-12014 and K11-12015, suggesting influence from surface water intrusion, as background nitrate/nitrite concentrations in groundwater in this area are generally low. In contrast, one sample within the Right-of-Way at Rockhaven Road (K13-12321) showed decreases in nitrate plus nitrite (as N) during the spring melt period versus the post-melt period. At this location, nitrate plus nitrite (as N), levels were elevated in groundwater during the spring melt. The reduction in observed values demonstrates the potential influence of lower concentration surface water intrusion relative to background.

5.4 RELATIONSHIP BETWEEN PARAMETERS

Lower conductivity values observed during the March 2016 spring melt generally correlated with the highest total coliform counts observed, with reduction in coliform after return to the June 2016 post-melt groundwater influence. *E. coli* bacteria, was generally observed to be below, or close to the detection level of 1 MPN/100 mL. Bacteria were sampled in areas where changes were expected and locations do not represent a random sample.

Changes in nitrate plus nitrite (as N) correlated with changes in water quality at 60% (3) of 5 core wells with dedicated transducers sampled within the Right-of-Way (K13-12321 at Rockhaven Road and K11-12014 / K11-12015 at PTH59N bridge) and 29% (2 of 7 remaining core monitoring wells) U09-13571 and K13-12322. Overall, higher nitrate plus nitrite (as N) concentrations were observed during spring melt versus post-melt (June) for the area near PTH59N bridge, despite the channel surface water having higher-nitrate plus nitrite (as N) concentrations in June. Where groundwater is locally affected by elevated nitrate plus nitrite (as N) near the floodway outlet, a decrease in concentrations with spring melt was observed, as

expected. Nitrate plus nitrite (as N) concentrations in all wells tested were below the Canadian Drinking Water Quality Guideline of 10 mg/L nitrate plus nitrite (as N).

Many of the monitoring wells are located on the shoulder of the Floodway Channel, or in the spoil pile, and would be expected to experience any water quality changes more quickly than domestic wells located further away, beyond the Floodway Right-of Way. Domestic wells (with the exception of the Floodway Inlet well) are not monitored in the Long-term monitoring program. Travel times from the Floodway surface water to the monitoring wells vary, depending on Floodway Channel water elevations, piezometric water elevations, interconnection pathway relative to clay and till thickness, and the hydraulic conductivity of the bedrock, which ranges from highly fractured to massive.

In general, groundwater gradients will be greater and travel rates will be faster closer to the Floodway. Gradients will decrease and travel times will lengthen further from the Floodway, such as in 2016 with no floodway operation, drier conditions, and limited channel flow.

5.5 SUMMARY ASSESSMENT OF CHANGES

The 2016 monitoring event flood represented a year with a dry early spring with no Floodway operation. Channel flow, included local contributions from streams and ditches, based on the water chemistry, however, flow was close to the edge of the low flow channel. Groundwater gradients typically remained towards the channel, with groundwater discharging to contribute to the channel baseflow. Groundwater quality changes observed from monitoring wells located within the Floodway Right-of-Way in 2016 were similar to years where the Floodway was not operated.

Bacteria were detected in more monitoring wells in 2016, than to 2015, but comparable to historic values.

The 2016 bacteria results indicate that bacteria is detected in some monitoring wells in sensitive areas during spring melt sampling even when the Floodway is not operated. However, detection of *E. coli* continues to be infrequent, not sustained, and at levels at or just above the detection limit when found.

All wells which showed groundwater quality changes in 2016 also showed changes in previous floods. Inorganic groundwater quality parameters seen in monitoring wells in 2016 did not exceed the Canadian Water Quality Guidelines for Drinking Water.

In 2016, Total coliform bacteria was identified at five of the six sample locations, with levels generally decreasing between spring melt and post-melt events, suggesting influence of local recharge or surface water intrusion and return to groundwater flow towards the channel post-melt. *E. coli* was initially detected in one sample in March 2016 and notification to MI was conducted. Follow-up sampling in April did not confirm this detection, however, *E.* coli was detected in two other wells. *E. coli* was not detected in any of the locations in the post-melt June 2016 sampling.

6.0 SPRING TREATMENT AREAS

The Spring Treatment Program mitigates surface water infiltration in the bedrock aquifer by providing sand filtration of any fines migration, by decreasing the amount of flow into the springs at the filter locations for a given flood, by reducing the potential for expansion of spring areas through piping, and by improving the bacterial quality of any infiltrating water. The constructed fine sand filters have a much lower hydraulic conductivity than an open fracture; therefore, the initial flow rate is decreased. As the low permeability silt fraction builds up above the sand filter layer during discharge into the aquifer, the infiltration rate is reduced further. The fine sand also meets criteria for slow sand filters designed to reduce bacteria passage through the filter. After the flood, when the flow direction reverses to groundwater discharge, the sand filter protects against upward piping of the foundation material (silt, sand) which otherwise could have increased the size of a fracture/hole.

Sealing the groundwater discharge areas completely is not desirable, as a pressure build-up and uncontrolled discharge in another area would likely develop. The treatments provide pressure relief, but in a controlled fashion and with a flow rate lower than was present before treatment.

Previous sampling in 2009 through 2011 showed that Total Coliform and *E. Coli* bacteria are generally present and at higher levels above the filter. The filter has been effectively reducing Total Coliform concentrations. *E. coli* has not been detected beneath the filter. Soon after the floodway drains, surface water infiltration is flushed out quickly from the system as shown by a return to groundwater quality and an absence of bacteria. A return to groundwater quality (as shown by conductivity) was seen towards the end of the flood period as shown by the transducer data in 2009, 2011 and 2013, with more limited change seen in 2014.

In 2016, monitoring of spring locations with a transducer was not included in the program. Previously in 2015 one spring discharge location was monitored with a transducer. The results from 2015 (Appendix B Figure HM66-43) showed no infiltration and no drop in conductivity or temperature during the spring melt. The water level during the spring monitoring in 2015 was at the top of the Low Flow Channel. Monitoring in prior years showed that a sufficient Floodway flow will temporarily reverse the discharge groundwater gradient to a surface water recharge

with flow direction from the channel into the bedrock beneath the spring. There is return to groundwater quality as the floodway begins to drain and groundwater is again discharged into the channel. Since there was no Red River flow into the channel these conditions did not occur in 2015 and would not have occurred in 2016. Also the total flow and water depth in the channel was insufficient to reverse the gradient in the spring in 2015 and would have been similar in 2016.

A summer inspection of 23 spring locations was conducted in August 2016 as summarized in Appendix C including description (Appendix D1-C-1) and field documentation sketches and photos (Appendix D1-C-2). Additional photos and video (Appendix D1-C-3) are provided on a separate DVD included with this report. This work documents conditions in the long-term monitoring period and can be compared with surveys completed in 2013 through 2015 (HM99).

A potential small discharge location was identified at the Low Flow Channel at UTM 648624 5547187. As the flow observed was low, less than 1 USgpm, no follow up was conducted. This location could be inspected in 2017 to confirm if discharge is continuing. If this location is to be developed further, treatment could be considered.

The constructed filters were found to be in good condition and were working as designed. Flow appeared to be coming up through the filter and discharging through the granular layer overlying the sand filter bed. No settlement or heaving of the filters was observed. No required repairs were identified.

The discharge trenches were constructed as shallow excavated trenches that were filled with riprap to grade or slightly above grade. As in previous years, it was observed that at 11 of the treated spring sites, the rip rap within the discharge trenches was infilling with sediment and spring discharge was finding alternate flow paths to the Low Flow Channel. This resulted in overland flow toward the Low Flow Channel or flow into low areas near the filter, creating wet and soft areas. No significant erosion channels were observed at any of these locations. The discharge trenches were constructed as ditches in a few locations (5A1 and 7A1). This method appeared to be more effective in directing discharge flows along the design discharge flow path, versus other trenches. Consideration to modify the 11 identified discharge trenches to create more pronounced ditches may improve control of flow towards the low flow channel.

Both high level and low level sampling pipes were found to be in good condition, with no damage observed, with the exception of the low level pipe at 5A1, in which the steel cover was missing. This cover should be replaced in 2017.

7.0 WELL DISINFECTION

The purpose of the well disinfection program is to prepare instrumented monitoring wells that are used for bacteria analysis for the pre-melt (typically March) and flood (typically March/April) monitoring programs. The program in 2016 was conducted in the Fall, as several months are required between disinfection and sampling. Disinfection was completed at the five core monitoring wells with dedicated transducers, which are used for bacteria analysis.

On September 27th, 2016 KGS Group personnel disinfected 5 wells (K11-12316. K09-12012, K13-12321, K11-12014 and K11-12015) along the Red River Floodway at PTH 59N, Church Road, Rockhaven Road and at the Outlet following the procedure outlined in Section 2.5.

Any dedicated submersible pumps were removed from the wells at the time of disinfection for winter storage at KGS Group.

8.0 LONG-TERM MONITORING

The current work program, overseen by Manitoba Infrastructure includes a monitoring period from Spring 2016 through Fall 2018. The Three Year Project Scope of Work should be continued for 2017, to include the following annual activities:

- Spring and Summer Flood Monitoring Program A (or B if required);
- Inspection of Treated Groundwater Springs;
- Annual Well Disinfection, Inspection/Maintenance/Repair Programs and Channel Inspections;
- Reporting.

9.0 STATEMENT OF LIMITATIONS AND CONDITIONS

9.1 THIRD PARTY USE OF REPORT

This report has been prepared for Manitoba Infrastructure to whom this report has been addressed and any use a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. KGS Group accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions undertaken based on this report.

9.2 GEO-ENVIRONMENTAL STATEMENT OF LIMITATIONS

KGS Group prepared the geo-environmental conclusions and recommendations for this report in a professional manner using the degree of skill and care exercised for similar projects under similar conditions by reputable and competent environmental consultants. The information contained in this report is based on the information that was made available to KGS Group during the investigation and upon the services described, which were performed within the time and budgetary requirements of the Manitoba Infrastructure. As the report is based on the available information, some of its conclusions could be different if the information upon which it is based is determined to be false, inaccurate or contradicted by additional information. KGS Group makes no representation concerning the legal significance of its findings or the value of the property investigated.

TABLES

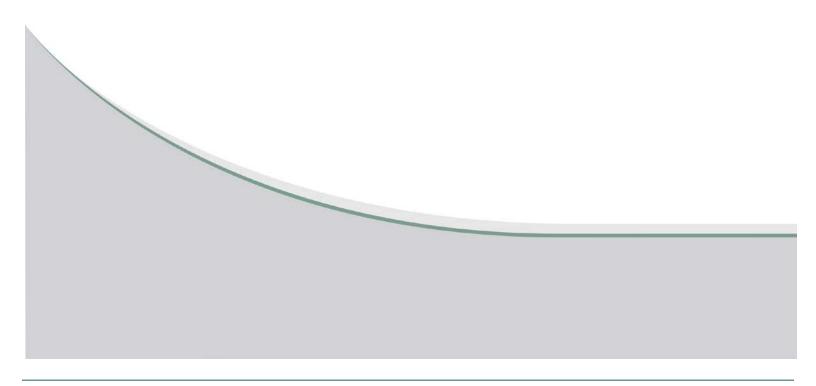


TABLE D1-1 2016 MONITORING WELL AND SURFACE WATER FIELD PARAMETERS

Location	Well No.	Date	E.C. (µS/cm)	Temp. (°C)	pH (Units)	DO (mg/L)	Sampling Method	Comments
Ground Water Samples			•		•			
Groundwater Monitoring Zo		-		-				
Rockhaven Rd.	K13-12321	28-Mar-16	950	6.70	7.07	4.37	Dedicated Whale Pump	(1), (2), (3)
		21-Apr-16	1,100	6.80	7.25	3.13	Dedicated Whale Pump	•
		02-Jun-16	1,741	7.50	7.02	5.04	Dedicated Whale Pump	-
Outlet Structure	K09-12316	28-Mar-16	752	7.00	7.21	3.68	Dedicated Whale Pump	(1), (2), (3)
		21-Apr-16	823	6.90	7.43	1.96	Dedicated Whale Pump	
		02-Jun-16	851	7.00	7.15	2.50	Dedicated Whale Pump	
PTH 44 Bridge	U09-13571	28-Mar-16	909	7.70	7.18	1.04	Portable Tornado Pump	(5)
Hay Rd.	K11-12018	28-Mar-16	1,103	6.10	7.36	0.99	Portable Tornado Pump	(5)
Church Rd.	K09-12012	29-Mar-16	1,036	6.20	7.39	0.18	Dedicated Whale Pump	(1), (2), (3)
		21-Apr-16	1,249	6.20	7.35	0.02	Dedicated Whale Pump	
		02-Jun-16	1,005	6.40	7.23	0.15	Dedicated Whale Pump	
Ludwick Rd.	K09-12011	29-Mar-16	441	6.80	7.41	1.52	Portable Tornado Pump	(5)
Dunning Rd.	K11-12017	29-Mar-16	1,037	6.10	7.25	0.19	Portable Tornado Pump	(5)
Bray Rd.	K11-12016	29-Mar-16	952	6.30	6.70	0.17	Portable Tornado Pump	(5)
Groundwater Monitoring Zo	one C	• •						•
PTH59N Bridge	K11-12014	30-Mar-16	557	7.30	7.51	0.90	Portable Tornado Pump	(1), (2), (5)
		21-Apr-16	606	7.40	7.51	1.14	Dedicated Waterra Tubing / Foot Valve	(4)
		02-Jun-16	688	7.90	7.32	4.71	Dedicated Waterra Tubing / Foot Valve	
	K11-12015	30-Mar-16	521	7.20	7.70	1.12	Portable Tornado Pump	(1), (2), (5)
		21-Apr-16	565	7.20	7.76	0.99	Dedicated Whale Pump	(3)
		02-Jun-16	583	7.40	7.44	1.49	Dedicated Whale Pump	
McGregor Farm Rd.	K13-12322	30-Mar-16	737	6.20	7.56	0.09	Portable Tornado Pump	(5)
Groundwater Monitoring Zo								
Inlet Control Structure	G050C006	30-Mar-16	2,340	9.90	8.02	1.07	Direct from Washroom Tab - Nonpotable	-
Surface Water Samples	DTU 44				1			
PTH 44 Bridge	PTH 44	28-Mar-16	415	9.30	7.77	13.80	Surface Grab Sample	•
		02-Jun-16	553	14.40	7.61	8.37	Surface Grab Sample	·
PTH59N Bridge	PTH 59N	30-Mar-16	608	6.30	7.36	8.11	Surface Grab Sample	-
		02-Jun-16	767	17.60	7.81	9.38	Surface Grab Sample	-

Notes:

"-" = No Data

E.C. = Electrical Conductivity

1. Dedicated Well Transducer Present

2. Original Dedicated Well Pump Failed 3. New Dedicated Well Pump Installed 4. New Dedicated Waterra Tubing and Foot Valve

5. Sampled with Portable Pump

TABLE D1-2 2016 GENERAL GROUNDWATER QUALITY DATA

															Р	arameter (1)											
Location	Well ID	Duplicate	Date	Turbidity (NTU)	pH (units)	E.C. (µS/cm)	Alkalinity as CaCO3	Bicarbonate as HCO ₃	Carbonate as CO ₃	Hydroxide as OH	Hardness as CaCO ₃	Chloride	Sulphate	Nitrate & Nitrite as N	Nitrate as N	Nitrite as N	Calcium	Magnesium	Potassium	Sodium	T.D.S. (calc.) ⁽⁷⁾	Total Cation	Total Anion	Cation-Anion Balance (%) ⁽⁸⁾	lon Balance	Total Coliform (MPN/100 mL)	E.coli (MPN/100 mL)	Comments
			HC-CDWQ ⁽²⁾																									
			Drinking Water ⁽²⁾	0.3/ 1.0/ 0.1 ⁽³⁾	6.5 - 8.5 (AO)	-	-	-	-	-	(4)	250 (AO)	500 (AO)	10 (MAC)	10 ⁽⁶⁾ (MAC)	1 ⁽⁶⁾ (MAC)	-	-	-	200 (AO)	500 (AO)	-	-	-	-	0 per 100 mL	0 per 100 mL	-
Rockhaven Rd.	K13-12321	-	28-Mar-2016	3.11	7.39	974	408	498	<0.60	<0.34	497	44.6	79.2	2.33	2.33	< 0.0010	74.2	75.9	4.88	27.3	561	11.3	11.2	0.1	100	11	<1	-
		-	21-Apr-2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	<1	-
		-	2-Jun-2016	0.41	7.30	1710	506	617	<0.60	<0.34	882	243	93.7	3.25	3.25	<0.0020	113	146	6.55	69.8	990	20.9	19.1	4.3	109	<1	<1	-
Outlet Structure	K09-12316	-	28-Mar-2016	0.27	7.51	775	312	381	<0.60	<0.34	372	30.6	75.6	1.56	1.56	<0.0010	62.8	52.3	4.33	24.5	444	8.61	8.79	-1	98	22	<1	-
		-	21-Apr-2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	2	-
		-	2-Jun-2016	0.17	7.63	853	359	438	<0.60	<0.34	482	30.6	64.1	1.57	1.57	<0.0010	74.8	71.7	4.47	21.6	490	10.7	9.49	5.9	113	1	<1	-
PTH 44 Bridge	U09-13571	-	28-Mar-2016	0.14	7.43	940	347	423	<0.60	<0.34	427	58.2	95.4	1.64	1.64	<0.0010	69.3	61.7	4.89	38.1	543	10.3	10.7	-1.7	96.6	-	-	-
Hay Rd.	K11-12018	-	28-Mar-2016	8.20	7.23	1130	593	723	<0.60	<0.34	636	2.29	102	<0.0051	<0.0050	<0.0010	92.4	98.5	5.19	27.8	683	14.1	14	0.1	100	-	-	-
Church Rd.	K09-12012	-	29-Mar-2016	73.3	7.44	1060	350	427	<0.60	<0.34	531	23.0	237	<0.0051	< 0.0050	<0.0010	94.9	71.3	4.50	45.2	686	12.7	12.6	0.4	101	<1	<1	-
		-	21-Apr-2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	<1	-
		-	2-Jun-2016	12.8	7.56	1020	311	379	<0.60	<0.34	530	21.0	238	<0.0051	< 0.0050	<0.0010	86.3	76.5	4.50	46.8	660	12.8	11.8	4.1	108	<1	<1	
Ludwick Rd.	K09-12011	-	29-Mar-2016	0.82	8.02	454	235	286	<0.60	<0.34	230	7.98	15.4	<0.0051	<0.0050	<0.0010	47.4	27.1	2.62	9.54	251	5.08	5.23	-1.5	97	-	-	-
		MW100	29-Mar-2016	0.77	8.08	459	227	277	<0.60	<0.34	229	7.99	15.4	<0.0051	<0.0050	<0.0010	47.7	26.8	2.70	9.51	246	5.07	5.09	-0.2	99.7	-	-	
Dunning Rd.	K11-12017	-	29-Mar-2016	3.62	7.83	1080	265	324	<0.60	<0.34	520	21.9	305	<0.0051	<0.0050	<0.0010	95.3	68.4	3.93	48.0	702	12.6	12.3	1.2	102	-	-	-
Bray Rd.	K11-12016	-	29-Mar-2016	0.11	7.75	990	299	364	<0.60	<0.34	500	16.1	236	<0.0051	<0.0050	<0.0010	94.4	64.1	4.49	33.8	629	11.6	11.3	1	102	-	-	-
PTH59N Bridge	K11-12014	-	30-Mar-2016	<0.10	7.63	573	247	301	<0.60	<0.34	299	13.6	57.6	0.252	0.252	<0.0010	59.9	36.3	3.82	6.53	327	6.36	6.53	-1.4	97.3	9	<1	-
		MW-101	30-Mar-2016	<0.10	7.67	575	249	304	<0.60	<0.34	309	13.6	57.7	0.249	0.249	<0.0010	63.2	36.6	3.85	6.57	332	6.55	6.58	-0.3	99.5	12	<1	
		-	21-Apr-2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	1	
		-	2-Jun-2016	0.49	7.60	625	256	312	<0.60	<0.34	363	16.1	60.9	0.211	0.211	<0.0010	72.4	44.3	4.25	7.40	360	7.69	6.85	5.8	112	10	<1	-
	K11-12015	-	30-Mar-2016	0.32	7.78	532	222	270	<0.60	<0.34	269	16.7	50.5	0.207	0.207	<0.0010	54.2	32.4	3.89	6.72	298	5.76	5.96	-1.7	96.7	9	1	-
		-	21-Apr-2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	<1	-
		MW-100	21-Apr-2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	<1	
		-	2-Jun-2016	0.93	7.72	596	236	288	<0.60	<0.34	337	16.9	64.6	0.076	0.0733	0.0027	66.2	41.7	4.22	7.36	343	7.16	6.55	4.5	109	5	<1	
McGregor Farm Rd.	K13-12322	-	30-Mar-2016	0.84	7.60	741	247	302	<0.60	<0.34	356	16.1	148	<0.0051	<0.0050	<0.0010	61.9	48.8	3.36	23.3	450	8.2	8.48	-1.7	96.7	-	-	
Inlet Control Structure	G050C006	-	30-Mar-2016	38.4	7.84	2340	206	252	<0.60	<0.34	477	539	295	<0.051	<0.050	<0.010	95.5	57.9	12.8	325	1450	24	25.5	-3	94.1	1	0	

Note

E.C. = Electrical Conductivity

"-" = No Data

1. All values are expressed in milligrams per litre (mg/L) unless indicated otherwise.

2. Health Canada - Canadian Drinking Water Quality Guidelines (HC-CDWQ). Updated October 2014

MAC - Maximum Acceptable Concentration

AO - Aesthetic Objectives

3. Criteria values based on conventional treatment/ slow sand or diatomaceous earth filtration/ membrane filtration. Criteria not applicable to current study.

4. Public acceptance of hardness varies considerably. Generally, hardness levels between 80 and 100 mg/L (as CaCO3), provide acceptable balance.

5. Total Coliform and E.coli analyzed by Low Level Quantitray Method TC/EC QT97. Because coliforms are not uniformly distributed in water and are subject to considerable variation in enumeration, drinking water

that fulfils the following conditions is considered to be in compliance with the total coliform MAC:

a) No sample should contain more than 10 total coliform organisms per 100 mL, none of which should be fecal coliforms; and

b) No consecutive samples from the same site should show the presence of coliform organisms; and

c) For community drinking water supplies:

- not more than 10% of the samples based on a minimum of 10 samples should show the presence of coliform organisms; and
- not more than one sample from a set of samples taken from the community on a given day should show the presence of coliform organisms.

6. For Nitrate as Nitrogen. Where Nitrate and Nitrite are determined separately, levels of nitrite-N should not exceed 1 mg/L.

7. ALS Laboratory reports total dissolved solids (calculated) as the sum of cations plus anions.

8. Cation Balance is calculated as:

Cation Anion balance = sum of meg of Cations - sum of meg of Anions X 100 = %

sum of meq of Cations + sum of meq Anions

Cation-anion balances greater than the absolute 10% are highlighted for reference only.

9. Ca, Mg, Na, K, Cl, SO4 are represented as dissolved analysis concentrations

-Exceedance of HC- CDWQ Drinking Water

TABLE D1-3 2016 GENERAL SURFACE WATER QUALITY DATA FLOODWAY CHANNEL

	Location Description ⁽¹⁾		Parameter ⁽²⁾																											
Location		Date	Turbidity (NTU)	pH (units)			Bicarbonate as HCO ₃	Carbonate as CO ₃	Hydroxide as OH	Hardness as CaCO ₃	Chloride	Sulphate	Ammonia (NH ₃) (3)	Nitrate+ Nitrite-N	Nitrate-N	Nitrite-N	Calcium	Magnesium	Potassium	Sodium	Total Phosphorus	T.D.S. (Calc.)	T.S.S.	T.K.N.	Anion Sum	Cation Sum	Cation - Anion Balance		Total Coliform MPN/100mL	E.Coli MPN/100mL
			CCME ⁽⁴⁾ - Freshwater Aquatic Life																											
			(5)	6.5-9.0	-	-	-	-	-	-	120 ^(6a) /640 ^(6b)	-	-	-	-	-	-	-	-	-	-	-	(7)	-	-	-	-	-	-	-
PTH59	RRF at PTH 59 N Spring Hill Ski	30-Mar-2016	21.2	8.13	549	193	236	<0.60	<0.34	231	45.6	39.1	0.072	0.414	0.405	0.0093	50.2	25.7	6.63	28.7	0.196	314	9.0	0.75	6	6.04	0.4	101	2790	630
PTH59	RRF at PTH 59 N Spring Hill Ski	2-Jun-2016	16.8	8.24	718	210	256	<0.60	<0.34	352	46.2	93.2	0.014	4.68	4.62	0.0606	64.4	46.4	6.53	30.4	0.285	434	15.0	1.87	7.77	8.52	4.6	110	26100	1440
PTH 44	NW side of PTH44 bridge	28-Mar-2016	42.5	7.96	407	175	213	<0.60	<0.34	198	13.5	26.2	0.054	1.28	1.25	0.0263	45.3	20.7	7.82	9.41	0.356	233	24.0	0.79	4.51	4.58	0.8	102	980 ⁽⁸⁾	139 ⁽⁸⁾
PTH 44	NW side of PTH44 bridge	2-Jun-2016	10.0	8.03	665	227	277	<0.60	<0.34	329	38.4	81.0	<0.010	0.727	0.704			41.7	4.84	27.8	0.108	396	13.0	1.32			3.5	107	41100	1210

Notes: "-" = No Data E.C. = Electrical Conductivity T.D.S. = Total Dissolved Solids

"*" = Detection Limit Adjusted For Sample Matrix Effects T.K.N. = Total Kjeldahl Nitrogen T.S.S. = Total Suspended Solids

1. See Figure D1-1 for sample locations.

All values are expressed in milligrams per litre (mg/L) unless indicated otherwise.
 Guideline for un-ionized ammonia is 0.019 mg/L, which is equivalent to 16 μg ammonia-N /L (=19*14.0067 / 17.35052, rounded to two significant figures). Guideline for total ammonia is temperature and pH dependent, See below table for calculated total ammonia concentration.

			pН					
Temp (°C)	6	6.5	7	7.5	8	8.5	9	10
0	231	73	23.1	7.32	2.33	0.749	0.25	0.042
5	153	48.3	15.3	4.84	1.54	0.502	0.172	0.034
10	102	32.4	10.3	3.26	1.04	0.343	0.121	0.029
15	69.7	22	6.98	2.22	0.715	0.239	0.089	0.026
20	48	15.2	4.82	1.54	0.499	0.171	0.067	0.024
25	33.5	10.6	3.37	1.08	0.354	0.125	0.053	0.022
30	23.7	7.5	2.39	0.767	0.256	0.094	0.043	0.021

4. Canadian Council of Ministers of the Environment. Canadian Environmental Quality Guidelines, 1999. Update 2014. Chapter 4 -Aquatic Life

BOLD - Exceedance of Criteria

5. Turbidity Guidelines Narrative (see fact sheet for complete details):

Clear Flow. Maximum increase of 8 NTUs from background levels for a short-term exposure (e.g. 24 hr period).

Maximum average increase of 2 NTUs from background levels for a longer exposure (e.g. 30 d period).

High Flow or Turbid Waters:

Maximum increase of 8 NTUs from background levels at any one time when background levels are between 8 and 80 NTUs. Should not increase more than 10% of background levels when background is >80 NTUs.

6. Chloride toxicity to freshwater organisms was evaluated using tests with both CaCl₂ and NaCl salts.

a. Long-term exposure - May not be protective of certain species of endangered and special concern freshwater mussels. Refer to fact sheet for more explanation b. Short-term exposure - derived with severe-effect data (such as lethality) and are not intended to protect all components of aquatic ecosystem structure and function but rather to protect most species against lethality during severe but trar 7. Suspended Sediments Guidelines (see fact sheet for complete details):

Clear Flow:

Maximum increase of 25 mg/L from background levels for any short-term exposure (eg. 24 hr period). Maximum average increase of 5 mg/L from background levels for longer term exposures (eg. Inputs lasting between 24 hrs and 30 days). High Flow:

Maximum increase of 25 mg/L from background levels at any time when background levels are between 25 and 250 mg/L.

Should not increase more than 10% of background levels when background is >250 mg/L.

8. Bacteria sample taken on March 29, 2016

TABLE D1-4
2016 WATER QUALITY ASSESSMENT - INSTRUMENTED WELLS

						CONDU	ICTIVITY				NITRATE		E. (COLI
WELL ID	YEAR	PROGRAM	SPRING MELT CONDUCTIVITY (March 28 - 30 2016)	POST-MELT CONDUCTIVITY (June 2, 2016)	% CHANGE ⁽³⁾	CHANGE IS GREATER THAN 5% ⁽²⁾	MAGNITUDE OF WATER QUALITY CHANGE ⁽¹⁾	WELL HAS POST- MELT GROUNDWATER CONDUCTWITY VALUES SIMILAR TO THE FLOODWAY CHANNEL SURFACE WATER	CONDUCTIVITY VALUES FOR GROUNDWATER DO NOT CHANGE ASSOCIATED WITH THE SPRING MELT EVENT	NITRATE PLUS	POST-MELT NITRATE PLUS NITRITE (as N) (June 2, 2016)		E.COLI DETECTED IN A DISINFECTED WELL IN POST-MELT SAMPLING	
K13-12321	2016	Program A-1	974	1710	43	Yes	В	No	No	2.33	3.25	28	no	no
K09-12316	2016	Program A-1	755	853	11	Yes	С	No	No	1.56	1.57	1	no	no ⁽⁵⁾
K09-12012	2016	Program A-1	1060	1020	-4	No	-	No	Yes	<0.0051	<0.0051	0	no	no
K11-12014	2016	Program A-1	573	625	8	Yes	D	Yes	No	0.252	0.211	-19	no	no
K11-12015	2016	Program A-1	532	596	11	Yes	С	Yes	No	0.207	0.076	-172	no	yes

Notes:

1. Magnitude of water quality change: Type A (50% change), Type B (25 to 50% change). Type C (10% to 25% change), Type D (5 to 10%) change 2. Changes of ≤ 5% are considered to be within the accuracy of the analysis and are considered "no change" for purposes of this analysis.

Negative % change values indicate higher concentrations for flood peak vs post-melt sampling.
 Pre-melt value for previous year may not be representative of 2014; therefore, percent change may not be valid.
 E.coli was detected in follow up April Sampling Event.

In comparison to Spring Melt Data to Post-Melt Data, highlighted values show lower values in conductivity, higher values in nitrate plus nitrite as (N) (all sites except near Lockport/Outlet), or lower values in nitrate plus nitrite as (N) (near Lockport/Outlet only).

TABLE D1-5 2016 WATER QUALITY ASSESSMENT - INSTRUMENTED WELLS

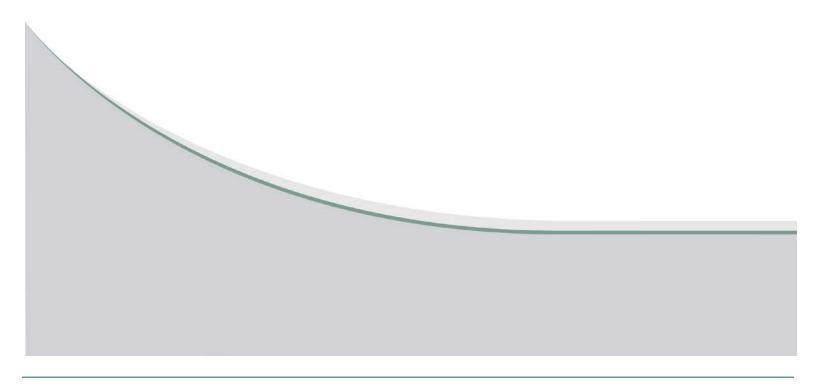
					CONDU	ICTIVITY				NITRATE	
WELL ID		PRE-MELT CONDUCTIVITY PREVIOUS YEAR (2011, 2013 or 2014)	(Warch 20 - 30	% CHANGE ⁽³⁾	CHANGE IS GREATER THAN 5% ⁽²⁾ MAGNITUDE OF WATER QUALITY CHANGE ⁽¹⁾		WELL HAS PRE-MELT GROUNDWATER CONDUCTIVITY VALUES SIMILAR TO THE FLOODWAY CHANNEL SURFACE WATER	CONDUCTIVITY VALUES FOR GROUNDWATER DO NOT CHANGE ASSOCIATED WITH THE SPRING MELT EVENT	PRE-MELT NITRATE PREVIOUS YEAR (2013 or 2014)	SPRING MELT NITRATE PLUS NITRITE (as N) (March 28 - 30 2016)	% CHANGE ⁽³⁾
U09-13571	Program A	1170	940	24	Yes	С	No	No	1.42	1.64	15
K11-12018	Program A	1090	1130	-4	No	-	No	Yes	<0.0050	<0.0051	0
K09-12011	Program A	465	454	2	No	-	Yes	Yes	<0.0051	<0.0051	0
K11-12017	Program A	1080	1080	0	No	-	No	Yes	<0.0051	<0.0051	0
K11-12016	Program A	1050	990	6	Yes	D	No	No	<0.0050	<0.0051	0
K13-12322	Program A	880	741	19	Yes	С	Yes	No	0.0116	<0.0051	44
G050C006	Program A	2890	2340	24	Yes	С	No	No	<0.35	<0.051	0

Notes:

1. Magnitude of water quality change: Type A (50% change), Type B (25 to 50% change). Type C (10% to 25% change), Type D (5 to 10%) change

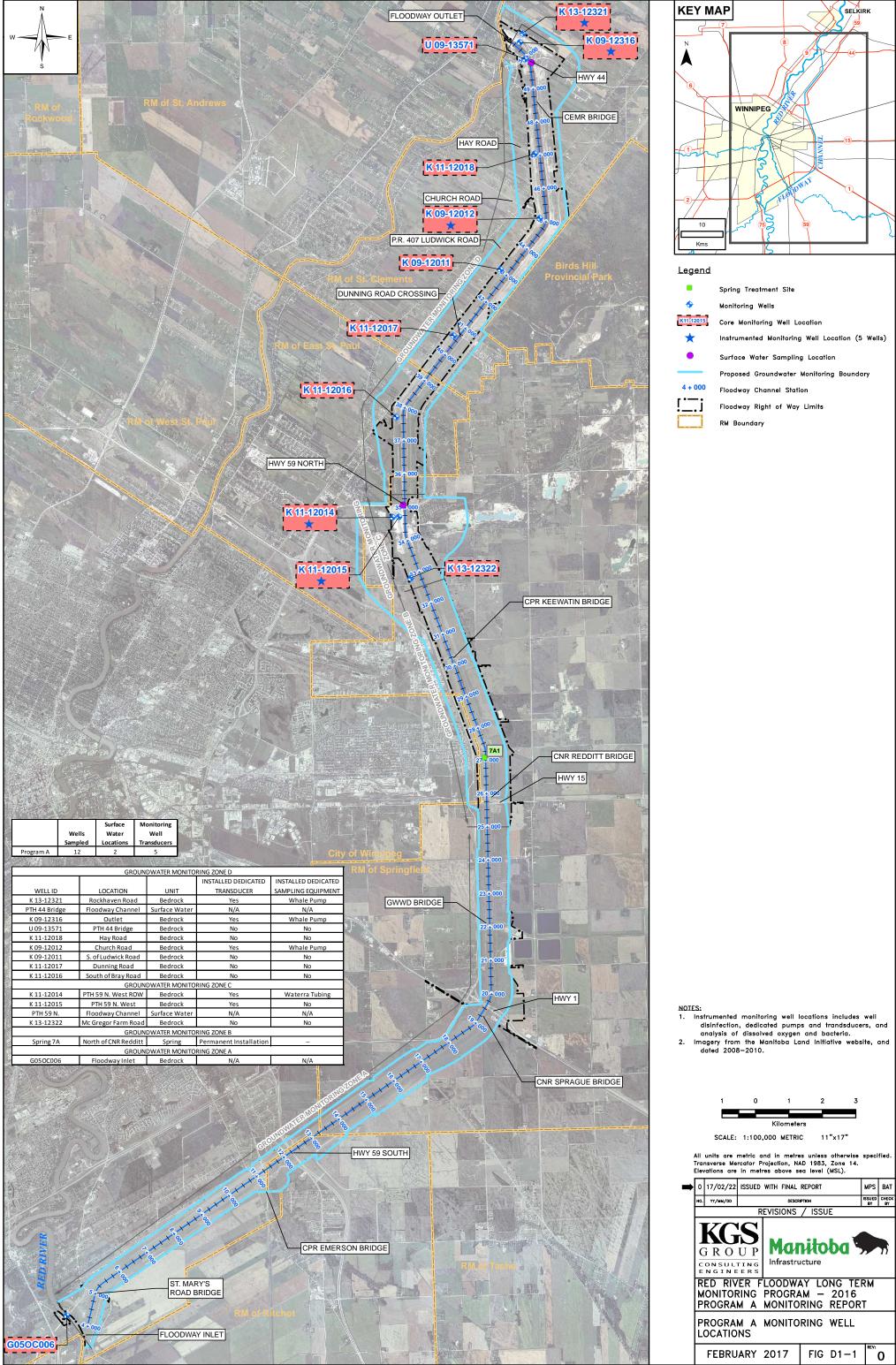
2. Changes of ≤ 5% are considered to be within the accuracy of the analysis and are considered "no change" for purposes of this analysis.

3. Negative % change values indicate higher concentrations for flood peak vs post-melt sampling.


4. Pre-melt value for previous years may not be representative of 2016; therefore, percent change may not be valid.

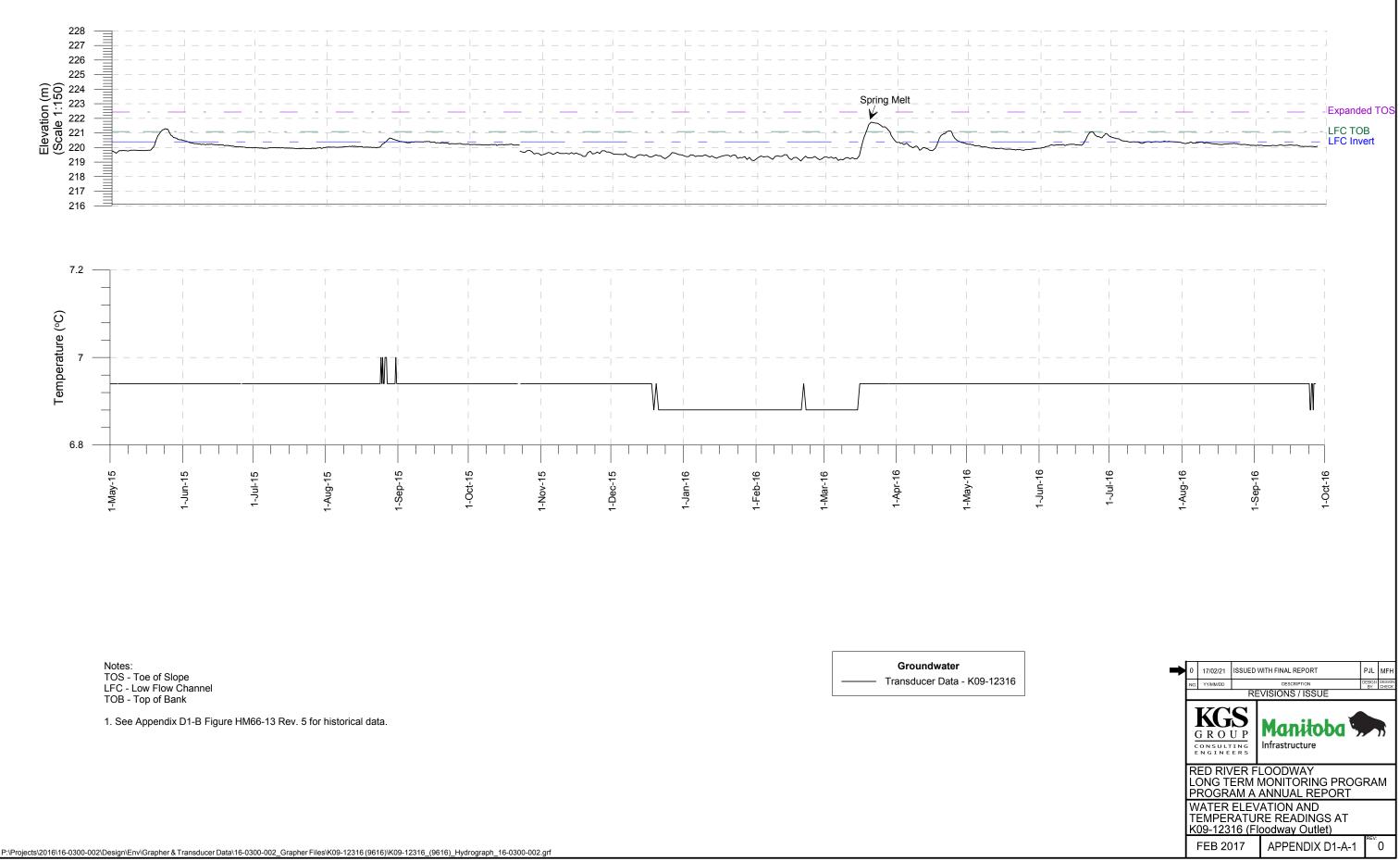
In comparison to Spring Melt Data to Pre-Melt Data, highlighted values show lower values in conductivity, higher values in nitrate plus nitrite as (N)

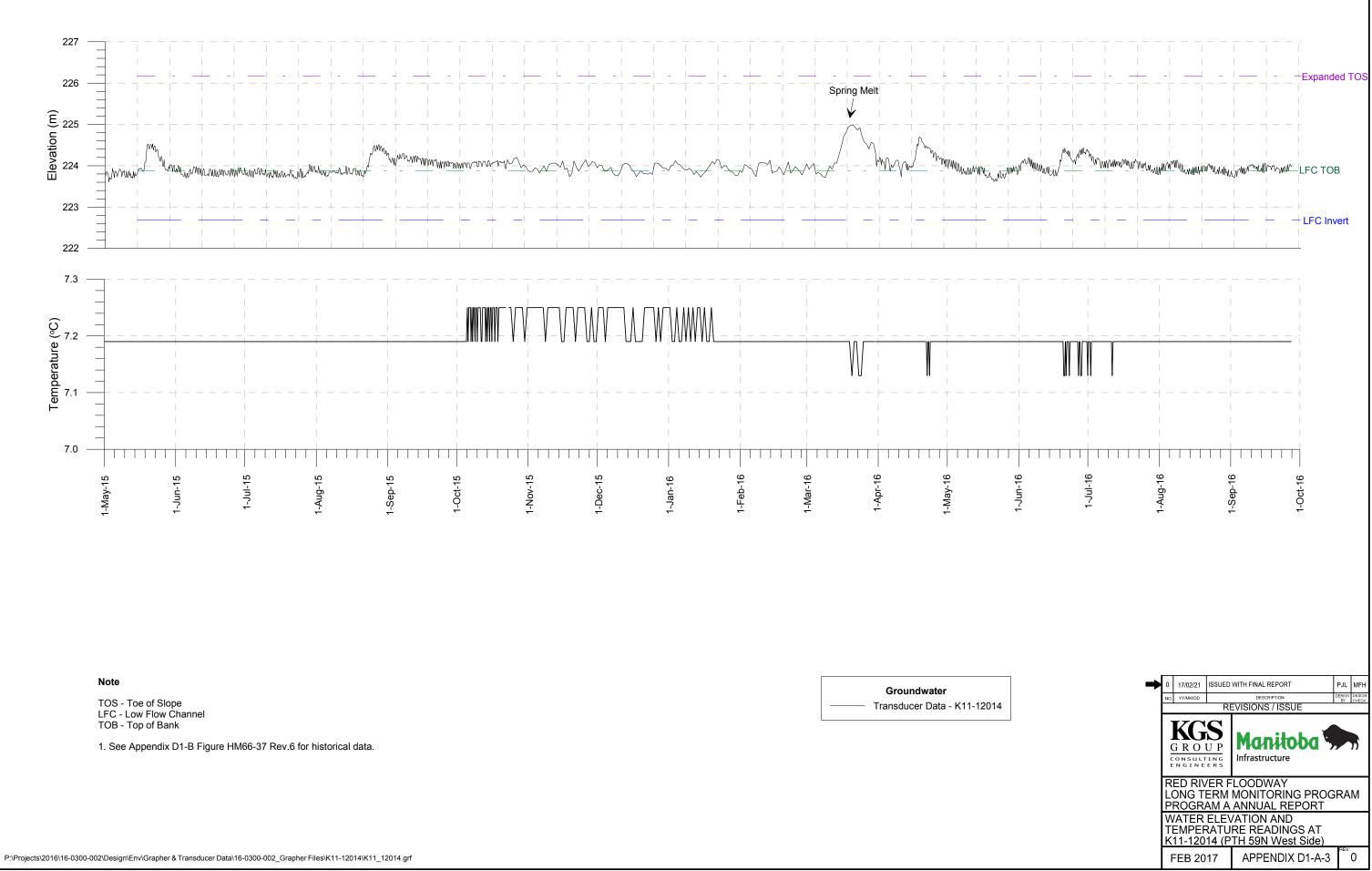
TABLE D1-5 2016 WATER QUALITY ASSESSMENT - INSTRUMENTED WELLS PAGE 1 OF 1

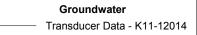


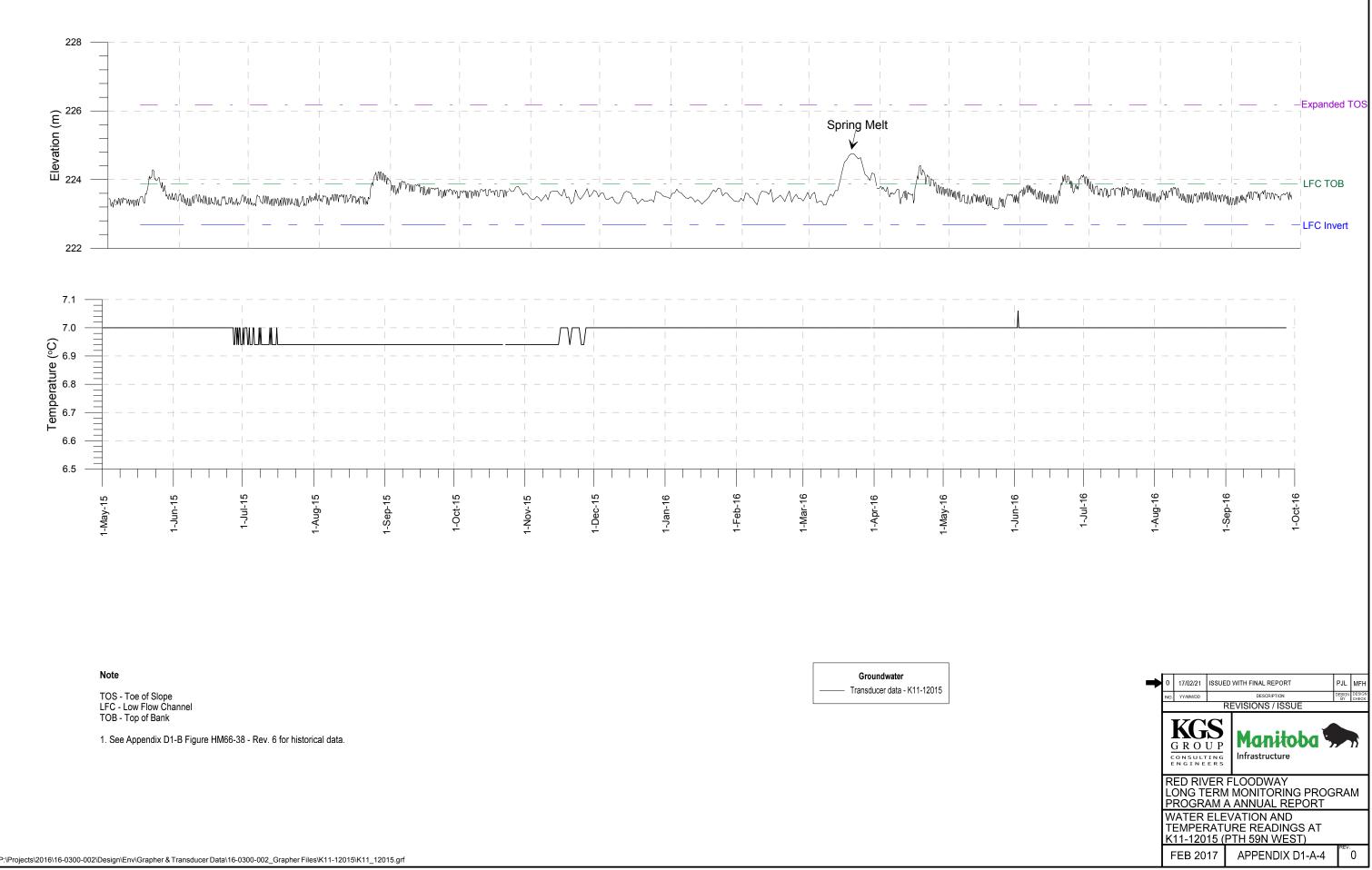
FIGURES

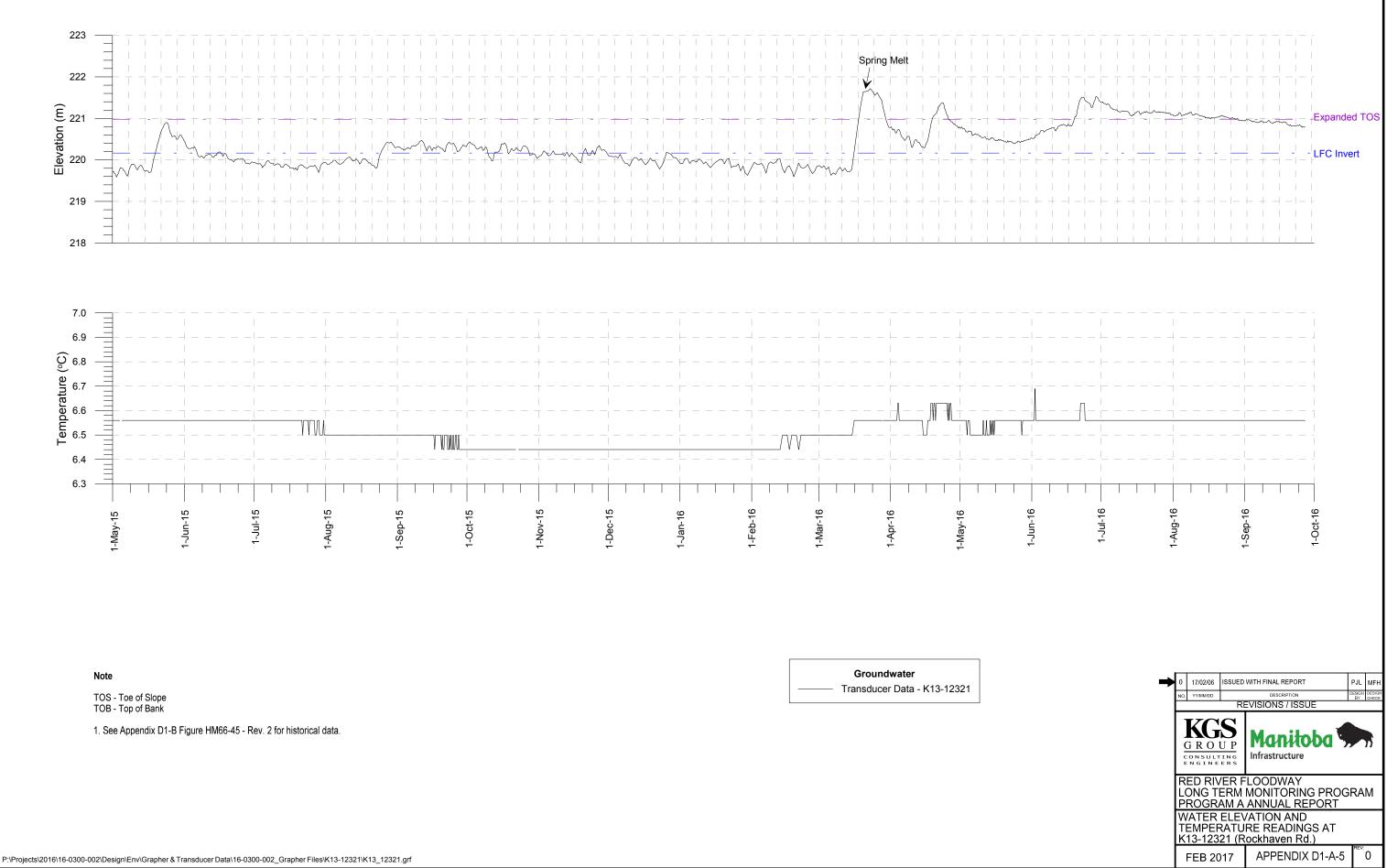
P:\Projects\2016\16-0300-002\Dwg\GIS\MXDs\Monitoring_Report\Rev0\16-0300-002_FigD1-1_Rev0.mxd

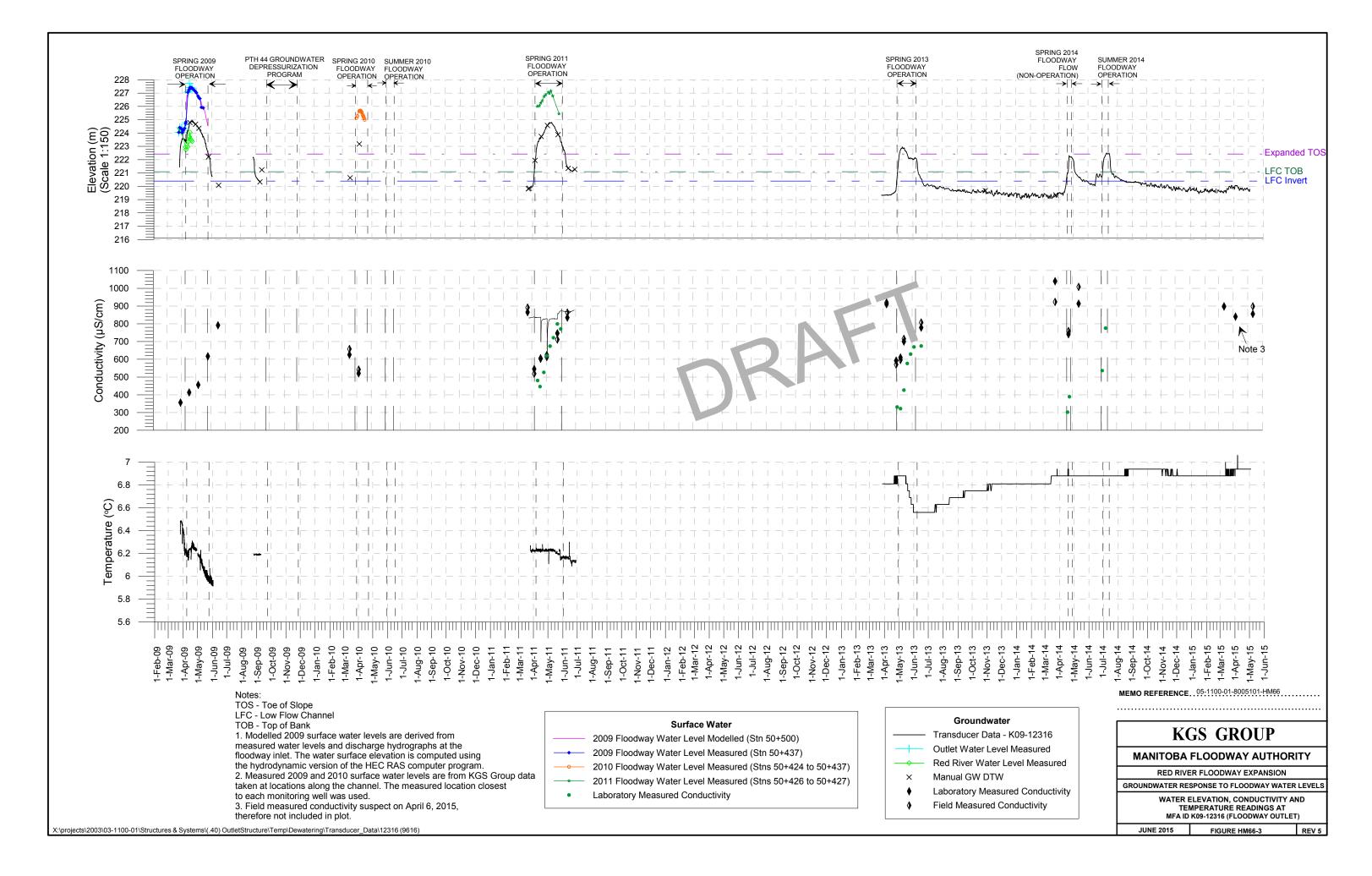

	0	17/02/22	ISSUED	ISSUED WITH FINAL REPORT						
	NO.	YY/MM/DD		DESCRIPTION						
	REVISIONS / ISSUE									
KGS G R O U P CONSULTING ENGINEERS Infrastructure							-	75		
				LOODW			RM			
MONITORING PROGRAM - 2016						-				
PROGRAM A MONITORING REPOR							1			
	PROGRAM A MONITORING WELL LOCATIONS									
		FEBRU	ARY	2017	FIG	D1-1	REV:	0		

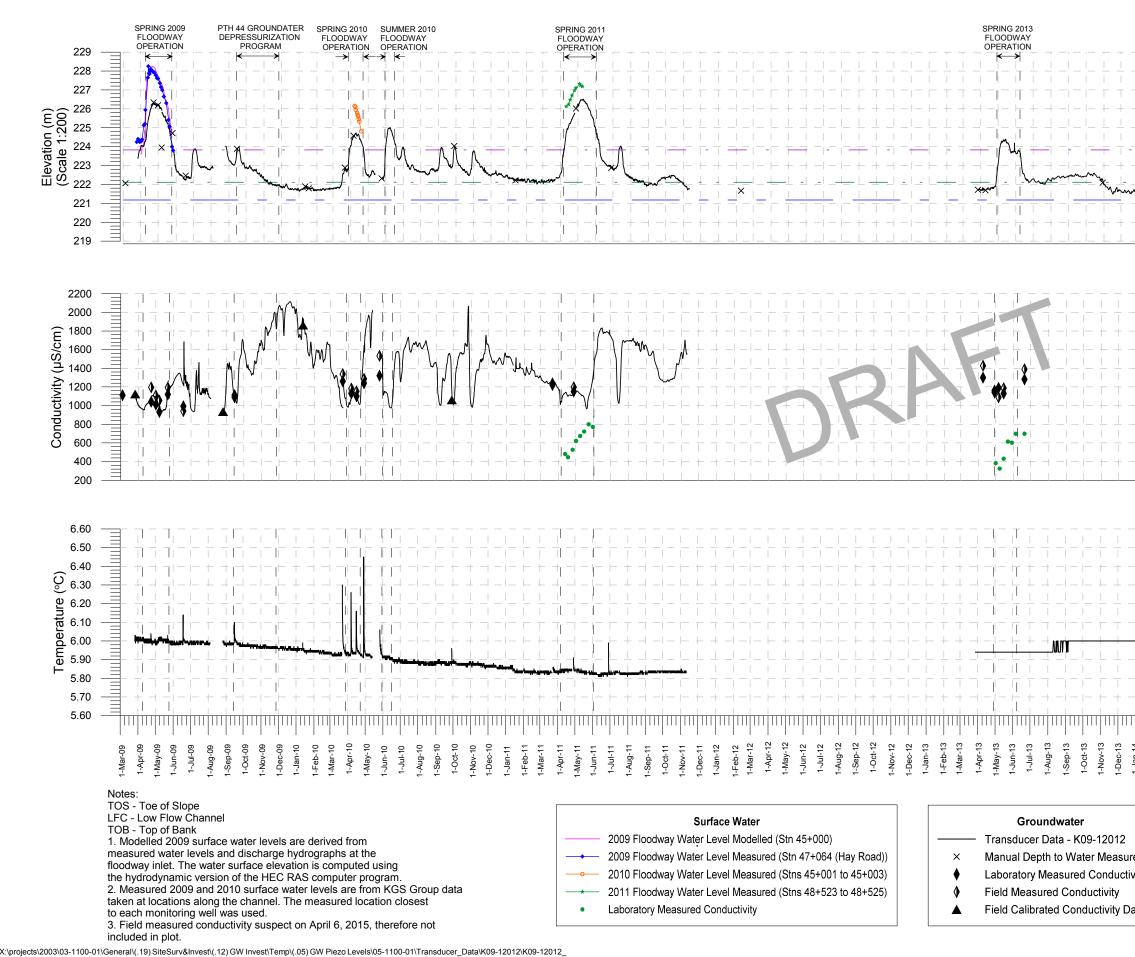

APPENDIX D1-A


CURRENT TRANSDUCER PROGRAM

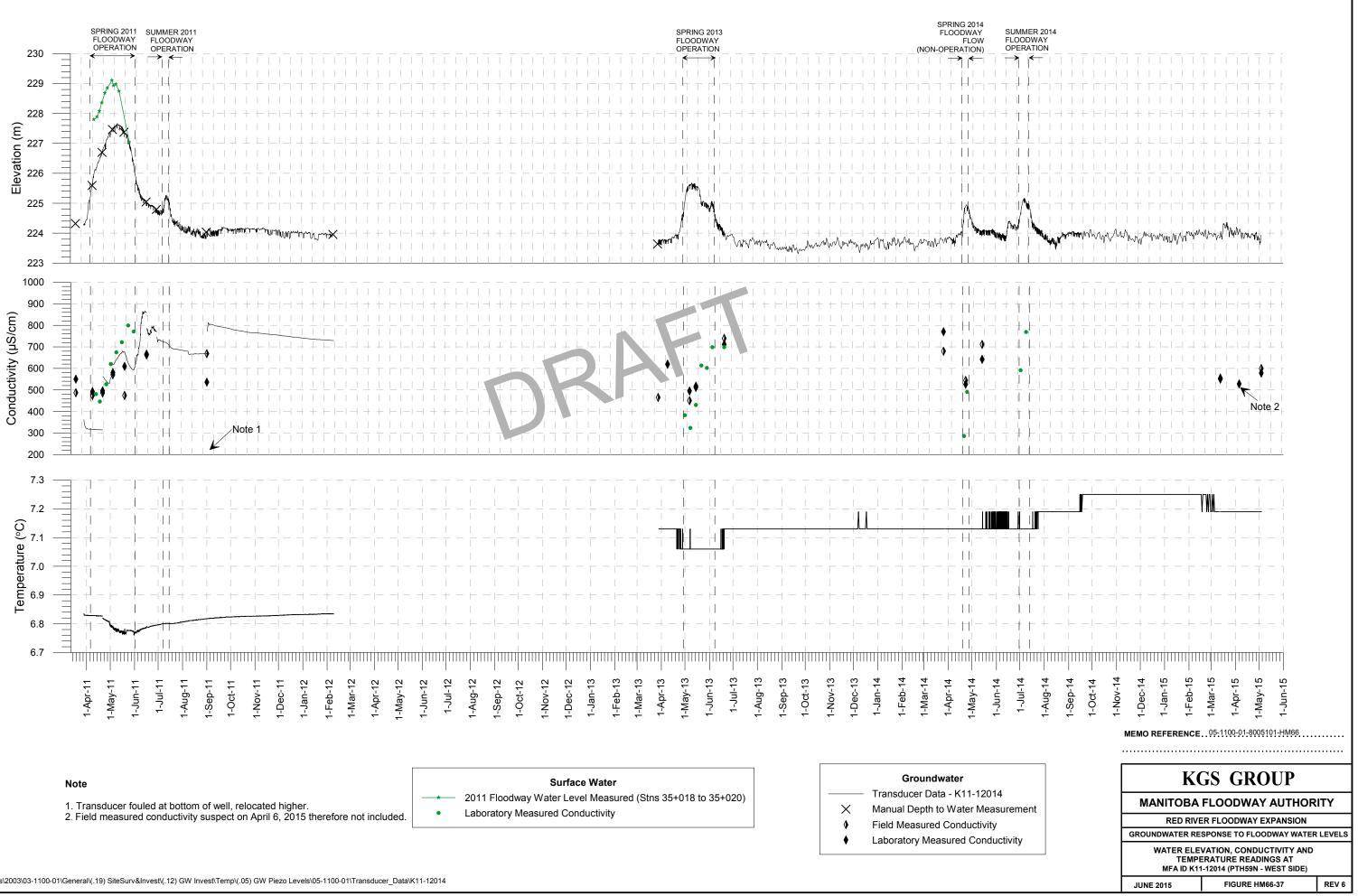


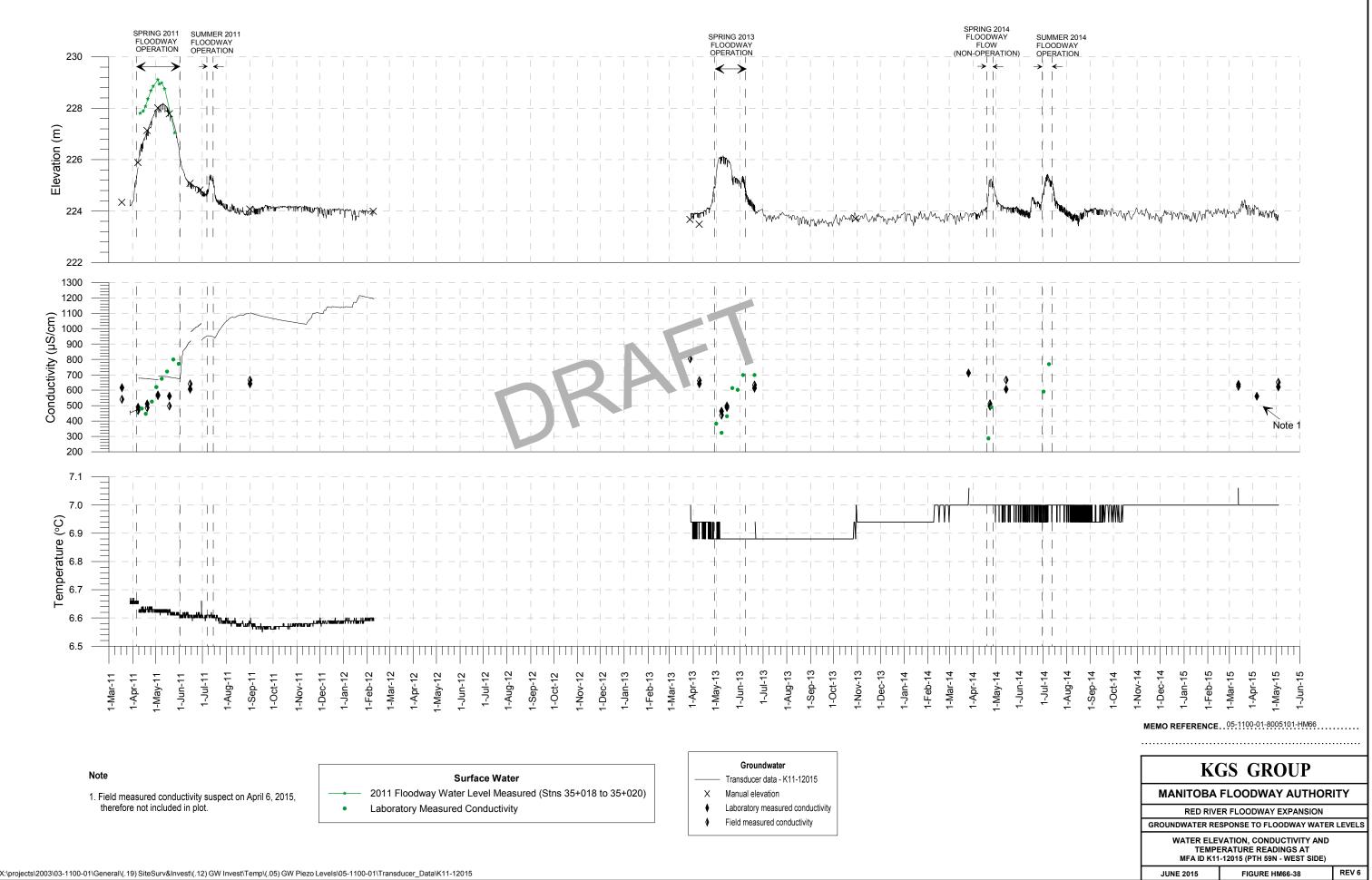


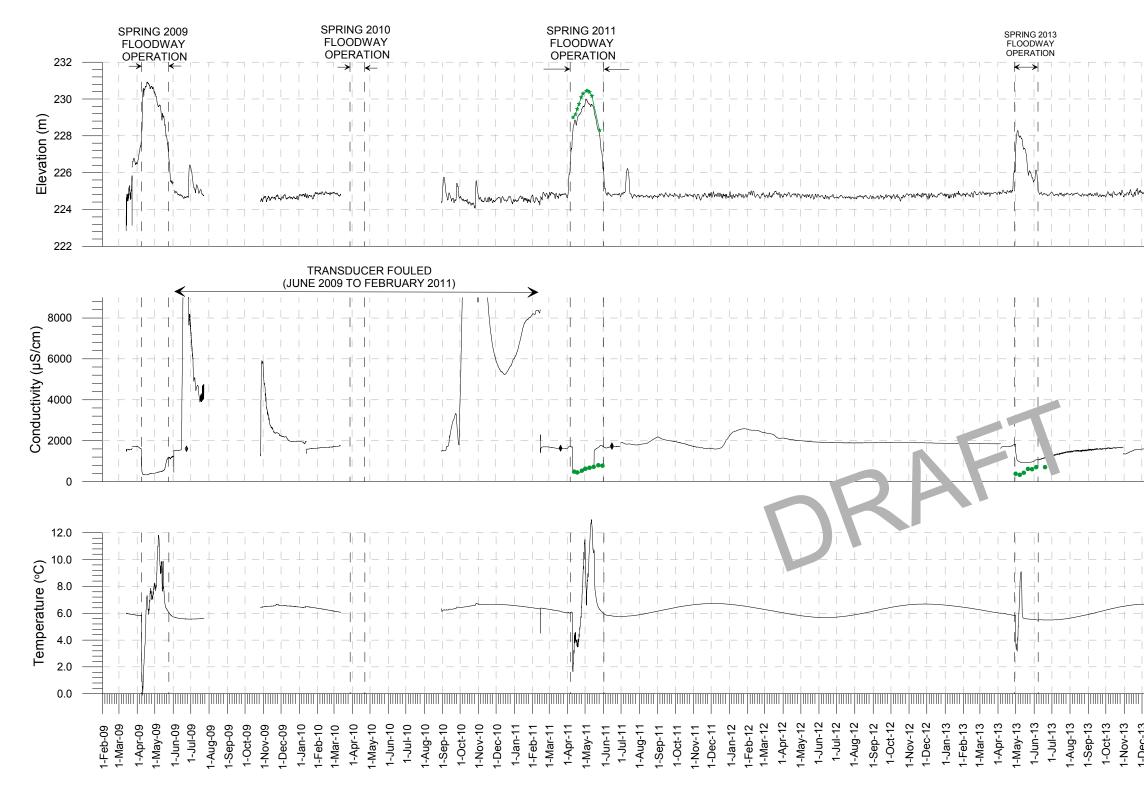


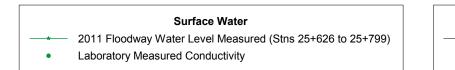


APPENDIX D1-B

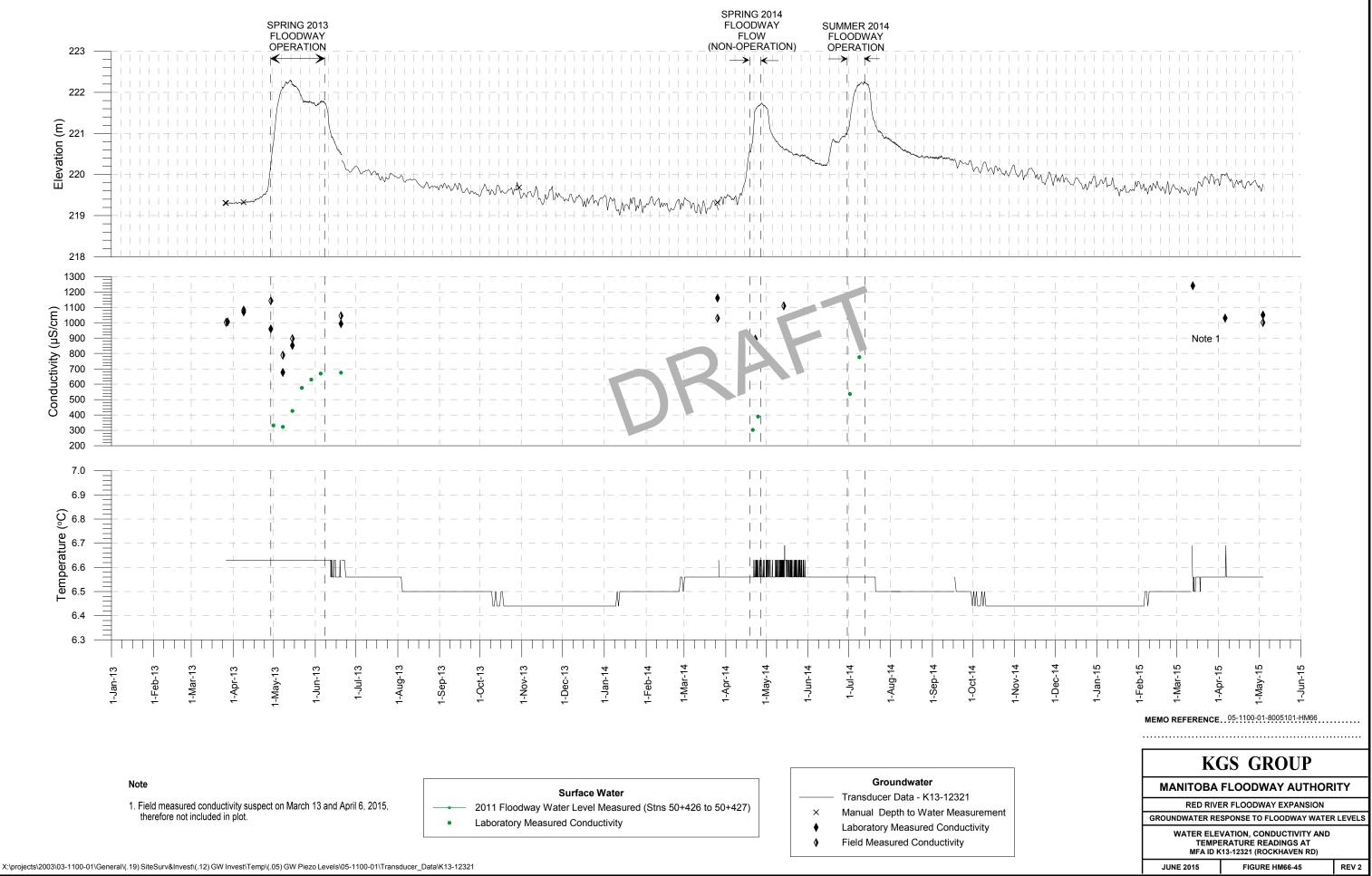

HISTORICAL TRANSDUCER PROGRAM







SPRING 2014 FLODWAY FLOW (NON-OPERATION) → K	SUMMER 2014 FLOODWAY OPERATION						
		+ +	nded TOS				
		$\begin{vmatrix} - & - & - \\ - & - & - \\ - & - & - \\ - & - &$	nvert				
	-, T						
		+ + Note 3					
-, -, -, -, -, 17, -,	-11						
	-i - i - i - i - i - i - i - i - i - i	┍╴╷╶╷╼╷╼╷╴╷ ┿╾┿╾┿┸┿╾┙╴┥					
1-Jan-14	1-Jul-14 1-Aug-14 1-Sep-14 1-Oct-14 1-Nov-14 1-Dec-14	1-Jan-15					
1-14 1-F€ 1-M: 1-Δ: 1-Δ: 1-∪-		특 관 후 주 후 구 . 05-1100-01-8005101-HM66					
Irement		GS GROUP					
ivity		MANITOBA FLOODWAY AUTHORITY RED RIVER FLOODWAY EXPANSION					
Date	GROUNDWATER RES	GROUNDWATER RESPONSE TO FLOODWAY WATER LEVELS					
	TEMP	EVATION, CONDUCTIVITY AND PERATURE READINGS AT NK09-12012 (Church Road)					
	JUNE 2015	FIGURE HM66-13	REV 5				



Groundwater

- Transducer Data 7A1 Spring
- Laboratory Measured Conductivity
- Field Measured Conductivity

X:\projects\2003\03-1100-01\General\(.19) SiteSurv&Invest\(.12) GW Invest\Temp\(.07) ChannBaseflow_GWDischarge\Spring 7A1 Transducer Data

SPRING 2014 FLOODWAY FLOW (NON-OPERATION)	SUMMER 2014 FLOODWAY OPERATION	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
www.www.www.	- A warman w	
· · · · · II		
Π		
1-Jan-14	1-Jun-14 1-Jun-14 1-Aug-14 1-Sep-14 1-Oct-14 1-Dec-14 1-Jan-15 1-Feb-15 1-Apr-15 1-May-15 1-Jun-15 1-Jun-15	
1-Aa 1-Fet 1-Ap 1-Ap	1-Jun-14 1-Jul-14 1-Aug-14 1-Sep-14 1-Oct-14 1-Jan-15 1-Mar-15 1-Mar-15 1-Mar-15 1-May-15 1-May-15	
	MEMO REFERENCE 05-1100-01-8005101-HM66	
	KGS GROUP	
	MANITOBA FLOODWAY AUTHORITY	
	RED RIVER FLOODWAY EXPANSION GROUNDWATER RESPONSE TO FLOODWAY WATER LEVE	ELS
	CONDUCTIVITY AND TEMPERATURE READINGS AT MFA ID 7A1 SPRING (CNR REDDITT/KILDARE AREA)	
	JUNE 2015 FIGURE HM66-43 REV	/ 5

APPENDIX D1-C

2016 INSPECTION OF SPRING TREATMENT AREAS

APPENDIX D1-C1

2016 INSPECTION OF SPRING TREATMENT AREAS

APPENDIX D1-C1 2016 INSPECTION OF SPRING TREATMENT AREAS

1.0 INTRODUCTION AND SCOPE OF WORK

Annual summer inspections of the previously treated groundwater spring discharge areas are required in the Long-term monitoring program and were conducted in August 2016 by KGS Group. At total of 23 spring areas were treated as part of the program between March 2009 and February 2011. Treatment of these sites involved the construction of pervious graded sand filters to minimize potential for direct groundwater and surface water flow interconnections to develop. The filters were designed to: restrict the exfiltration rate of groundwater discharge by using the clean lower permeability sand layer while allowing for continued piezometric pressure relief; protect against ongoing piping and development of additional flow pathways under exfiltrating conditions; and satisfy requirements to restrict infiltration of silt and pathogens (e.g. bacteria) if possible.

The purpose of the 2016 inspection program was to:

- Document the condition of treated spring areas;
- Verify that additional discharge areas have not developed at the periphery of the treated area or immediately adjacent;
- Verify that the sampling standpipe is undamaged and accessible; and
- Identify any maintenance/repairs necessary.

A summary of the inspected sites is included in Appendix Table D1-C1. Inspection forms including sketches and select photos for each of the treated spring areas are included in Appendix C1-2.

Detailed maps of spring locations can be found in in the 2016 Annual Inspection and Monitoring Report Deliverable D2. Spring locations are also included in the Floodway Drilling and Instrumentation Published Map File HM80 Rev 1 (November 2013) and the Compilation of Subsurface Investigations CCO-418Y-002g Rev0 included as a PDF copy in Appendix K of HM99.

Electronic files containing additional photographs and video of each site have been included on a CD only in Appendix D1-3 of this report. This report serves as a complete documentation of baseline conditions in the Long-term monitoring period and can be compared to future conditions.

2.0 INSPECTION PROGRAM METHODOLOGY

KGS Group representatives completed the spring inspections on August 8-11, 2016. Two ATVs were used to access the treated spring sites with a handheld GPS used to identify the location of each of the sites. The inspection for each spring included:

- Photographs of the filter, discharge trench, low level and high level sampling pipes, flow paths, and any additional discharge areas;
- Videos of flowing springs;

- Assessment of any damage to the filter, discharge trench, or sampling pipes and the repairs required;
- Identification of any additional discharge areas in the vicinity (~500 m north and south) of the treated spring areas;
- Measurement of water levels within low level sampling pipes where possible;
- Overall assessment of how the filter is working relative to design.

Observations from the inspections were recorded on inspection forms (Appendix D1-C2) and the photograph and video numbers were recorded to identify the treated spring area.

3.0 SUMMARY OF INSPECTION FINDINGS

3.1 CONDITION OF FILTERS

The constructed filters were found to be in good condition and were working as designed. Flow appeared to be coming up through the filter and discharging through the granular layer overlying the sand filter bed. No settlement or heaving of the filters was observed.

3.2 ADDITIONAL DISCHARGE AREAS

A small additional discharge location was observed on the east side of the low flow channel at UTM 648624 5547187. Observed flows were low, in the range of 1 USgpm and no follow-up is required.

No other additional discharge areas were observed in the immediate vicinity of the other treated spring areas.

3.3 CONDITION OF DISCHARGE TRENCHES

The discharge trenches were constructed as shallow excavated trenches that were filled with riprap to grade or slightly above grade. It was observed that at 11 of the treated spring sites, the rip rap within the discharge trenches was infilling with sediment and spring discharge was finding alternate flow paths to the Low Flow Channel. This resulted in overland flow toward the Low Flow Channel or flow into low areas near the filter, creating wet and soft areas. No significant erosion channels were observed at any of these locations.

The discharge trenches at the 5A1 and 7A1 locations were constructed as ditches (see photos in inspection reports) which appeared to be more effective in directing discharge flows along the design discharge flow path.

3.4 CONDITION OF SAMPLING PIPES

The two high level sampling pipes, at 11A2 and 18A1, were both found to be in good condition with no damage observed.

The 10 low level sampling pipes were generally found to be in good condition. At one location, 5A1, a 30 inch steel cover was missing from the protective casing.

4.0 REPAIRS REQUIRED

4.1 FILTERS

No repairs of the filters are required. The filters appear to be operating as designed.

4.2 ADDITIONAL DISCHARGE AREAS

Additional eroded discharge areas were observed in a small area along the discharge trench at 9B2. Construction of a graded sand filter would minimize potential for direct groundwater and surface water flow interconnections to develop at this location.

4.3 DISCHARGE TRENCHES

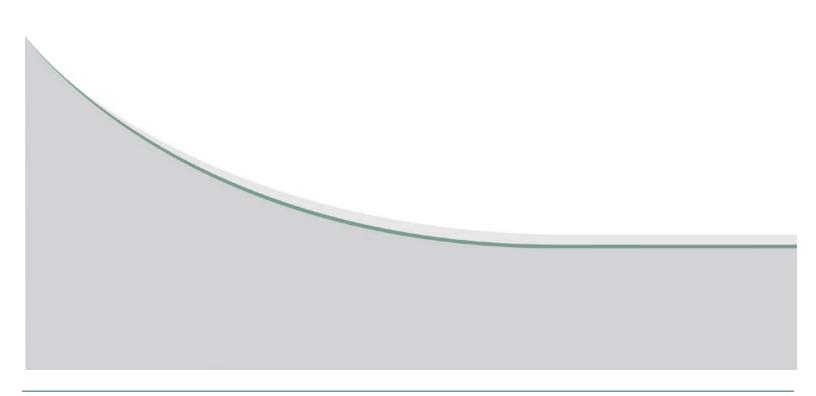
The discharge trenches that were constructed with riprap to grade or above grade generally appeared to infill with sediment, resulting in spring flows finding alternate flow paths to the Low Flow Channel. Excavating out the existing discharge channel to create a ditch, similar to 5A1 and 7A1, would likely direct flow along the design discharge trench. Alternatively, constructing a new ditch, with riprap armouring, along the existing overland discharge path would also be effective in limiting any erosion concerns with overland flow. The discharge trenches that require some repair include:

- 5A1 widening of the existing discharge ditch;
- 7C1 excavating out discharge trench to create ditch, constructing new discharge ditch;
- 8B1 excavating out discharge trench to create ditch;
- 8B2 excavating out discharge trench to create ditch;
- 8C1 excavating out discharge trench to create ditch;
- 9B1 constructing new discharge ditch;
- 9B2 excavating out discharge trench to create ditch;
- 10A1 excavating out discharge trench to create ditch;
- 11A1 constructing new discharge ditch;
- 18A1 excavating out discharge trench to create ditch, constructing new discharge ditch;
- 21A1 excavating out discharge trench to create ditch.

4.4 SAMPLING PIPES

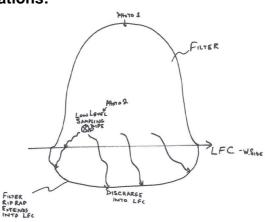
The low level sampling pipes that require some repair include:

• 5A1 – replacing a missing 30 inch steel cover.


TABLE D-1
2016 SUMMER INSPECTION OF SPRING TREATMENT AREAS

Site No.	Channel Side	Approximate Channel Station	Low Level Sampling Pipe Installed	High Level Sampling Pipe Installed	Northing	Easting	Flow Observed Summer 2016	Condition of Filter	Additional Discharge Areas in Vicinity of Filter	Constructed Discharge Trench Operating as Designed	Low Level Sampling Pipe Repairs Required
Spring Area	Spring Area Treatment Sites										
2A1	West	21+000	Yes	No	5523219	647097	Yes	Good	No	Yes	No
5A1	West	26+280	Yes	No	5528520	646961	Yes	Good	No	No	Yes, missing cover
7A1	West	27+060	Yes	No	5529304	646939	Yes	Good	Yes. Very low flow discharge 10 m upstream	Yes	No
7B2	West	27+157	No	No	5529475	646951	Yes	Good	No	Yes	-
7C1	East	27+400	Yes	No	5529640	646969	Yes	Good	No	No	No
8B1	West	29+880	No	No	5531953	646023	Yes	Good	No	No	-
8B2	West	29+970	No	No	5532027	645993	Yes	Good	No	No	
8C1	West	30+080	Yes	No	5532127	645959	Very Little	Good	No	No	No
9A6	East	30+400	No	No	5532480	645890	Yes	Good	No	Yes	-
9B1	West	30+840	No	No	5532846	645734	Very Little	Good	No	No	-
9B2	East	30+978	No	No	5532997	645715	No	Good	Yes	No	-
10A1	West	31+000	No	No	5533022	645665	Yes	Good	No	No	-
11A1	West	31+290	Yes	No	5533274	645559	Yes	Good	No	No	No
11A2	East	33+900	Yes	Yes	5535772	644767	No	Good	No	N/A (no flow)	No
16A2	West	42+180	No	No	5543145	647070	No	Good	No	No (Ponding)	-
17A2	East	42+769	Yes	No	5543545	647519	Yes	Good	No	Yes	No
18A1	West	42+800	Yes	Yes	5543620	647443	Yes	Good	No	No	No
18A2	West	42+900	No	No	5543718	647478	No	Good	No	No (Ponding)	-
20A2	East	47+030	No	No	5547417	648610	Very Little	Good	No	N/A (no flow)	-
21A1	West	47+796	No	No	5548152	648465	Very Little	Good	No	No	-
21A2	East	47+796	No	No	5548170	648545	Yes	Good	No	N/A (no flow)	-
23A1	West	49+395	No	No	5549740	648290	No	Good	No	N/A (no flow)	-
23A2	East	49+450	Yes	No	5549842	648355	Yes	Good	No	N/A (no flow)	No

APPENDIX D1-C2


FIELD DOCUMENTATION

Treatment Site ID: 2A1 **Site Description:** West side, north of HWY1 bridge. Date: August 8, 2016

Site Sketch and Photo Locations:

LFC-E.SIDE

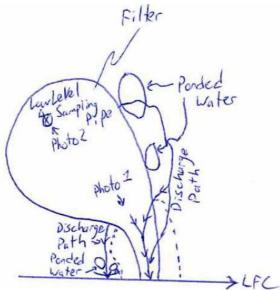
Photo 1: Spring treatment filter site 2A1.

Photo 2: Discharge into LFC at 2A1.

Filter Condition: Good Repairs Required: None

Approximate Flow: 8 USgpm

Additional Discharge Areas: No


Sampling Standpipe: Yes, low level Depth to bottom: Could not measure Depth to water: At surface Condition: Water above PVC, so left sealed to avoid cross contamination. Repairs Required: None.

Other Comments: Filter appears to be working effectively.

Treatment Site ID: 5A1 **Site Description:** West side, north of Redditt bridge.

Date: August 8, 2016

Site Sketch and Photo Locations:

Photos:

Photo 1: Spring treatment filter site 5A1 and constructed discharge trench.

Page 1 of 2

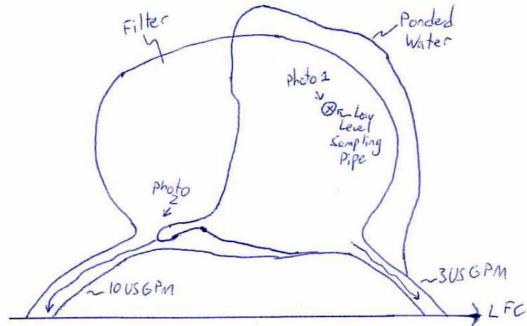
Photo 2: Low level sampling pipe and protective steel casing at 5A1. Cover is missing.

Filter Condition: Good – water flowing along discharge channel as well as finding alternate flow paths to LFC. No significant erosion observed within overland discharge areas. Vegetation is quite grown over.

Repairs Required: Widening the discharge channel may focus flow along design discharge path and accommodate flows.

Approximate Flow: 10 USgpm

Additional Discharge Areas: No


Sampling Standpipe: Yes, low level Depth to bottom: Could not measure, 50 mm poly pipe, coiled in CMP protective casing Depth to water: Water has filled protective steel casing Condition: Missing a 30 inch cover Repairs Required: Replace the 30 inch cover

Other Comments: Filter appears to be working effectively other than alternate flow paths.

Treatment Site ID: 7A1 **Site Description:** West side, south of 7B2.

Date: August 8, 2016

Site Sketch and Photo Locations:

Photos:

Photo 1: Low level sampling pipe and water within protective casing.

Page 1 of 2

Photo 2: Discharge ditches at 7A1 effectively direct water to LFC.

Filter Condition: Good Repairs Required: None

Approximate Flow: 13 USgpm

Additional Discharge Areas: No

Sampling Standpipe: Yes, low level Depth to bottom: Could not measure, 50 mm poly pipe, coiled in CMP protective casing. Depth to water: Water has filled protective steel casing. Condition: Good Repairs Required: None

Other Comments: Large flow through filter, appears to be working effectively. Constructed discharge channels are formed as ditches and effectively direct discharge water to the LFC.

Treatment Site ID: 7B2 **Site Description:** West side, north of 7A1. Date: August 8, 2016

Site Sketch and Photo Locations:

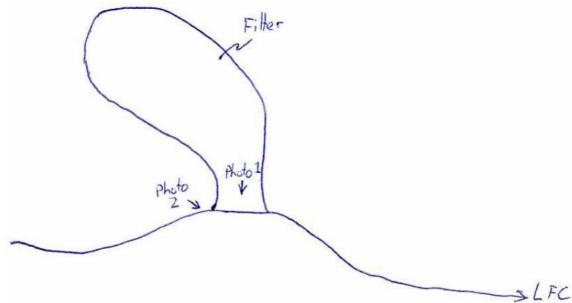


Photo 1: Spring treatment filter 7B2.

Photo 2: Filter discharge at 7B2 into LFC.

Filter Condition: Good Repairs Required: None

Approximate Flow: 2 USgpm

Additional Discharge Areas: Very low flow discharge approximately 10 m upstream at LFC.

Sampling Standpipe: No

Other Comments: Filter appears to be working effectively.

Treatment Site ID: 7C1Date: August 11, 2016Site Description: East side, between Redditt and Keewatin bridges.

Site Sketch and Photo Locations:

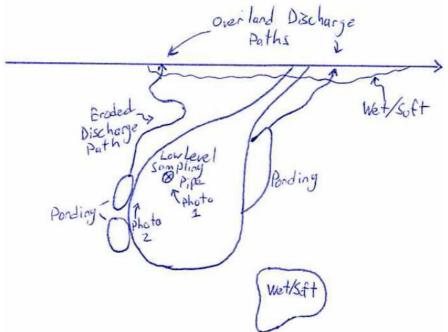


Photo 1: Spring treatment filter site 7C1.

Photo 2: Water flowing through 7C1 filter and finding alternate flow paths to LFC or ponding in low areas.

Filter Condition: Good – water finding alternate flow paths to LFC or ponding in low areas. Constructed discharge channel appears to be clogged with sediment. Eroded path on South side of filter.

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path.

Approximate Flow: 4 USgpm

Additional Discharge Areas: No

Sampling Standpipe: Yes, low level
Depth to bottom: Did not measure in order to avoid cross contamination. 2.41 m previously.
Depth to water: 0 m (at top of pipe). Artesian when opened.
Condition: Good
Repairs Required: None

Other Comments: Filter appears to be working effectively other than the discharge channel. Very soft along LFC.

Treatment Site ID: 8B1

Date: August 8, 2016

Site Description: West side, south of Keewatin bridge.

Site Sketch and Photo Locations:

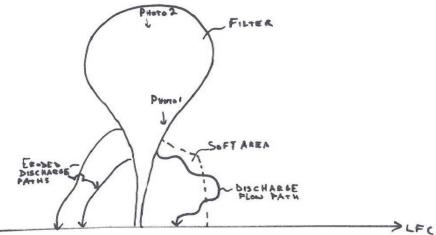


Photo 1: Water finding alternate flow path to LFC.

Photo 2: Spring treatment filter 8B1.

Filter Condition: Good – water finding alternate flow path to LFC. Constructed discharge channel appears to be clogged with sediment. Some erosion observed on south side in 2 paths but not currently flowing

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path.

Approximate Flow: 6 USgpm

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: Filter appears to be working effectively other than the discharge channel.

Treatment Site ID: 8B2Date: August 8, 2016Site Description: West side, south of Keewatin bridge, north of 8B1.

Site Sketch and Photo Locations:

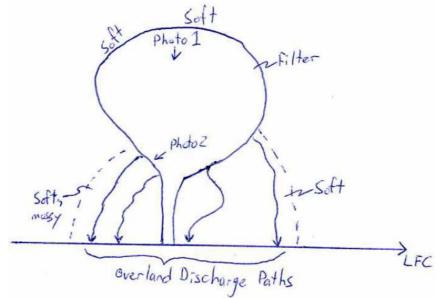


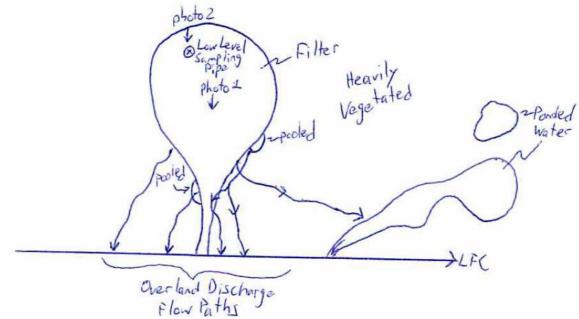
Photo 1: Spring treatment filter 8B2.

Photo 2: Water finding alternate flow path to LFC at 8B2.

Filter Condition: Good – water finding alternate flow paths to LFC. Constructed discharge channel appears to be clogged with sediment. No significant erosion observed within overland discharge area.

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path.

Approximate Flow: 5 USgpm


Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: Filter appears to be working effectively other than the discharge channel.

Treatment Site ID: 8C1Date: August 8, 2016Site Description: West side, south of Keewatin bridge, north of 8B2.

Site Sketch and Photo Locations:

Photos:

Photo 1: Spring treatment filter site 8C1 and constructed discharge trench.

Page 1 of 2

Photo 2: Low level sampling pipe and protective steel casing at 8C1.

Filter Condition: Good – water finding alternate flow paths to LFC. Flow paths wet and soft, but not currently flowing. Constructed discharge channel appears to be clogged with sediment. No significant erosion observed within overland discharge areas.

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path.

Approximate Flow: >0.1USgpm

Additional Discharge Areas: No. Sampling Standpipe: Yes, low level Depth to bottom: 2.93 m Depth to water: 0.15 m from steel casing. Condition: Good Repairs Required: None

Other Comments: Filter appears to be working effectively other than alternate flow path. Ponded area to the North of filter is discharging to LFC and appears to sourced from the filter.

Treatment Site ID: 9A6

Date: August 23, 2016

Site Description: East side, north of CPR Keewatin bridge.

Site Sketch and Photo Locations:

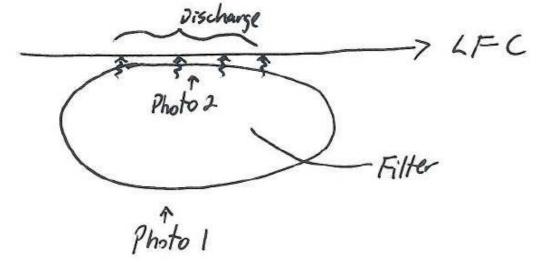


Photo 1: Spring treatment filter 9A6.

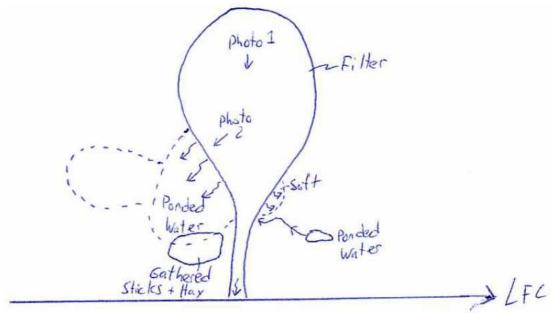
Photo 2: Spring 9A6 discharge into Low Flow Channel.

Filter Condition: Good

Repairs Required: None

Approximate Flow: 4 USgpm

Additional Discharge Areas: No


Sampling Standpipe: No

Other Comments: Flow coming through filter, appears to be working effectively.

Treatment Site ID: 9B1 **Site Description:** West side, north of Keewatin bridge.

Date: August 8, 2016

Site Sketch and Photo Locations:

Photos:

Photo 1: Spring treatment filter 9B1.

Page 1 of 2

Photo 2: Water ponding to the south of 9B1 filter and finding alternate flow paths to LFC. Difficult to determine if additional springs in this area.

Filter Condition: Good – water finding alternate flow paths to LFC. Constructed discharge channel appear to be clogged with sediment. No significant erosion observed within overland discharge area.

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path. Alternatively, construct a new swale along existing overland discharge path.

Approximate Flow: <0.1 USgpm

Additional Discharge Areas: No, however, very difficult to tell if wet area to the south of the filter is a spring or is ponded water from discharge from the filter. Wet areas continue south, almost to Keewatin bridge.

Sampling Standpipe: No

Other Comments: Filter appears to be working effectively other than the discharge channel.

Treatment Site ID: 9B2

Date: August 11, 2016

Site Description: East side, north of CPR Keewatin bridge.

Site Sketch and Photo Locations:

Soft Area, Additional dishage points photos? Photo 1. Filter

Photo 1: Additional discharge points along constructed discharge trench, very soft area.

Photo 2: Spring treatment filter 9B2.

Filter Condition: Good – water finding alternate flow paths to LFC. No significant erosion observed within overland discharge area.

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path.

Approximate Flow: 0 USgpm

Additional Discharge Areas: Yes, piping observed along constructed discharge trench, very low flows. Further investigation treatment of additional discharge areas may be required.

Sampling Standpipe: No

Other Comments: Wet and soft along discharge trench and near LFC.

Treatment Site ID: 10A1 **Site Description:** West side, north of Keewatin bridge. Date: August 8, 2016

Site Sketch and Photo Locations:

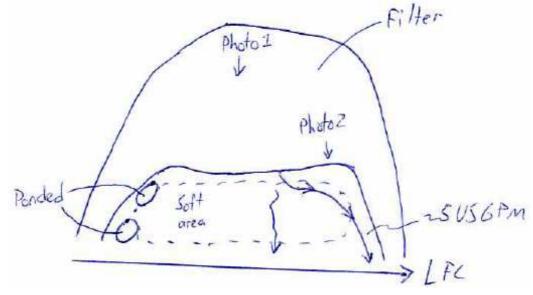


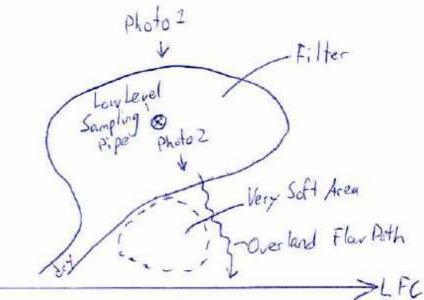
Photo 1: Spring treatment filter 10A1.

Photo 2: Water flowing through 10A1 filter and finding alternate flow paths to LFC.

Filter Condition: Good – water finding alternate flow paths to LFC. Constructed discharge channels appear to be clogged with sediment. No significant erosion observed within overland discharge area.

Repairs Required: Excavating rip rap from discharge channels and creating swales may focus flow along design discharge paths.

Approximate Flow: 5 USgpm at North discharge


Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: Filter appears to be working effectively other than the discharge channels.

Treatment Site ID: 11A1 **Site Description:** West side, north of Keewatin bridge. Date: August 8, 2016

Site Sketch and Photo Locations:

Photos:

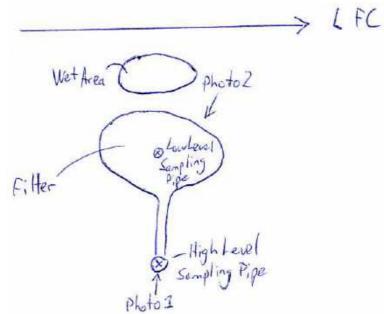
Photo 1: Spring treatment filter site 11A1 and low level sampling pipe, covered by vegetation.

Page 1 of 2

Photo 2: Water flowing through 11A1 filter and finding alternate flow path to LFC.

Filter Condition: Good – water finding alternate flow path to LFC. Constructed discharge channel appears to be clogged with sediment. No significant erosion observed within overland discharge area.

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path. Alternatively, construct a new swale along existing flow path.


Approximate Flow: 6 USgpm Additional Discharge Areas: No

Sampling Standpipe: Yes, low level Depth to bottom: 3.09 m Depth to water: 0.270 m below PVC TOC Condition: Good. Repairs: None.

Other Comments: Filter appears to be working effectively other than alternate flow path. Water flowing over very soft soil between filter and LFC.

Treatment Site ID: 11A2Date: August 11, 2016Site Description: East side of Floodway, south of PTH59N bridge.

Site Sketch and Photo Locations:

Photos:

Photo 1: High level sampling pipe and protective CMP casing.

Page 1 of 2

Photo 2: Water flowing through 11A2 filter and finding alternate flow paths to LFC.

Filter Condition: Good

Repairs Required: None

Approximate Flow: 0 USgpm

Additional Discharge Areas: No

Sampling Standpipe: Yes, low level and high level Depth to bottom: 1.93 m (low level), soft at bottom. Depth to water: 1.11m (low level) Condition: Good Repairs Required: None

Other Comments: There is no discharge trench constructed to Low Flow Channel. Dry around filter. Could add mono foam around PVC at opening in steel protector at high level standpipe but is a low priority.

Treatment Site ID: 16A2 **Site Description:** West side, north of Dunning Road. Date: August 9, 2016

Site Sketch and Photo Locations:

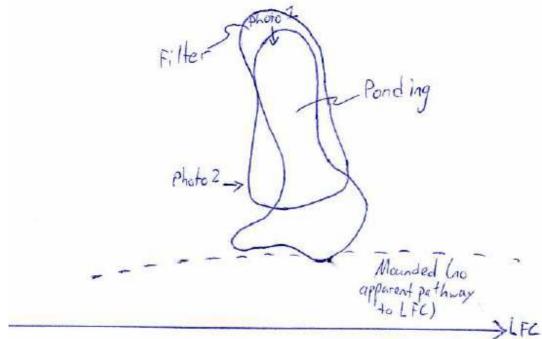


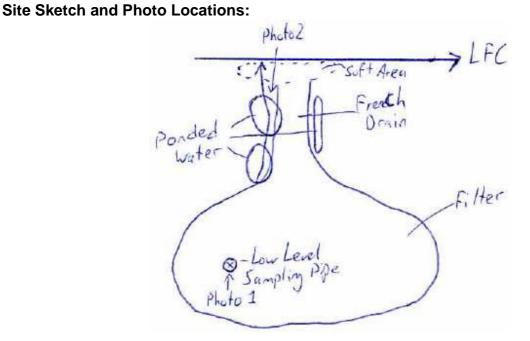
Photo 1: Spring treatment filter 16A2.

Photo 2: Spring treatment filter 16A2.

Filter Condition: Good. No apparent discharge path to drain into LFC.

Repairs Required: None.

Approximate Flow: No Flow


Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: No flow observed. Ponding around and on filter. Heavy vegetation.

Treatment Site ID: 17A2 **Site Description:** East side, north of Dunning Road Date: August 10, 2016

-

Photos:

Photo 1: Spring treatment filter site 17A2 and low level sampling pipe.

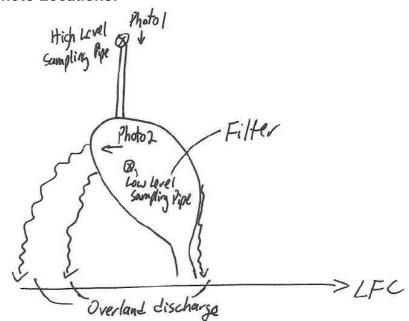
Page 1 of 2

Photo 2: Water ponding beside the French drain at 17A2.

Filter Condition: Good

Repairs Required: None

Approximate Flow: 2 USgpm


Additional Discharge Areas: Possible small discharge area along French Drain, may just be ponding water

Sampling Standpipe: Yes, low level Depth to bottom: 1.510 m Depth to water: 0.435 m Condition: Good Repairs Required: None

Other Comments: Area around filter is dry, filter appears to be working well.

Treatment Site ID: 18A1Date: August 9, 2016Site Description: West side, north of LFC bike/pedestrian bridge.

Site Sketch and Photo Locations:

Photos:

Photo 1: High level sampling pipe and protective CMP casing.

Page 1 of 2

Photo 2: Water flowing through filter and finding alternate flow paths to LFC at 18A1.

Filter Condition: Good – water finding alternate flow paths to LFC. Constructed discharge channel appears to be clogged with sediment. No significant erosion observed within overland discharge areas.

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path.

Approximate Flow: Path to South of discharge path ~ 15 USgpm. Path adjacent to discharge path ~ 3 USgpm.

Additional Discharge Areas: No

Sampling Standpipe: Yes, low level and high level
Depth to bottom: 1.94 m (low level). Very soft at bottom
Depth to water: 0.195 m (low level)
Condition: PVC has lifted up and is in contact with steel protective casing.
Repairs: None

Other Comments: Filter appears to be working effectively other than the discharge channel.

Treatment Site ID: 18A2

Date: August 9, 2016

Site Description: West side, approximately 100 m north of 18A1.

Site Sketch and Photo Locations:

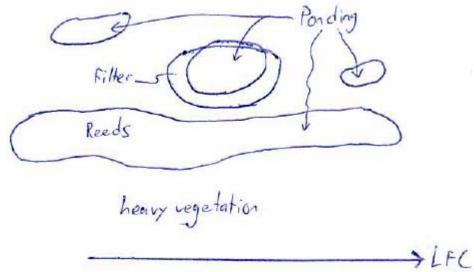


Photo 1: Spring treatment filter site 18A2.

Photo 2: Standing water near spring treatment filter site 18A2.

Filter Condition: Good Repairs Required: None

Approximate Flow: No flow

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: Soft area around filter, possibly surface water ponding.

Treatment Site ID: 20A2 **Site Description:** East side, south of 21A2 Date: August 10, 2016

Site Sketch and Photo Locations:

Photo 1: Tie-in of filter drain to Low Flow Channel.

Photo 2: Spring treatment filter 20A2.

Filter Condition: Good Repairs Required: None

Approximate Flow: <0.1 USgpm

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: No flow observed, no wet or soft areas.

Treatment Site ID: 21A1 **Site Description:** West side, south of CEMR bridge. Date: August 9, 2016

Site Sketch and Photo Locations:

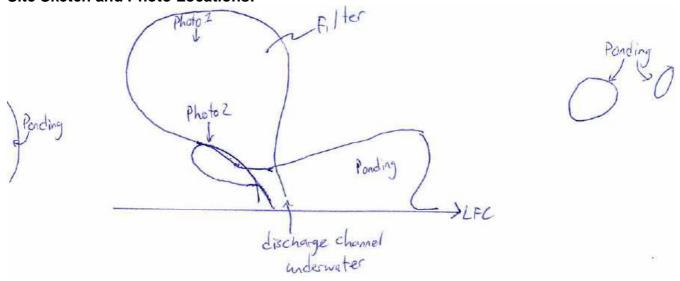


Photo 1: Spring treatment filter 21A1.

Photo 2: Water flowing through 21A1 filter and finding alternate flow path to LFC.

Filter Condition: Good – water finding alternate flow path to LFC. Constructed discharge channel appears to be clogged with sediment. No significant erosion observed within overland discharge area.

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path.

Approximate Flow: <0.1 USgpm

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: Filter appears to be working effectively other than the discharge channel. LFC at filter elevation / above discharge channel.

Treatment Site ID: 21A2 **Site Description:** East side, north of 20A2 Date: August 10, 2016

Site Sketch and Photo Locations:

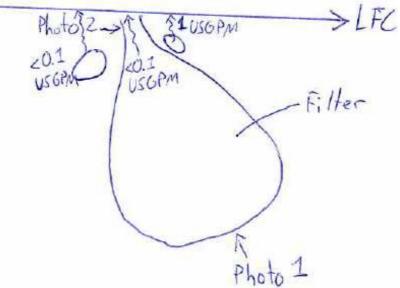


Photo 1: Spring treatment filter 21A2.

Photo 2: Tie-in of 21A2 filter drain to Low Flow Channel.

Filter Condition: Good

Repairs Required: None

Approximate Flow: 1 USGpm

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: No flow observed, no wet or soft areas around filter.

Treatment Site ID: 23A1 **Site Description:** West side, south of PTH 44 bridge.

Date: August 9, 2016

Site Sketch and Photo Locations:

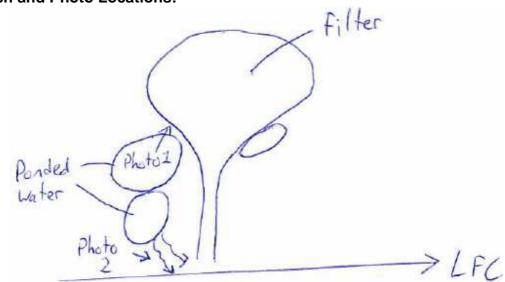


Photo 1: Spring treatment filter 23A1.

Photo 2: Tie in of discharge channel to LFC at 23A1.

Filter Condition: Good

Repairs Required: None

Approximate Flow: No Flow

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: Rip rap is filling with sediment, hard to see filter and discharge channel. Heavy vegetation.

Treatment Site ID: 23A2 **Site Description:** East side, just south of PTH 44 bridge. Date: August 1, 2016

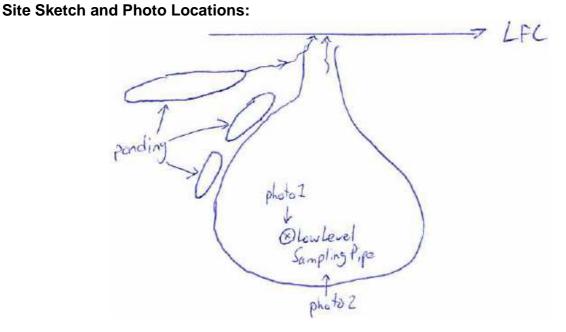


Photo 1: Low level sampling pipe steel protective casing.

Photo 2: Spring treatment filter site 23A2.

Filter Condition: Good

Repairs Required: None

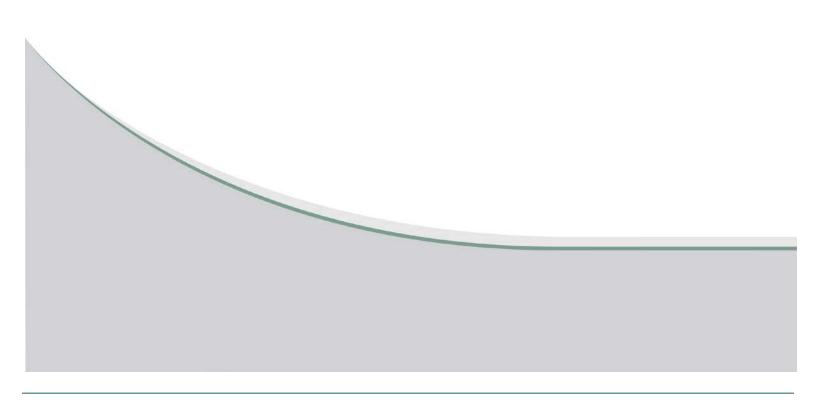
Approximate Flow: ~3 USgpm

Additional Discharge Areas: No

Sampling Standpipe: Yes, low level Depth to bottom: 1.56 m Depth to water: Above PVC casing/cap. 0.17 m below steel casing, 0.03 m above PVC cap. Condition: Good. Repairs: None.

Other Comments: No wet or soft areas around filter.

APPENDIX D1-C3


ADDITIONAL PHOTOGRAPHS AND VIDEO (INCLUDED ON DVD)

APPENDIX D1-D

LABORATORY REPORTS

MB Infra & Transport - Highway Engineering - 6th Floor ATTN: MARCI FRIEDMAN-HAMM 865 WAVERLEY ST 3RD FL Winnipeg MB K3T 5P4

Date Received: 29-MAR-16 Report Date: 11-APR-16 07:04 (MT) Version: FINAL

Client Phone: 204-896-1209

Certificate of Analysis

Lab Work Order #: L1749125 Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc:

MIT Floodway 16-0300-002.1000.01

Floodway

Hua Wo Chemistry Laboratory Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1749125-1 K13-12321							
Sampled By: CLIENT on 28-MAR-16 @ 12:30							
Matrix: GW							
Total Coliform and E.coli by MPN QT97							
Total Coliforms	11		1	MPN/100mL		29-MAR-16	R3427484
Escherichia Coli	<1		1	MPN/100mL		29-MAR-16	R3427484
ROU1W Dissolved Floodway							
Alkalinity, Bicarbonate Bicarbonate (HCO3)	498		1.2	mg/L		31-MAR-16	
Alkalinity, Carbonate	450		1.2	ling/L			
Carbonate (CO3)	<0.60		0.60	mg/L		31-MAR-16	
Alkalinity, Hydroxide				5			
Hydroxide (OH)	<0.34		0.34	mg/L		31-MAR-16	
Alkalinity, Total (as CaCO3)							
Alkalinity, Total (as CaCO3)	408		1.0	mg/L		30-MAR-16	R3427848
Chloride in Water by IC			0			00 1405 40	D0 (0700)
Chloride (Cl)	44.6		0.50	mg/L		30-MAR-16	R3427981
Conductivity Conductivity	974		1.0	umhos/cm		30-MAR-16	R3427848
Dissolved Metals by ICP-MS	5/4		1.0	unnos/cm		JU-IVIAR-10	13421040
Calcium (Ca)-Dissolved	74.2		0.20	mg/L	30-MAR-16	08-APR-16	R3434792
Magnesium (Mg)-Dissolved	75.9		0.050	mg/L	30-MAR-16	08-APR-16	R3434792
Potassium (K)-Dissolved	4.88		0.10	mg/L	30-MAR-16	08-APR-16	R3434792
Sodium (Na)-Dissolved	27.3		0.050	mg/L	30-MAR-16	08-APR-16	R3434792
Hardness Calculated							
Hardness (as CaCO3)	497		0.20	mg/L		09-APR-16	
Ion Balance Calculation							
Ion Balance	100			%		09-APR-16	
Cation - Anion Balance Anion Sum	0.1 11.2			% me/L		09-APR-16 09-APR-16	
Cation Sum	11.2			me/L		09-APR-16	
Nitrate in Water by IC (Low Level)	11.0			IIIC/E		00 / 11 / 10	
Nitrate (as N)	2.33		0.0050	mg/L		30-MAR-16	R3427981
Nitrate+Nitrite							
Nitrate and Nitrite as N	2.33		0.0051	mg/L		04-APR-16	
Nitrite in Water by IC (Low Level)			_				
Nitrite (as N)	<0.0010		0.0010	mg/L		30-MAR-16	R3427981
Sulfate in Water by IC Sulfate (SO4)	70.0		0.20	mg/L		30-MAR-16	D2407004
TDS calculated	79.2		0.30	mg/L		30-IVIAR-10	R3427981
TDS calculated	561		5.0	mg/L		09-APR-16	
Turbidity	-		-	Ŭ			
Turbidity	3.11		0.10	NTU		29-MAR-16	R3428002
рН							
pH	7.39		0.10	pH units		30-MAR-16	R3427848
L1749125-2 K09-12316							
Sampled By: CLIENT on 28-MAR-16 @ 13:30							
Matrix: GW							
Total Coliform and E.coli by MPN QT97 Total Coliforms	00		~	MPN/100mL			D2407404
Escherichia Coli	22 <1		1 1	MPN/100mL MPN/100mL		29-MAR-16 29-MAR-16	R3427484 R3427484
ROU1W Dissolved Floodway	<1		I	IVIT IN/ TOUTTL		23-1417-10	13421404
Alkalinity, Bicarbonate							
Bicarbonate (HCO3)	381		1.2	mg/L		31-MAR-16	

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1749125-2 K09-12316							
Sampled By: CLIENT on 28-MAR-16 @ 13:30							
Matrix: GW							
Alkalinity, Carbonate							
Carbonate (CO3)	<0.60		0.60	mg/L		31-MAR-16	
Alkalinity, Hydroxide	0.04		0.04				
Hydroxide (OH) Alkalinity, Total (as CaCO3)	<0.34		0.34	mg/L		31-MAR-16	
Alkalinity, Total (as CaCO3)	312		1.0	mg/L		30-MAR-16	R3427848
Chloride in Water by IC							
Chloride (Cl)	30.6		0.50	mg/L		30-MAR-16	R3427981
Conductivity							
Conductivity	775		1.0	umhos/cm		30-MAR-16	R3427848
Dissolved Metals by ICP-MS Calcium (Ca)-Dissolved	62.8		0.20	mg/L	30-MAR-16	08-APR-16	R3434792
Magnesium (Mg)-Dissolved	52.3		0.050	mg/L	30-MAR-16	08-APR-16	R3434792
Potassium (K)-Dissolved	4.33		0.10	mg/L	30-MAR-16	08-APR-16	R3434792
Sodium (Na)-Dissolved	24.5		0.050	mg/L	30-MAR-16	08-APR-16	R3434792
Hardness Calculated	070		0.00				
Hardness (as CaCO3)	372		0.20	mg/L		09-APR-16	
Ion Balance Calculation Ion Balance	98.0			%		09-APR-16	
Cation - Anion Balance	-1.0			%		09-APR-16	
Anion Sum	8.79			me/L		09-APR-16	
Cation Sum	8.61			me/L		09-APR-16	
Nitrate in Water by IC (Low Level)							
Nitrate (as N)	1.56		0.0050	mg/L		30-MAR-16	R3427981
Nitrate+Nitrite Nitrate and Nitrite as N	1.56		0.0051	mg/L		04-APR-16	
Nitrite in Water by IC (Low Level)	1.00		0.0001			01741110	
Nitrite (as N)	<0.0010		0.0010	mg/L		30-MAR-16	R3427981
Sulfate in Water by IC							
Sulfate (SO4)	75.6		0.30	mg/L		30-MAR-16	R3427981
TDS calculated TDS (Calculated)	444		5.0	mg/L		09-APR-16	
Turbidity			0.0	iiig/ E		00741110	
Turbidity	0.27		0.10	NTU		29-MAR-16	R3428002
рН							
pH	7.51		0.10	pH units		30-MAR-16	R3427848
L1749125-3 K09-13571							
Sampled By: CLIENT on 28-MAR-16 @ 14:30							
Matrix: GW							
ROU1W Dissolved Floodway							
Alkalinity, Bicarbonate							
Bicarbonate (HCO3)	423		1.2	mg/L		31-MAR-16	
Alkalinity, Carbonate			0.00				
Carbonate (CO3)	<0.60		0.60	mg/L		31-MAR-16	
Alkalinity, Hydroxide Hydroxide (OH)	<0.34		0.34	mg/L		31-MAR-16	
Alkalinity, Total (as CaCO3)			0.01				
Alkalinity, Total (as CaCO3)	347		1.0	mg/L		30-MAR-16	R3427848
Chloride in Water by IC			_				
Chloride (Cl)	58.2		0.50	mg/L		30-MAR-16	R3427981
Conductivity Conductivity	940		1.0	umhos/cm		30-MAR-16	R3427848
Conductivity	340		1.0	umn03/011		00-101-10	1\3421040

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1749125-3 K09-13571							
Sampled By: CLIENT on 28-MAR-16 @ 14:30							
Matrix: GW							
Dissolved Metals by ICP-MS							
Calcium (Ca)-Dissolved	69.3		0.20	mg/L	30-MAR-16	08-APR-16	R3434792
Magnesium (Mg)-Dissolved	61.7		0.050	mg/L	30-MAR-16	08-APR-16	R3434792
Potassium (K)-Dissolved	4.89		0.10	mg/L	30-MAR-16	08-APR-16	R3434792
Sodium (Na)-Dissolved	38.1		0.050	mg/L	30-MAR-16	08-APR-16	R3434792
Hardness Calculated							
Hardness (as CaCO3)	427		0.20	mg/L		09-APR-16	
Ion Balance Calculation	00.0			0/			
Ion Balance Cation - Anion Balance	96.6 -1.7			%		09-APR-16 09-APR-16	
Anion Sum	10.7			me/L		09-APR-16	
Cation Sum	10.7			me/L		09-APR-16	
Nitrate in Water by IC (Low Level)	10.0						
Nitrate (as N)	1.64		0.0050	mg/L		30-MAR-16	R3427981
Nitrate+Nitrite							
Nitrate and Nitrite as N	1.64		0.0051	mg/L		04-APR-16	
Nitrite in Water by IC (Low Level)							
Nitrite (as N)	<0.0010		0.0010	mg/L		30-MAR-16	R3427981
Sulfate in Water by IC							
Sulfate (SO4)	95.4		0.30	mg/L		30-MAR-16	R3427981
TDS calculated	540		5.0				
TDS (Calculated)	543		5.0	mg/L		09-APR-16	
Turbidity Turbidity	0.14		0.10	NTU		29-MAR-16	R3428002
pH	0.14		0.10	NIO		20 WAR 10	113420002
рн	7.43		0.10	pH units		30-MAR-16	R3427848
_1749125-4 PTH 44							
Sampled By: CLIENT on 28-MAR-16 @ 15:00							
Matrix: GW							
Mainte GW Miscellaneous Parameters							
Ammonia, Total (as N)	0.054		0.010	mg/L		31-MAR-16	R3428671
Phosphorus (P)-Total	0.356		0.010	mg/L		04-APR-16	R3429984
Total Kjeldahl Nitrogen	0.79		0.20	mg/L	05-APR-16	05-APR-16	R3430338
Total Suspended Solids	24.0		5.0	mg/L		30-MAR-16	R3428224
ROU1W Total Floodway			0.0				
Alkalinity, Bicarbonate							
Bicarbonate (HCO3)	213		1.2	mg/L		31-MAR-16	
Alkalinity, Carbonate							
Carbonate (CO3)	<0.60		0.60	mg/L		31-MAR-16	
Alkalinity, Hydroxide			·				
Hydroxide (OH)	<0.34		0.34	mg/L		31-MAR-16	
Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3)	175		1.0	ma/l		30-MAR-16	D2427040
Chloride in Water by IC	175		1.0	mg/L		30-IVIAR-10	R3427848
Chloride (Cl)	13.5		0.50	mg/L		30-MAR-16	R3427981
Conductivity			5.00				
Conductivity	407		1.0	umhos/cm		30-MAR-16	R3427848
Hardness Calculated							
Hardness (as CaCO3)	198		0.30	mg/L		09-APR-16	
Ion Balance Calculation							
Ion Balance	102			%		09-APR-16	
Cation - Anion Balance	0.8			%		09-APR-16	

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1749125-4 PTH 44							
Sampled By: CLIENT on 28-MAR-16 @ 15:00							
Matrix: GW							
Ion Balance Calculation							
Anion Sum	4.51			me/L		09-APR-16	
Cation Sum	4.58			me/L		09-APR-16	
Nitrate in Water by IC (Low Level)							
Nitrate (as N)	1.25		0.0050	mg/L		30-MAR-16	R3427981
Nitrate+Nitrite							
Nitrate and Nitrite as N	1.28		0.0051	mg/L		04-APR-16	
Nitrite in Water by IC (Low Level)	0.0000		0.004.0			20 MAD 16	D0407004
Nitrite (as N)	0.0263		0.0010	mg/L		30-MAR-16	R3427981
Sulfate in Water by IC Sulfate (SO4)	26.2		0.30	mg/L		30-MAR-16	R3427981
TDS calculated	20.2		0.00	ing/L		00 10/11/10	110427301
TDS (Calculated)	233		5.0	mg/L		09-APR-16	
Total Metals by ICP-MS							
Calcium (Ca)-Total	45.3		0.20	mg/L	30-MAR-16	08-APR-16	R3434792
Magnesium (Mg)-Total	20.7		0.050	mg/L	30-MAR-16	08-APR-16	R3434792
Potassium (K)-Total	7.82		0.10	mg/L	30-MAR-16	08-APR-16	R3434792
Sodium (Na)-Total	9.41		0.050	mg/L	30-MAR-16	08-APR-16	R3434792
Turbidity							
Turbidity	42.5		0.10	NTU		29-MAR-16	R3428002
рН рН	7.06		0.10	pH units		30-MAR-16	D2407040
	7.96		0.10			30-IVIAR-10	R3427848
L1749125-5 K11-12018							
Sampled By: CLIENT on 28-MAR-16 @ 16:00							
Matrix: GW							
ROU1W Dissolved Floodway							
Alkalinity, Bicarbonate							
Bicarbonate (HCO3)	723		1.2	mg/L		31-MAR-16	
Alkalinity, Carbonate							
Carbonate (CO3)	<0.60		0.60	mg/L		31-MAR-16	
Alkalinity, Hydroxide							
Hydroxide (OH)	<0.34		0.34	mg/L		31-MAR-16	
Alkalinity, Total (as CaCO3)							D0 4070 40
Alkalinity, Total (as CaCO3)	593		1.0	mg/L		30-MAR-16	R3427848
Chloride in Water by IC Chloride (Cl)	2.29		0.50	mg/L		30-MAR-16	R3427981
Conductivity	2.29		0.50	ing/L		JU-IMAIX-10	110421901
Conductivity	1130		1.0	umhos/cm		30-MAR-16	R3427848
Dissolved Metals by ICP-MS							
Calcium (Ca)-Dissolved	92.4		0.20	mg/L	30-MAR-16	08-APR-16	R3434792
Magnesium (Mg)-Dissolved	98.5		0.050	mg/L	30-MAR-16	08-APR-16	R3434792
Potassium (K)-Dissolved	5.19		0.10	mg/L	30-MAR-16	08-APR-16	R3434792
Sodium (Na)-Dissolved	27.8		0.050	mg/L	30-MAR-16	08-APR-16	R3434792
Hardness Calculated							
Hardness (as CaCO3)	636		0.20	mg/L		09-APR-16	
Ion Balance Calculation	400			0/			
Ion Balance Cation - Anion Balance	100 0.1			%		09-APR-16 09-APR-16	
Anion Sum	14.0			me/L		09-APR-16 09-APR-16	
Cation Sum	14.0			me/L		09-APR-16 09-APR-16	
Nitrate in Water by IC (Low Level)	17.1					00 / ii i i i i i i i i i i i i i i i i	
Nitrate (as N)	<0.0050		0.0050	mg/L		30-MAR-16	R3427981

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1749125-5 K11-12018 Sampled By: CLIENT on 28-MAR-16 @ 16:00							
Matrix: GW							
Nitrate+Nitrite							
Nitrate and Nitrite as N	<0.0051		0.0051	mg/L		04-APR-16	
Nitrite in Water by IC (Low Level) Nitrite (as N)	<0.0010		0.0010	mg/L		30-MAR-16	R3427981
Sulfate in Water by IC							
Sulfate (SO4) TDS calculated	102		0.30	mg/L		30-MAR-16	R3427981
TDS (Calculated)	683		5.0	mg/L		09-APR-16	
Turbidity							
Turbidity pH	8.20		0.10	NTU		29-MAR-16	R3428002
pH	7.23		0.10	pH units		30-MAR-16	R3427848

ALK-HCO3HCO3-CALC- WP	Water	Alkalinity, Bicarbonate	CALCULATION
		s acid neutralizing capacity.Alkalinity is imparted icarbonate is calculated and reported as mg HC0	by bicarbonate, carbonate and hydroxide components of water. O3-/L
ALK-OHOH-CALC-WP	Water	Alkalinity, Hydroxide	CALCULATION
		s acid neutralizing capacity.Alkalinity is imparted ydroxide is calculated and reported as mg OH-/L	by bicarbonate, carbonate and hydroxide components of water.
ALK-TITR-WP	Water	Alkalinity, Total (as CaCO3)	APHA 2320B
			by bicarbonate, carbonate and hydroxide components of successive HCO3- and H2CO3 endpoints indicated
CL-IC-N-WP	Water	Chloride in Water by IC	EPA 300.1 (mod)
Inorganic anions are analyz	zed by Ion Ch	romatography with conductivity and/or UV detect	tion.
EC-WP	Water	Conductivity	APHA 2510B
Conductivity of an aqueous and chemically inert electro		rs to its ability to carry an electric current. Condu	uctance of a solution is measured between two spatially fixed
ETL-HARDNESS-DIS-WP	Water	Hardness Calculated	HARDNESS CALCULATED
ETL-HARDNESS-TOT-WP	Water	Hardness Calculated	HARDNESS CALCULATED
ETL-SOLIDS-CALC-WP	Water	TDS calculated	CALCULATION
IONBALANCE-CALC-WP	Water	Ion Balance Calculation	APHA 1030E
MET-D-MS-WP	Water	Dissolved Metals by ICP-MS	APHA 3030B/EPA 6020A-D
This analysis involves filtrat	tion (APHA 30	030B) and analysis by inductively coupled plasm	a - mass spectrometry (EPA Method 6020A).
MET-T-MS-WP	Water	Total Metals by ICP-MS	APHA 3030E/EPA 6020A-T
This analysis involves prelin mass spectrometry (EPA M			30E). Instrumental analysis is by inductively coupled plasma -
N-TOTKJ-WP	Water	Total Kjeldahl Nitrogen	Quickchem method 10-107-06-2-E Lachat
ammonia and organic nitro Injection Analysis (FIA). The pH of t converts the ammonium ca	gen compoun	nds which are converted to ammonium sulphate t sample is raised to a known, basic pH by neutrali nia. The ammonia produced is heated with salic	zed for ammonia. Total Kjeldahl nitrogen is the sum of free- hrough this digestion process. Analysis is performed by Flow zation with a concentrated buffer solution. This neutralization lyate and hypochlorite to produce blue colour which is
NH3-COL-WP	Water	Ammonia by colour	APHA 4500 NH3 F
Ammonia in water samples nitroprusside and measured			. The intensity is amplified by the addition of sodium
NO2+NO3-CALC-L-WP	Water	Nitrate+Nitrite	CALCULATION
NO2-L-IC-N-WP	Water	Nitrite in Water by IC (Low Level)	EPA 300.1 (mod)

The Alkalinity of water is a measure of its acid neutralizing capacity. Alkalinity is imparted by bicarbonate, carbonate and hydroxide components of water.

Method Reference**

CALCULATION

L1749125 CONTD PAGE 7 of 8 Version: FINAL

ALS Test Code

Test Method References:

ALK-CO3CO3-CALC-WP Water

Matrix

Test Description

The fraction of alkalinity contributed by carbonate is calculated and reported as mg CO3 2-/L.

Alkalinity, Carbonate

ETL-HARDNESS-DIS-WP	Water	Hardness Calculated	HARDNESS CALCULATED
ETL-HARDNESS-TOT-WP	Water	Hardness Calculated	HARDNESS CALCULATED
ETL-SOLIDS-CALC-WP	Water	TDS calculated	CALCULATION
IONBALANCE-CALC-WP	Water	Ion Balance Calculation	APHA 1030E
MET-D-MS-WP	Water	Dissolved Metals by ICP-MS	APHA 3030B/EPA 6020A-D

ALS Test Code	Matrix	Test Description	Method Reference**
Inorganic anions are ana	lyzed by Ion (Chromatography with conductivity and/or UV of	detection.
NO3-L-IC-N-WP	Water	Nitrate in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are ana	lyzed by Ion (Chromatography with conductivity and/or UV	detection.
P-T-COL-WP	Water	Phosphorus, Total	APHA 4500 P PHOSPHORUS
This analysis is carried opersulphate digestion of		edures adapted from APHA Method 4500-P "I	Phosphorus". Total Phosphorus is determined colourimetrically after
PH-WP	Water	рН	APHA 4500H
The pH of a sample is th reference electrode.	e determination	on of the activity of the hydrogen ions by pote	ntiometric measurement using a standard hydrogen electrode and a
SO4-IC-N-WP	Water	Sulfate in Water by IC	EPA 300.1 (mod)
norganic anions are ana	lyzed by Ion (Chromatography with conductivity and/or UV of	detection.
SOLIDS-TOTSUS-WP	Water	Total Suspended Solids	APHA 2540 D (modified)
Total suspended solids i	n aquesous m	natrices is determined gravimetrically after dry	ing the residue at 103 105°C.
TC,EC-QT97-WP	Water	Total Coliform and E.coli by MPN QT97	APHA 9223B QT97
determined simultaneous	sly. The samp 24 hours and	le is mixed with a mixture of hydrolyzable sub then the number of wells exhibiting positive r	Enzyme Substrate Coliform Test". E. coli and Total Coliform are strates and then sealed in a 97-well packet. The packet is incubated esponses are counted. The final results are obtained by comparing
URBIDITY-WP	Water	Turbidity	APHA 2130B (modified)
Furbidity in aqueous mat	trices is deter	mined by the nephelometric method.	
ALS test methods may	incorporate m	odifications from specified reference methods	s to improve performance.
The last two letters of the	e above test c	code(s) indicate the laboratory that performed	analytical analysis for that test. Refer to the list below:
Laboratory Definition C	ode Lab	oratory Location	
NP		ENVIRONMENTAL - WINNIPEG, MANITOB	

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

			Workorder:	L174912	5	Report Date: 11-	APR-16	Pa	ige 1 of 7
	865 WAV	& Transport - ERLEY ST 3I MB K3T 5P		ng - 6th Floor					
Contact:	MARCI F	RIEDMAN-HA	AMM						
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-TITR-WP		Water							
	3427848								
WG2283544-4 Alkalinity, Tota		O3)		100.1		%		85-115	30-MAR-16
WG2283544-1 Alkalinity, Tota	MB			<1.0		mg/L		1	30-MAR-16
CL-IC-N-WP	,	Water				0			
	3427981	Water							
WG2283344-1 Chloride (Cl)			L1749125-2 30.6	30.7		mg/L	0.1	20	30-MAR-16
WG2283344-7 Chloride (Cl)	DUP		L1749125-1 44.6	44.5		mg/L	0.2	20	30-MAR-16
WG2283344-10 Chloride (Cl)	0 LCS			100.9		%		90-110	30-MAR-16
WG2283344-6 Chloride (Cl)	LCS			100.7		%		90-110	30-MAR-16
WG2283344-5 Chloride (Cl)	MB			<0.50		mg/L		0.5	30-MAR-16
WG2283344-9 Chloride (Cl)	MB			<0.50		mg/L		0.5	30-MAR-16
WG2283344-12 Chloride (Cl)	2 MS		L1749125-2	96.7		%		75-125	30-MAR-16
WG2283344-8 Chloride (Cl)	MS		L1749125-1	95.4		%		75-125	30-MAR-16
EC-WP		Water							
	3427848								
WG2283544-3 Conductivity				98.8		%		90-110	30-MAR-16
WG2283544-1 Conductivity	MB			<1.0		umhos/cm		1	30-MAR-16
MET-D-MS-WP		Water							
WG2283295-2									
Calcium (Ca)-		d		98.4		%		80-120	08-APR-16
Magnesium (M				95.2		%		80-120	08-APR-16
Potassium (K)		I		104.9		%		80-120	08-APR-16
Sodium (Na)-I WG2283295-1 Calcium (Ca)-l	MB			96.7 <0.20		% mg/L		80-120 0.2	08-APR-16 08-APR-16

		Workorder:	L174912	5 R4	eport Date: 1	1-APR-16	Pa	ge 2 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-MS-WP	Water							
Batch R3434792								
WG2283295-1 MB Magnesium (Mg)-Dissol	ved		<0.050		mg/L		0.05	08-APR-16
Potassium (K)-Dissolved	ł		<0.10		mg/L		0.1	08-APR-16
Sodium (Na)-Dissolved			<0.050		mg/L		0.05	08-APR-16
MET-T-MS-WP	Water							
Batch R3434792 WG2283250-2 LCS Calcium (Ca)-Total			97.9		%		80-120	08-APR-16
Magnesium (Mg)-Total			96.2		%		80-120	08-APR-16
Potassium (K)-Total			101.2		%		80-120	08-APR-16
Sodium (Na)-Total			95.6		%		80-120	08-APR-16
WG2283250-1 MB							00.20	007.01010
Calcium (Ca)-Total			<0.20		mg/L		0.2	08-APR-16
Magnesium (Mg)-Total			<0.050		mg/L		0.05	08-APR-16
Potassium (K)-Total			<0.10		mg/L		0.1	08-APR-16
Sodium (Na)-Total			<0.050		mg/L		0.05	08-APR-16
N-TOTKJ-WP	Water							
Batch R3430338								
WG2285966-6 LCS Total Kjeldahl Nitrogen			100.0		%		75-125	05-APR-16
WG2285966-5 MB Total Kjeldahl Nitrogen			<0.20		mg/L		0.2	05-APR-16
NH3-COL-WP	Water							
Batch R3428671 WG2284368-6 LCS			07.7		0/		05.445	
Ammonia, Total (as N)			97.7		%		85-115	31-MAR-16
WG2284368-5 MB Ammonia, Total (as N)			<0.010		mg/L		0.01	31-MAR-16
102-L-IC-N-WP	Water							
Batch R3427981 WG2283344-11 DUP Nitrite (as N)		L1749125-2 <0.0010	<0.0010	RPD-NA	mg/L	N/A	20	30-MAR-16
WG2283344-7 DUP Nitrite (as N)		L1749125-1 <0.0010	<0.0010	RPD-NA	mg/L	N/A	20	30-MAR-16
WG2283344-10 LCS Nitrite (as N)			101.2		%		90-110	30-MAR-16

				•	•			
			Workorder:	L1749125	Report Da	ate: 11-APR-16	Pa	ige 3 of
est		Matrix	Reference	Result C	Qualifier Units	RPD	Limit	Analyzed
NO2-L-IC-N-WP		Water						
Batch R34	427981							
WG2283344-6 Nitrite (as N)	LCS			102.2	%		90-110	30-MAR-16
WG2283344-5 Nitrite (as N)	MB			<0.0010	mg/L		0.001	30-MAR-16
WG2283344-9 Nitrite (as N)	MB			<0.0010	mg/L		0.001	30-MAR-16
WG2283344-12 Nitrite (as N)	MS		L1749125-2	99.1	%		75-125	30-MAR-16
WG2283344-8 Nitrite (as N)	MS		L1749125-1	98.9	%		75-125	30-MAR-16
NO3-L-IC-N-WP		Water						
Batch R3	427981							
WG2283344-11 Nitrate (as N)			L1749125-2 1.56	1.56	mg/L	0.3	20	30-MAR-16
WG2283344-7 Nitrate (as N)	DUP		L1749125-1 2.33	2.33	mg/L	0.0	20	30-MAR-16
WG2283344-10 Nitrate (as N)	LCS			101.1	%		90-110	30-MAR-16
WG2283344-6 Nitrate (as N)	LCS			100.6	%		90-110	30-MAR-16
WG2283344-5 Nitrate (as N)	MB			<0.0050	mg/L		0.005	30-MAR-16
WG2283344-9 Nitrate (as N)	MB			<0.0050	mg/L		0.005	30-MAR-16
WG2283344-12 Nitrate (as N)	MS		L1749125-2	93.0	%		75-125	30-MAR-16
WG2283344-8 Nitrate (as N)	MS		L1749125-1	89.6	%		75-125	30-MAR-16
P-T-COL-WP		Water						
Batch R3	429984							
WG2285541-10 Phosphorus (P)	LCS			104.0	%		80-120	04-APR-16
WG2285541-9 Phosphorus (P)	MB -Total			<0.010	mg/L		0.01	04-APR-16
PH-WP		Water						
PH-WP		Water						

		Workorder:	L174912	25	Report Date: 11-	APR-16	Pa	ige 4 of 7
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PH-WP	Water							
Batch R3427848								
WG2283544-2 LCS рН			7.41		pH units		7.3-7.5	30-MAR-16
SO4-IC-N-WP	Water							
Batch R3427981								
WG2283344-11 DUP Sulfate (SO4)		L1749125-2 75.6	75.9		mg/L	0.4	20	30-MAR-16
WG2283344-7 DUP Sulfate (SO4)		L1749125-1 79.2	79.2		mg/L	0.0	20	30-MAR-16
WG2283344-10 LCS Sulfate (SO4)			101.2		%		90-110	30-MAR-16
WG2283344-6 LCS Sulfate (SO4)			100.5		%		90-110	30-MAR-16
WG2283344-5 MB Sulfate (SO4)			<0.30		mg/L		0.3	30-MAR-16
WG2283344-9 MB Sulfate (SO4)			<0.30		mg/L		0.3	30-MAR-16
WG2283344-12 MS Sulfate (SO4)		L1749125-2	90.2		%		75-125	30-MAR-16
WG2283344-8 MS Sulfate (SO4)		L1749125-1	90.0		%		75-125	30-MAR-16
SOLIDS-TOTSUS-WP	Water							
Batch R3428224								
WG2282315-12 LCS Total Suspended Solids			98.7		%		85-115	30-MAR-16
WG2282315-11 MB Total Suspended Solids			<5.0		mg/L		5	30-MAR-16
TC,EC-QT97-WP	Water							
Batch R3427484								
WG2282577-1 MB Total Coliforms			<1		MPN/100mL		1	29-MAR-16
Escherichia Coli			<1		MPN/100mL		1	29-MAR-16
TURBIDITY-WP	Water							
Batch R3428002 WG2283292-3 DUP		L1749125-1						
Turbidity		3.11	2.84		NTU	9.1	15	29-MAR-16
WG2283292-2 LCS								

			Workorder	L174912	25	Report Date: 1	1-APR-16	Pa	ge 5 of 7
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TURBIDITY-WP		Water							
Batch R	3428002								
WG2283292-2 Turbidity	LCS			98.0		%		85-115	29-MAR-16
WG2283292-1 Turbidity	MB			<0.10		NTU		0.1	29-MAR-16

Workorder: L1749125

Report Date: 11-APR-16

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1749125

Report Date: 11-APR-16

Page 7 of 7

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
рН							
	1	28-MAR-16 12:30	30-MAR-16 08:07	0.25	44	hours	EHTR-FM
	2	28-MAR-16 13:30	30-MAR-16 08:07	0.25	43	hours	EHTR-FM
	3	28-MAR-16 14:30	30-MAR-16 08:07	0.25	42	hours	EHTR-FM
	4	28-MAR-16 15:00	30-MAR-16 08:07	0.25	41	hours	EHTR-FM
	5	28-MAR-16 16:00	30-MAR-16 08:07	0.25	40	hours	EHTR-FM
Anions and Nutrients							
Nitrate in Water by IC (Low	Level)						
	1	28-MAR-16 12:30	30-MAR-16 16:28	48	52	hours	EHT
	2	28-MAR-16 13:30	30-MAR-16 16:28	48	51	hours	EHT
	3	28-MAR-16 14:30	30-MAR-16 16:28	48	50	hours	EHT
	4	28-MAR-16 15:00	30-MAR-16 16:28	48	49	hours	EHT
Nitrite in Water by IC (Low	Level)						
	1	28-MAR-16 12:30	30-MAR-16 16:28	48	52	hours	EHT
	2	28-MAR-16 13:30	30-MAR-16 16:28	48	51	hours	EHT
	3	28-MAR-16 14:30	30-MAR-16 16:28	48	50	hours	EHT
	4	28-MAR-16 15:00	30-MAR-16 16:28	48	49	hours	EHT

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR: Exceeded ALS recommended hold time prior to sample receipt.
EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT: Exceeded ALS recommended hold time prior to analysis.
Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1749125 were received on 29-MAR-16 07:30.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

	of Custody (COC) ·Request-Forn anada Toll Free: 1 800 (ì		L17491	- 25-C	OFC				coc	Numbe		4 - 5 ፲_ ·			8
prt To	<u> </u>	Report Forma	t / Dist			÷	anacı 38fViCé	Level Ba	elow (Rus	sh Turnar	round Tin	ne (TAT) i	s not availab	le for all tes	sts)	
pany: Kas group	Select Report	Format: 🗽 P		EDD (DIGITAL)	R	Re Re	gular (Standa	erd TAT If	received	by 3pm)	-	·		•		
act: Marci Frikaman-hann		(QC) Report with Rep		s 🗌 No	Р	Pri Pri	iority (2+4 bu	siness day	s if receiv	ved by 3p	pm)					
865 waverion street 30d floor with	A Select Distribu		EMAIL MAIL	FAX	E E2	5 a	nergency (1-2 me day or we	ekend en	nergency			am – con	tact ALS for	surcharge.		
204-896-1209	Email 1 or Fax	Americin@Kas	mmoxasa"	Phindellaki	Speci	y Pate R	equired fo	r E2,E c		nalysis	s Requ	est				
ice To Same as Report To KYes T No		Invoice D		······	1	Ind	icate Filtered	(F), Pres	erved (P)	or Filtere	ed and P	reserved	(F/P) below		~	Τ_
Copy of Invoice with Report 🏾 🦅 Yes Г No	Select Invoice	Distribution: 😾	EMAIL MA	IL FAX	l d		9			3						1
pany:	Email 1 or Fax	Macquarriel	Kasgroupi	con	4		7			P	2	2			<u> </u>	1
act:	Email 2		0.0		1 5	~	5	4		t,		3				μ
Project Information	. Se	Oil and Gas Require	d Fields (client u	ise)]\$		filling			3	-97-EUDPT	2d				Number of Containers
Quote #: Q55656	Approver ID:		Cost Center:			8	4			10	3	20				onta
* 16-0300-002 · 1000 · 01	GL Account:		Routing Code:		- 1	3	1		5	4		EW				
AFE: MUT Flood way	Activity Code:				3	rt-	3		L	2	4					j j
Eurodwan	Location:				- 3	213		· ·	3	1	0-	4				
ALS Lab Work Order # (lab use only)	ALS Contact:		Sampler:		1-1-1-	£1-0	Cas-Roul	P-1-CoL	N-TOTKS	H3-Col-wp+Solids	TC- BT.	et-				
S Sample # Sample Identification and/or Coordi	nates	Date	Time	Sample Type	k 6S	12	સિં	5	1	m	ુડ	5 La				
(This description will appear on the re	port)	(dd-mmm-yy)	(hh;mm)	campic type	2	F =	<u>2</u>	3	_ ₹	Ŧ	4	<u>L</u>				
K13-12321		28/Mar/16	12:30	66	X	X										3
Log- 12.316		28/Marille	13:30	6.2	K	x									Γ	3
409-13571		28/mull6	14:30	Gw	X									<u>-</u> ·		a
2th 44		28/20114	15:00	Sw			- χ	X	X			×			+	4
			16-00	· · · · · · · · · · · · · · · · · · ·	×		<u>`</u>	<u> </u>	<i>[</i> .	- `	¥	-{~-			+	
<u>×u-12018</u>		28/mc glie	16.00	<u> </u>			_				-					2
	······															-
															<u> </u>	F
									_							┢
<u>, l</u>				<u> </u>							DECE		ab use or			L
Drinking Water (DW) Samples ¹ (client use)	Special Instructions / Sp	ecify Criteria to add or	report (client Use)	Froze	<u>, </u>				SIF Ob				No No		
amples taken from a Regulated DW System? Gい Sa	nples Not fir	us fittered			ice pa		/es 🔲	No	_	Custod						
mples for human drinking water use?		www						RATURES	<u>•c</u> 1		F	NAL COC	DLER TEMP	RATURES	s °C	
ryes rNo Sw 14	prosend				R	T										
SHIPMENT RELEASE (client use)	INITIA	L SHIPMENT RECEP	TION (lab use onl)	y)	┢	<u> i </u>	F	INAL SI	HIPMEI		CEPTIC	ON (lab	use only)			<u> </u>
py: Date: Time:	Received by:		Date:	Time:	Rece	ved by:					Date:		Time:	×		
AL MALLY M. M. 28/14 17.00 K PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION	<u> </u>		TE - LABORATORY	7:30		NT COPY						14-0128e v69 (from/04 January 24			

al portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agroes with the Terms and Conditions as specified on the back page of the while - report copy.

are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

MB Infra & Transport - Highway Engineering - 6th Floor ATTN: MARCI FRIEDMAN HAMM 865 WAVERLY ST 3RD FLOOR Winnipeg MB Date Received:29-MAR-16Report Date:11-APR-16 07:06 (MT)Version:FINAL

Client Phone: 204-896-1209

Certificate of Analysis

Lab Work Order #: L1749445 Project P.O. #: MIT Floodway

Job Reference: C of C Numbers: Legal Site Desc:

Floodway

16-0300-002 1000.01

Hua Wo Chemistry Laboratory Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1749445-1 K09-12012							
Sampled By: AG on 29-MAR-16 @ 10:30							
Matrix: GW							
Total Coliform and E.coli by MPN QT97 Total Coliforms	<1		1	MPN/100mL		29-MAR-16	R3427491
Escherichia Coli	<1		1	MPN/100mL		29-MAR-16	R3427491
ROU1W Dissolved Floodway			·				
Alkalinity, Bicarbonate							
Bicarbonate (HCO3)	427		1.2	mg/L		31-MAR-16	
Alkalinity, Carbonate							
Carbonate (CO3)	<0.60		0.60	mg/L		31-MAR-16	
Alkalinity, Hydroxide							
Hydroxide (OH)	<0.34		0.34	mg/L		31-MAR-16	
Alkalinity, Total (as CaCO3)	250		4.0	ma/l		30-MAR-16	D2407040
Alkalinity, Total (as CaCO3)	350		1.0	mg/L		JU-IVIAR-10	R3427848
Chloride in Water by IC Chloride (Cl)	23.0		0.50	mg/L		30-MAR-16	R3427981
Conductivity	20.0		0.00			00 W/ 41X-10	10721001
Conductivity	1060		1.0	umhos/cm		30-MAR-16	R3427848
Dissolved Metals by ICP-MS							
Calcium (Ca)-Dissolved	94.9		0.20	mg/L	30-MAR-16	08-APR-16	R3434792
Magnesium (Mg)-Dissolved	71.3		0.050	mg/L	30-MAR-16	08-APR-16	R3434792
Potassium (K)-Dissolved	4.50		0.10	mg/L	30-MAR-16	08-APR-16	R3434792
Sodium (Na)-Dissolved	45.2		0.050	mg/L	30-MAR-16	08-APR-16	R3434792
Hardness Calculated							
Hardness (as CaCO3)	531		0.20	mg/L		09-APR-16	
Ion Balance Calculation				0/			
Ion Balance Cation - Anion Balance	101			%		09-APR-16 09-APR-16	
Anion Sum	0.4 12.6			me/L		09-APR-16 09-APR-16	
Cation Sum	12.0			me/L		09-APR-16	
Nitrate in Water by IC (Low Level)	12.1			IIIC/L		03-7111110	
Nitrate (as N)	<0.0050		0.0050	mg/L		30-MAR-16	R3427981
Nitrate+Nitrite				0			
Nitrate and Nitrite as N	<0.0051		0.0051	mg/L		04-APR-16	
Nitrite in Water by IC (Low Level)							
Nitrite (as N)	<0.0010		0.0010	mg/L		30-MAR-16	R3427981
Sulfate in Water by IC							
Sulfate (SO4)	237		0.30	mg/L		30-MAR-16	R3427981
TDS calculated	000		F 0	m n/l			
TDS (Calculated)	686		5.0	mg/L		09-APR-16	
Turbidity Turbidity	73.3		0.10	NTU		30-MAR-16	R3427996
pH	13.3		0.10	NIU		50-IMAIX-10	113427990
рн	7.44		0.10	pH units		30-MAR-16	R3427848
L1749445-2 K09-12011				,			
Sampled By: AG on 29-MAR-16 @ 11:30							
Matrix: GW							
ROU1W Dissolved Floodway							
Alkalinity, Bicarbonate							
Bicarbonate (HCO3)	286		1.2	mg/L		31-MAR-16	
Alkalinity, Carbonate							
Carbonate (CO3)	<0.60		0.60	mg/L		31-MAR-16	
Alkalinity, Hydroxide							

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1749445-2 K09-12011							
Sampled By: AG on 29-MAR-16 @ 11:30							
Matrix: GW							
Alkalinity, Hydroxide							
Hydroxide (OH)	<0.34		0.34	mg/L		31-MAR-16	
Alkalinity, Total (as CaCO3)							
Alkalinity, Total (as CaCO3)	235		1.0	mg/L		30-MAR-16	R3427848
Chloride in Water by IC Chloride (Cl)	7.98		0.50	mg/L		30-MAR-16	R3427981
Conductivity	7.50		0.50	ing/L		50 MIAIC 10	1(3427901
Conductivity	454		1.0	umhos/cm		30-MAR-16	R3427848
Dissolved Metals by ICP-MS							
Calcium (Ca)-Dissolved	47.4		0.20	mg/L	30-MAR-16	08-APR-16	R3434792
Magnesium (Mg)-Dissolved	27.1		0.050	mg/L	30-MAR-16	08-APR-16	R3434792
Potassium (K)-Dissolved	2.62		0.10	mg/L	30-MAR-16	08-APR-16	R3434792
Sodium (Na)-Dissolved Hardness Calculated	9.54		0.050	mg/L	30-MAR-16	08-APR-16	R3434792
Hardness (as CaCO3)	230		0.20	mg/L		09-APR-16	
Ion Balance Calculation							
Ion Balance	97.0			%		09-APR-16	
Cation - Anion Balance	-1.5			%		09-APR-16	
Anion Sum	5.23			me/L		09-APR-16	
Cation Sum	5.08			me/L		09-APR-16	
Nitrate in Water by IC (Low Level) Nitrate (as N)	<0.0050		0.0050	mg/L		30-MAR-16	R3427981
Nitrate+Nitrite Nitrate and Nitrite as N	<0.0051		0.0051	mg/L		04-APR-16	
Nitrite in Water by IC (Low Level) Nitrite (as N)	<0.0010		0.0010	mg/L		30-MAR-16	R3427981
Sulfate in Water by IC Sulfate (SO4)	15.4		0.30	mg/L		30-MAR-16	R3427981
TDS calculated							
TDS (Calculated)	251		5.0	mg/L		09-APR-16	
Turbidity Turbidity	0.82		0.10	NTU		30-MAR-16	R3427996
рН рН	8.02		0.10	pH units		30-MAR-16	R3427848
L1749445-3 K11-12017							
Sampled By: AG on 29-MAR-16 @ 12:30							
Matrix: GW							
ROU1W Dissolved Floodway							
Alkalinity, Bicarbonate							
Bicarbonate (HCO3)	324		1.2	mg/L		31-MAR-16	
Alkalinity, Carbonate Carbonate (CO3)	<0.60		0.60	mg/L		31-MAR-16	
Alkalinity, Hydroxide Hydroxide (OH)	<0.34		0.34	mg/L		31-MAR-16	
Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3)	265		1.0	mg/L		30-MAR-16	R3427848
Chloride in Water by IC Chloride (Cl)	21.9		0.50	mg/L		30-MAR-16	R3427981
Conductivity Conductivity	1080		1.0	umhos/cm		30-MAR-16	R3427848
Dissolved Metals by ICP-MS							
Calcium (Ca)-Dissolved	95.3		0.20	mg/L	30-MAR-16	08-APR-16	R3434792

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1749445-3 K11-12017							
Sampled By: AG on 29-MAR-16 @ 12:30							
Matrix: GW							
Dissolved Metals by ICP-MS							
Magnesium (Mg)-Dissolved	68.4		0.050	mg/L	30-MAR-16	08-APR-16	R3434792
Potassium (K)-Dissolved	3.93		0.10	mg/L	30-MAR-16	08-APR-16	R3434792
Sodium (Na)-Dissolved	48.0		0.050	mg/L	30-MAR-16	08-APR-16	R3434792
Hardness Calculated							
Hardness (as CaCO3)	520		0.20	mg/L		09-APR-16	
Ion Balance Calculation							
Ion Balance	102			%		09-APR-16	
Cation - Anion Balance	1.2			%		09-APR-16	
Anion Sum	12.3			me/L		09-APR-16	
Cation Sum	12.6			me/L		09-APR-16	
Nitrate in Water by IC (Low Level)							
Nitrate (as N)	<0.0050		0.0050	mg/L		30-MAR-16	R3427981
Nitrate+Nitrite							
Nitrate and Nitrite as N	<0.0051		0.0051	mg/L		04-APR-16	
Nitrite in Water by IC (Low Level)							
Nitrite (as N)	<0.0010		0.0010	mg/L		30-MAR-16	R3427981
Sulfate in Water by IC			a = 1				Da (Territ
Sulfate (SO4)	305		0.30	mg/L		30-MAR-16	R3427981
TDS calculated							
TDS (Calculated)	702		5.0	mg/L		09-APR-16	
Turbidity							
Turbidity	3.62		0.10	NTU		30-MAR-16	R3427996
pH	7.00		0.40				D0 4070 40
рН	7.83		0.10	pH units		30-MAR-16	R3427848
L1749445-4 K11-12016							
Sampled By: AG on 29-MAR-16 @ 15:30							
Matrix: GW							
ROU1W Dissolved Floodway							
Alkalinity, Bicarbonate							
Bicarbonate (HCO3)	364		1.2	mg/L		31-MAR-16	
Alkalinity, Carbonate				_			
Carbonate (CO3)	<0.60		0.60	mg/L		31-MAR-16	
Alkalinity, Hydroxide							
Hydroxide (OH)	<0.34		0.34	mg/L		31-MAR-16	
Alkalinity, Total (as CaCO3)							
Alkalinity, Total (as CaCO3)	299		1.0	mg/L		30-MAR-16	R3427848
Chloride in Water by IC							
Chloride (Cl)	16.1		0.50	mg/L		30-MAR-16	R3427981
Conductivity							
Conductivity	990		1.0	umhos/cm		30-MAR-16	R3427848
Dissolved Metals by ICP-MS			_				
Calcium (Ca)-Dissolved	94.4		0.20	mg/L	30-MAR-16	08-APR-16	R3434792
Magnesium (Mg)-Dissolved	64.1		0.050	mg/L	30-MAR-16	08-APR-16	R3434792
Potassium (K)-Dissolved	4.49		0.10	mg/L	30-MAR-16	08-APR-16	R3434792
Sodium (Na)-Dissolved	33.8		0.050	mg/L	30-MAR-16	08-APR-16	R3434792
Hardness Calculated			0.00				
Hardness (as CaCO3)	500		0.20	mg/L		09-APR-16	
Ion Balance Calculation	400			0/			
Ion Balance	102			%		09-APR-16	
Cation - Anion Balance	1.0			%		09-APR-16	
Anion Sum	11.3			me/L		09-APR-16	

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1749445-4 K11-12016							
Sampled By: AG on 29-MAR-16 @ 15:30							
Matrix: GW							
Ion Balance Calculation							
Cation Sum	11.6			me/L		09-APR-16	
Nitrate in Water by IC (Low Level)							
Nitrate (as N)	<0.0050		0.0050	mg/L		30-MAR-16	R3427981
Nitrate+Nitrite Nitrate and Nitrite as N	<0.0051		0.0051	mg/L		04-APR-16	
Nitrite in Water by IC (Low Level)	<0.0031		0.0051	ing/L		04-AI 10-10	
Nitrite (as N)	<0.0010		0.0010	mg/L		30-MAR-16	R3427981
Sulfate in Water by IC							
Sulfate (SO4)	236		0.30	mg/L		30-MAR-16	R3427981
TDS calculated							
TDS (Calculated)	629		5.0	mg/L		09-APR-16	
Turbidity Turbidity	0.11		0.10	NTU		30-MAR-16	R3427996
pH	0.11		0.10			00-10/-10	110421330
рН	7.75		0.10	pH units		30-MAR-16	R3427848
L1749445-5 MW100			-				
Sampled By: AG on 29-MAR-16 @ 16:00							
Matrix: GW							
ROU1W Dissolved Floodway							
Alkalinity, Bicarbonate							
Bicarbonate (HCO3)	277		1.2	mg/L		31-MAR-16	
Alkalinity, Carbonate Carbonate (CO3)	<0.60		0.60	mg/L		31-MAR-16	
Alkalinity, Hydroxide	<0.00		0.00	ing/L			
Hydroxide (OH)	<0.34		0.34	mg/L		31-MAR-16	
Alkalinity, Total (as CaCO3)				_			
Alkalinity, Total (as CaCO3)	227		1.0	mg/L		30-MAR-16	R3427848
Chloride in Water by IC							
Chloride (Cl)	7.99		0.50	mg/L		30-MAR-16	R3427981
Conductivity Conductivity	459		1.0	umhos/cm		30-MAR-16	R3427848
Dissolved Metals by ICP-MS	409		1.0	umnos/cm		30-IVIAR-10	K3427040
Calcium (Ca)-Dissolved	47.7		0.20	mg/L	30-MAR-16	08-APR-16	R3434792
Magnesium (Mg)-Dissolved	26.8		0.050	mg/L	30-MAR-16	08-APR-16	R3434792
Potassium (K)-Dissolved	2.70		0.10	mg/L	30-MAR-16	08-APR-16	R3434792
Sodium (Na)-Dissolved	9.51		0.050	mg/L	30-MAR-16	08-APR-16	R3434792
Hardness Calculated							
Hardness (as CaCO3)	229		0.20	mg/L		09-APR-16	
Ion Balance Calculation	00.7			%			
Cation - Anion Balance	99.7			%		09-APR-16 09-APR-16	
Anion Sum	5.09			me/L		09-APR-16	
Cation Sum	5.07			me/L		09-APR-16	
Nitrate in Water by IC (Low Level)							
Nitrate (as N)	<0.0050		0.0050	mg/L		30-MAR-16	R3427981
Nitrate+Nitrite							
Nitrate and Nitrite as N	<0.0051		0.0051	mg/L		04-APR-16	
Nitrite in Water by IC (Low Level)	-0.0010		0.0040	mc/l		20 MAP 16	D2407004
Nitrite (as N) Sulfate in Water by IC	<0.0010		0.0010	mg/L		30-MAR-16	R3427981
Sulfate (SO4)	15.4		0.30	mg/L		30-MAR-16	R3427981

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1749445-5 MW100							
Sampled By: AG on 29-MAR-16 @ 16:00							
Matrix: GW							
TDS calculated							
TDS (Calculated)	246		5.0	mg/L		09-APR-16	
Turbidity	0.77		0.40			00 140 10	D0 407000
Turbidity pH	0.77		0.10	NTU		30-MAR-16	R3427996
рн pH	8.08		0.10	pH units		30-MAR-16	R3427848
L1749445-6 PTH 44							
Sampled By: AG on 29-MAR-16 @ 14:00							
Matrix: SW							
Miscellaneous Parameters							
Escherichia Coli	139		1	MPN/100mL		29-MAR-16	R3427497
Total Coliforms	980		1	MPN/100mL		29-MAR-16	R3427497

ALK-CO3CO3-CALC-WP		Alkalinity, Carbonate	CALCULATION
		ts acid neutralizing capacity.Alkalinity is imparte carbonate is calculated and reported as mg CO:	d by bicarbonate, carbonate and hydroxide components of water. 3 2-/L.
ALK-HCO3HCO3-CALC- WP	Water	Alkalinity, Bicarbonate	CALCULATION
		ts acid neutralizing capacity.Alkalinity is imparte bicarbonate is calculated and reported as mg He	d by bicarbonate, carbonate and hydroxide components of water. CO3-/L
ALK-OHOH-CALC-WP	Water	Alkalinity, Hydroxide	CALCULATION
		ts acid neutralizing capacity.Alkalinity is imparte hydroxide is calculated and reported as mg OH-	d by bicarbonate, carbonate and hydroxide components of water. /L.
ALK-TITR-WP	Water	Alkalinity, Total (as CaCO3)	APHA 2320B
			ed by bicarbonate, carbonate and hydroxide components of e successive HCO3- and H2CO3 endpoints indicated
CL-IC-N-WP	Water	Chloride in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy	zed by Ion Cl	nromatography with conductivity and/or UV dete	ction.
EC-QT97-ENDPT-WP	Water	E. coli to endpoint by MPN QT97	APHA 9223B QT97
mixing serial dilutions of sa	ample with a point of the net	product containing hydrolyzable substrates and umber of wells exhibiting positive responses are	Coliform Test". Eschericia coli bacteria are determined by sealing in a 97-well packet. The packet is incubated at 35.0 – counted. The final results are obtained by comparing the
EC-WP	Water	Conductivity	APHA 2510B
Conductivity of an aqueous and chemically inert electro		ers to its ability to carry an electric current. Con-	ductance of a solution is measured between two spatially fixed
ETL-HARDNESS-DIS-WP	Water	Hardness Calculated	HARDNESS CALCULATED
ETL-SOLIDS-CALC-WP	Water	TDS calculated	CALCULATION
IONBALANCE-CALC-WP	Water	Ion Balance Calculation	APHA 1030E
MET-D-MS-WP	Water	Dissolved Metals by ICP-MS	APHA 3030B/EPA 6020A-D
This analysis involves filtra	ition (APHA 3	3030B) and analysis by inductively coupled plasm	na - mass spectrometry (EPA Method 6020A).
NO2+NO3-CALC-L-WP	Water	Nitrate+Nitrite	CALCULATION
NO2-L-IC-N-WP	Water	Nitrite in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are analy	zed by Ion Cl	nromatography with conductivity and/or UV dete	ction.
NO3-L-IC-N-WP	Water	Nitrate in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are analy	zed by Ion Cł	nromatography with conductivity and/or UV dete	ction.
PH-WP	Water	рН	APHA 4500H
The pH of a sample is the reference electrode.	determinatior	n of the activity of the hydrogen ions by potentio	metric measurement using a standard hydrogen electrode and a
SO4-IC-N-WP	Water	Sulfate in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy:	zed by Ion Cl	nromatography with conductivity and/or UV dete	ction.
TC,EC-QT97-WP	Water	Total Coliform and E.coli by MPN QT97	APHA 9223B QT97
determined simultaneously	 The sample 	e is mixed with a mixture of hydrolyzable substra	me Substrate Coliform Test". E. coli and Total Coliform are tes and then sealed in a 97-well packet. The packet is incubated onses are counted. The final results are obtained by comparing

Method Reference**

L1749445 CONTD.... PAGE 7 of 8 Version: FINAL

ALS Test Code

Test Method References:

Matrix

Test Description

ALS Test Code	Matrix	Test Description	Method Reference**
the number of positive resp	ponses to a	probability table.	
TC-QT97-ENDPT-WP	Water	Total Coliforms to endpoint by MPN QT97	APHA 9223B QT97
serial dilutions of sample w	vith a produc	ct containing hydrolyzable substrates and sealing	Coliform Test". Coliform bacteria are determined by mixing in a 97-well packet. The packet is incubated for 18 hours at The final results are obtained by comparing the positive counts
TURBIDITY-WP	Water	Turbidity	APHA 2130B (modified)
Turbidity in aqueous matric	ces is deterr	nined by the nephelometric method.	
* ALS test methods may in	corporate m	odifications from specified reference methods to i	mprove performance.
The last two letters of the a	above test c	ode(s) indicate the laboratory that performed anal	ytical analysis for that test. Refer to the list below:
Laboratory Definition Co	de Labo	pratory Location	
	ALS	ENVIRONMENTAL - WINNIPEG, MANITOBA, C	
WP	/\LO		

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder	: L174944	5	Report Date: 11-	APR-16	Pa	ge 1 of
Client:	MB Infra & Transport - 865 WAVERLY ST 3R Winnipeg MB	D FLOOR	ing - 6th Flooi	ŗ				
Contact:	MARCI FRIEDMAN HA		Desult	Qualifian			1 1	A
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-TITR-WP	Water							
	R3427848							
Alkalinity Tot	LCS al (as CaCO3)		100.1		%		85-115	30-MAR-16
WG2283544-1			100.1		70		05-115	30-IVIAR-10
	al (as CaCO3)		<1.0		mg/L		1	30-MAR-16
CL-IC-N-WP	Water							
	R3427981							
WG2283344-6								
Chloride (Cl)			100.7		%		90-110	30-MAR-16
WG2283344-5	6 MB							
Chloride (Cl)			<0.50		mg/L		0.5	30-MAR-16
EC-QT97-ENDPT	-WP Water							
Batch F	R3427497							
WG2283150-1								
Escherichia C	Coli		<1		MPN/100mL		1	29-MAR-16
EC-WP	Water							
Batch F	R3427848							
WG2283544-3	LCS							
Conductivity			98.8		%		90-110	30-MAR-16
WG2283544-1	MB		<1.0		umbes/em		4	
Conductivity			<1.U		umhos/cm		1	30-MAR-16
MET-D-MS-WP	Water							
	R3434792							
WG2283295-2 Calcium (Ca)·			98.4		%		80-120	08-APR-16
. ,	Mg)-Dissolved		95.2		%		80-120	08-APR-16
Potassium (K	•		104.9		%		80-120	08-APR-16
Sodium (Na)-			96.7		%		80-120	08-APR-16
WG2283295-1							00 120	
Calcium (Ca)			<0.20		mg/L		0.2	08-APR-16
Magnesium (I	Mg)-Dissolved		<0.050		mg/L		0.05	08-APR-16
Potassium (K)-Dissolved		<0.10		mg/L		0.1	08-APR-16

NO2-L-IC-N-WP

Water

		Workorder: L17	49445	- Report Date: 11-APR	-16 Pa	ige 2 of 4
Test	Matrix	Reference Re	sult Qualifier	Units F	RPD Limit	Analyzed
NO2-L-IC-N-WP	Water					
Batch R3427981						
WG2283344-6 LCS Nitrite (as N)		10	2.2	%	90-110	30-MAR-16
WG2283344-5 MB Nitrite (as N)		<0	.0010	mg/L	0.001	30-MAR-16
NO3-L-IC-N-WP	Water					
Batch R3427981						
WG2283344-6 LCS Nitrate (as N)		10	0.6	%	90-110	30-MAR-16
WG2283344-5 MB						
Nitrate (as N)		<0	.0050	mg/L	0.005	30-MAR-16
PH-WP	Water					
Batch R3427848						
WG2283544-2 LCS						
рН		7.4	1	pH units	7.3-7.5	30-MAR-16
SO4-IC-N-WP	Water					
Batch R3427981						
WG2283344-6 LCS Sulfate (SO4)		10	0.5	%	90-110	30-MAR-16
WG2283344-5 MB						
Sulfate (SO4)		<0	.30	mg/L	0.3	30-MAR-16
TC,EC-QT97-WP	Water					
Batch R3427491						
WG2282752-1 MB Total Coliforms		.1		MPN/100mL		
Escherichia Coli		<1		MPN/100mL	1	29-MAR-16 29-MAR-16
	Matan				I	29-MAR-10
TC-QT97-ENDPT-WP	Water					
Batch R3427497						
WG2283150-1 MB Total Coliforms		<1		MPN/100mL	1	29-MAR-16
TURBIDITY-WP	Water					
Batch R3427996						
WG2283752-2 LCS Turbidity		98	.5	%	85-115	30-MAR-16
WG2283752-1 MB						
Turbidity		<0	.10	NTU	0.1	30-MAR-16

Workorder: L1749445

Report Date: 11-APR-16

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material

CRM Certified Reference Material CCV Continuing Calibration Verification

CVS Calibration Verification Standard

LCSD Laboratory Control Sample Duplicate

Workorder: L1749445

Report Date: 11-APR-16

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
рН							
	1	29-MAR-16 10:30	30-MAR-16 08:07	0.25	22	hours	EHTR-FM
	2	29-MAR-16 11:30	30-MAR-16 08:07	0.25	21	hours	EHTR-FM
	3	29-MAR-16 12:30	30-MAR-16 08:07	0.25	20	hours	EHTR-FM
	4	29-MAR-16 15:30	30-MAR-16 08:07	0.25	17	hours	EHTR-FM
	5	29-MAR-16 16:00	30-MAR-16 08:07	0.25	16	hours	EHTR-FM

Legend & Qualifier Definitions:

EHTR-FM:	Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR:	Exceeded ALS recommended hold time prior to sample receipt.
EHTL:	Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT:	Exceeded ALS recommended hold time prior to analysis.
Rec. HT:	ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1749445 were received on 29-MAR-16 16:05.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

ALS			tody (COC) / equest Form [−] Il Free: 1 800 66			L17494	45-COF	C				C <u>Num</u> b			029 ∝_∕		7
Report To				Report Format	t / Distribution			Select Se	rvico Lev	/el Belo	w (Rush Turn	around Tit	me (TAT) k	a not avail:	able for all tes	ls)	
Company:	is group		Select Report Fo	ormat: 🗹) Pi		EDD (DIGITAL)	RX	Regular (S	tandard T	TAT If re	ceived by 3pr	n)					
Contact: MO	rci FEIRDMANA Hann		Quality Control (QC) Report with Rep	ort 🗍 Yes	3 🗌 No	P 🔲	Priority (2-	4 busines	a days i	if received by	3pm)					
Address: 865	· · · · · · · · · · · · · · · · · · ·	loor wKMB	Criteria on R Select Distributio	eport - provide details bei on: 🛛 🕅 E		FAX	E	Same day	or weeke	nd emer	ays if received		0am – coni	tact ALS fo	x surcharge.		
Phone:	96-1209	·	Email 1 or Fax	Ameluw@Ka lann@Kgsu	rout can	-INDell@Kgs	Specify Da	te Require	d for El	2,E or		is Requ	Jest				
Invoice To	Same as Report To 🛛 🕺 🕅 Yes			Invoice Di	stribution			Indicate Fil	lered (F),	Preserv	ved (P) or Filte	ered and P	Preserved (F/P) below	,		
	Copy of Invoice with Report 🔊 🔊 Yes		Select Invoice D	<u>w</u>			3			2							J
Company:			Email 1 or Fax	Macqua	1-le@Kas	arap.con	110		-FUD 07-U	3							
Contact:			Email 2		V	<u> </u>	Lng;		Ŀ.	2							2
,	Project Information		Lun, n / Lu	oil and Gas Require		50)	[<i>j</i> 0] ī		0	EWART							Number of Containers
	255656		Approver ID:		Cost Center:				<u>n</u>	Ű.							l le
Job #: 10-	0300-002 (000,0)		GL Account:		Routing Code:			-	4	1							l e
PO/AFE:	Art Elodway		Activity Code:				30	5	8	t or							nbe
LSD:	induar '		Location:		Г		or j		1	t							Z
ALS Lab Wor	k Order # (lab use only)		ALS Contact: 🗸	Jody	Sampler: Ac-		PA 14		5	18-							
ALS Sample # (lab use only)	Sample Identification (This description will a			Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	F F	-	ÿ	J J							
1	K09-12012			29 mor 16	10:30	GW	XX		<u> </u>						<u> </u>	+	3
7	Kog- 1201			· • • •	11:30	1	X	┼╼╌┼╸								+	2
				29 mr 16		Gu						-	<u> </u>			+	
·	K11- 12017			29 mar 14	12.30	Gu	×	┥╍╼┼	-				╋╸╴┼╴	-+-	<u> </u>		9
	<u>KII-12016</u>	··		29 mille	15:30	Gu	×										l ĝ
	MW100			29 mr 16	16:00	Gru										<u> </u>	12
Y				29 mr 14	14:00	SW	╡		× -	x					_ <u>_</u>		P
	·····														<u> </u>	<u>† </u>	İ
<u> </u>						· · · ·		┼──┼	-+	-+			$\left \right $		_ <u> </u>	┼──	
l				L	<u> </u>	<u> </u>	$\frac{1}{1}$		SAMPL	ECO		S RECE	 EIVED (14	ab use r			L
	Water (DW) Samples ¹ (client use)	Special	i instructions / Spe	clfy Criteria to add on	n roport (client Use)		Frozen				SIF	Dbservat	tions	Yes	No.		
Are samples taken I Ye	from a Regulated DW System? s TNc	Not Geld	Filter	d or Pres	iernd		Ice packs Cooling Ini			No	Custo	ody seal	l intact	Yes	No No	· د	
Are samples for hu ΓΓΥe	uman drinking water use? s						INIITIAL	COOLER TE	MPERAT	URES 9	c	[FINAL COC	ILER TEM	PERATURES)°C	
	SHIPMENT RELEASE (client use)	<u> </u>	INITIAI	SHIPMENT RECEP	TION (lab use only)	 		FINA	AL SHI	IPMENT R	ECEPTI	ON (lab	use onl [,]			
Released by:	New W Date:	Time: Receive		h	Date: 29-3-14	Time: lb/US	Received	by:				Date:		Time:	<u></u>		
REFER TO BACK P	AGE FOR ALS LOCATIONS AND SAMPLING IN			-r WHI	TE - LABORATORY	COPY VELLO	N - CLIENT C	OBY	_		_	·		Front/D4 Jamson	. 10.1		

Failure to complete all portions of this form may delay analysis. Please fall in this form LEGIBLY, By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1, If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

MB Infra & Transport - Highway Engineering - 6th Floor ATTN: MARCI FRIEDMAN-HAMM **3RD FLOOR** 865 WAVERLY ST Winnipea MB R3T5P4

Date Received: 30-MAR-16 Report Date: 11-APR-16 09:52 (MT) Version: FINAL

Client Phone: 204-896-1209

Certificate of Analysis

Lab Work Order #: L1750072 Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc:

MIT Floodway 16-0300-002.1000.01

Floodway

Hua Wo Chemistry Laboratory Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1750072-1 G050C006 - DOMESTIC							
Sampled By: CLIENT on 30-MAR-16 @ 09:00							
Matrix: GW							
Miscellaneous Parameters							
Bicarbonate (HCO3)	252		1.2	mg/L		06-APR-16	
Carbonate (CO3)	<0.60		0.60	mg/L		06-APR-16	
Hydroxide (OH)	<0.34		0.34	mg/L		06-APR-16	
Alkalinity, Total (as CaCO3)	206		1.0	mg/L		04-APR-16	R3430389
Chloride (Cl)	539		5.0	mg/L		01-APR-16	R3429922
Conductivity	2340		1.0	umhos/cm		04-APR-16	R3430389
Hardness (as CaCO3)	477		0.30	mg/L		09-APR-16	
Nitrate (as N)	<0.050	DLM	0.050	mg/L		01-APR-16	R3429922
Nitrate and Nitrite as N	<0.051		0.051	mg/L		04-APR-16	
Nitrite (as N)	<0.010	DLM	0.010	mg/L		01-APR-16	R3429922
Sulfate (SO4)	295		3.0	mg/L		01-APR-16	R3429922
TDS (Calculated)	1450		5.0	mg/L		09-APR-16	
Turbidity	38.4		0.10	NTU		01-APR-16	R3430190
Η	7.84		0.10	pH units		04-APR-16	R3430389
Ion Balance Calculation			0110	p			
Ion Balance	94.1			%		09-APR-16	
Cation - Anion Balance	-3.0			%		09-APR-16	
Anion Sum	25.5			me/L		09-APR-16	
Cation Sum	24.0			me/L		09-APR-16	
Total Coliform and E.coli							
Total Coliforms	1		0	MPN/100mL		30-MAR-16	R3428121
Escherichia Coli	0		0	MPN/100mL		30-MAR-16	R3428121
Total Metals by ICP-MS Calcium (Ca)-Total	95.5		0.00	~~~/l	01-APR-16	08-APR-16	D2424702
Iron (Fe)-Total	3.76		0.20 0.10	mg/L mg/L	01-APR-16	08-APR-16	R3434792 R3434792
Magnesium (Mg)-Total	57.9		0.050	mg/L	01-APR-16	08-APR-16	R3434792
Manganese (Mn)-Total	0.0722		0.0010	mg/L	01-APR-16	08-APR-16	R3434792
Potassium (K)-Total	12.8		0.10	mg/L	01-APR-16	08-APR-16	R3434792
Sodium (Na)-Total	325		0.050	mg/L	01-APR-16	08-APR-16	R3434792
ROU4W Total Floodway				U U			
Fluoride in Water by IC							
Fluoride (F)	0.41		0.20	mg/L		01-APR-16	R3429922
L1750072-2 K1B-12322 - GW							
Sampled By: CLIENT on 30-MAR-16 @ 12:00							
Matrix: GW							
Miscellaneous Parameters							
Bicarbonate (HCO3)	302		1.2	mg/L		06-APR-16	
Carbonate (CO3)	<0.60		0.60	mg/L		06-APR-16	
Hydroxide (OH)	<0.34		0.34	mg/L		06-APR-16	
Alkalinity, Total (as CaCO3)	247		1.0	mg/L		04-APR-16	R3430389
Chloride (Cl)	16.1		0.50	mg/L		01-APR-16	R3429922
Conductivity	741		1.0	umhos/cm		04-APR-16	R3430389
Hardness (as CaCO3)	356		0.20	mg/L		10-APR-16	
Nitrate (as N)	<0.0050		0.0050	mg/L		01-APR-16	R3429922
Nitrate and Nitrite as N	<0.0051		0.0051	mg/L		04-APR-16	
Nitrite (as N)	<0.0010		0.0010	mg/L		01-APR-16	R3429922
Sulfate (SO4)	148		0.30	mg/L		01-APR-16	R3429922
TDS (Calculated)	450		5.0	mg/L		10-APR-16	
Turbidity	0.84		0.10	NTU		01-APR-16	R3430190

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1750072-2 K1B-12322 - GW							
Sampled By: CLIENT on 30-MAR-16 @ 12:00							
Matrix: GW							
Hq	7.60		0.10	pH units		04-APR-16	R3430389
Ion Balance Calculation	7.00		0.10	priums		04-AF K-10	K3430309
Ion Balance	96.7			%		10-APR-16	
Cation - Anion Balance	-1.7			%		10-APR-16	
Anion Sum	8.48			me/L		10-APR-16	
Cation Sum	8.20			me/L		10-APR-16	
Dissolved Metals by ICP-MS							
Calcium (Ca)-Dissolved	61.9		0.20	mg/L	04-APR-16	09-APR-16	R3435011
Magnesium (Mg)-Dissolved	48.8		0.050	mg/L	04-APR-16	09-APR-16	R3435011
Potassium (K)-Dissolved	3.36		0.10	mg/L	04-APR-16	09-APR-16	R3435011
Sodium (Na)-Dissolved	23.3		0.050	mg/L	04-APR-16	09-APR-16	R3435011
L1750072-3 K11-12014 - GW							
Sampled By: CLIENT on 30-MAR-16 @ 14:15							
Matrix: GW							
Miscellaneous Parameters							
Bicarbonate (HCO3)	301		1.2	mg/L		06-APR-16	
Carbonate (CO3)	<0.60		0.60	mg/L		06-APR-16	
Hydroxide (OH)	<0.34		0.34	mg/L		06-APR-16	
Alkalinity, Total (as CaCO3)	247		1.0	mg/L		04-APR-16	R3430389
Chloride (Cl)	13.6		0.50	mg/L		01-APR-16	R3429922
Conductivity	573		1.0	umhos/cm		04-APR-16	R3430389
Hardness (as CaCO3)	299		0.20	mg/L		10-APR-16	110 100000
Nitrate (as N)	0.252		0.0050	mg/L		01-APR-16	R3429922
Nitrate and Nitrite as N	0.252		0.0051	mg/L		04-APR-16	110420022
Nitrite (as N)	<0.0010		0.0031	mg/L		01-APR-16	R3429922
Sulfate (SO4)	57.6		0.0010	mg/L		01-APR-16	R3429922 R3429922
TDS (Calculated)				-		10-APR-16	K3429922
	327		5.0	mg/L			D 0 400 400
Turbidity	<0.10		0.10	NTU		01-APR-16	R3430190
pH	7.63		0.10	pH units		04-APR-16	R3430389
lon Balance Calculation	07.2			%		10-APR-16	
Cation - Anion Balance	97.3 -1.4			%		10-APR-16	
Anion Sum	6.53			me/L		10-APR-16	
Cation Sum	6.36			me/L		10-APR-16	
Total Coliform and E.coli by MPN QT97	0.00						
Total Coliforms	9		1	MPN/100mL		30-MAR-16	R3428119
Escherichia Coli	<1		1	MPN/100mL		30-MAR-16	R3428119
Dissolved Metals by ICP-MS							
Calcium (Ca)-Dissolved	59.9		0.20	mg/L	04-APR-16	09-APR-16	R3435011
Magnesium (Mg)-Dissolved	36.3		0.050	mg/L	04-APR-16	09-APR-16	R3435011
Potassium (K)-Dissolved	3.82		0.10	mg/L	04-APR-16	09-APR-16	R3435011
Sodium (Na)-Dissolved	6.53		0.050	mg/L	04-APR-16	09-APR-16	R3435011
_1750072-4 K11-12015 - GW							
Sampled By: CLIENT on 30-MAR-16 @ 15:15							
Matrix: GW							
Miscellaneous Parameters							
Bicarbonate (HCO3)	270		1.2	mg/L		06-APR-16	
Carbonate (CO3)	<0.60		0.60	mg/L		06-APR-16	
Hydroxide (OH)	<0.34		0.34	mg/L		06-APR-16	
Alkalinity, Total (as CaCO3)	222		1.0	mg/L		04-APR-16	R3430389

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1750072-4 K11-12015 - GW							
Sampled By: CLIENT on 30-MAR-16 @ 15:15							
Matrix: GW							
Chloride (CI)	16.7		0.50	mg/L		01-APR-16	R3429922
Conductivity	532		1.0	umhos/cm		04-APR-16	R3430389
Hardness (as CaCO3)	269		0.20	mg/L		10-APR-16	
Nitrate (as N)	0.207		0.0050	mg/L		01-APR-16	R3429922
Nitrate and Nitrite as N	0.207		0.0051	mg/L		04-APR-16	
Nitrite (as N)	<0.0010		0.0010	mg/L		01-APR-16	R3429922
Sulfate (SO4)	50.5		0.30	mg/L		01-APR-16	R3429922
TDS (Calculated)	298		5.0	mg/L		10-APR-16	
Turbidity	0.32		0.10	NTU		01-APR-16	R3430190
рН	7.78		0.10	pH units		04-APR-16	R3430389
lon Balance Calculation	96.7			%		10-APR-16	
Cation - Anion Balance	-1.7			%		10-APR-16	
Anion Sum	5.96			me/L		10-APR-16	
Cation Sum	5.76			me/L		10-APR-16	
Total Coliform and E.coli by MPN QT97	5.70						
Total Coliforms	9		1	MPN/100mL		30-MAR-16	R3428119
Escherichia Coli	1		1	MPN/100mL		30-MAR-16	R3428119
Dissolved Metals by ICP-MS							
Calcium (Ca)-Dissolved	54.2		0.20	mg/L	04-APR-16	09-APR-16	R3435011
Magnesium (Mg)-Dissolved	32.4		0.050	mg/L	04-APR-16	09-APR-16	R3435011
Potassium (K)-Dissolved	3.89 6.72		0.10 0.050	mg/L	04-APR-16 04-APR-16	09-APR-16 09-APR-16	R3435011 R3435011
Sodium (Na)-Dissolved	0.72		0.050	mg/L	04-APR-16	09-APR-16	K3435011
L1750072-5 PTH 59 - SURFACE Sampled By: CLIENT on 30-MAR-16 @ 15:30							
Matrix: GW							
Miscellaneous Parameters							
Bicarbonate (HCO3)	236		1.2	mg/L		06-APR-16	
Carbonate (CO3)	<0.60		0.60	mg/L		06-APR-16	
Hydroxide (OH)	<0.34		0.34	mg/L		06-APR-16	
Alkalinity, Total (as CaCO3)	193		1.0	mg/L		04-APR-16	R3430389
Ammonia, Total (as N)	0.072		0.010	mg/L		06-APR-16	R3434392
Chloride (Cl)	45.6		0.50	mg/L		01-APR-16	R3429922
Conductivity	549		1.0	umhos/cm		04-APR-16	R3430389
Escherichia Coli	630		1	MPN/100mL		30-MAR-16	R3428092
Hardness (as CaCO3)	231		0.30	mg/L		09-APR-16	
Nitrate (as N)	0.405		0.0050	mg/L		01-APR-16	R3429922
Nitrate and Nitrite as N	0.414		0.0051	mg/L		04-APR-16	
Nitrite (as N)	0.0093		0.0010	mg/L		01-APR-16	R3429922
Phosphorus (P)-Total	0.196		0.010	mg/L		04-APR-16	R3429984
Sulfate (SO4)	39.1		0.30	mg/L		01-APR-16	R3429922
TDS (Calculated)	314		5.0	mg/L		09-APR-16	
Total Coliforms	2790		1	MPN/100mL		30-MAR-16	R3428092
Total Kjeldahl Nitrogen	0.75		0.20	mg/L	07-APR-16	07-APR-16	R3433879
Total Suspended Solids	9.0		5.0	mg/L		31-MAR-16	R3429581
Turbidity	21.2		0.10	NTU		01-APR-16	R3430190
рН	8.13		0.10	pH units		04-APR-16	R3430389
Ion Balance Calculation							
Ion Balance	101			%		09-APR-16	

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1750072-5 PTH 59 - SURFACE							
Sampled By: CLIENT on 30-MAR-16 @ 15:30							
Matrix: GW							
Ion Balance Calculation							
Cation - Anion Balance	0.4			%		09-APR-16	
Anion Sum	6.00			me/L		09-APR-16	
Cation Sum	6.04			me/L		09-APR-16	
Total Metals by ICP-MS							
Calcium (Ca)-Total	50.2		0.20	mg/L	01-APR-16	08-APR-16	R3434792
Magnesium (Mg)-Total Potassium (K)-Total	25.7		0.050	mg/L	01-APR-16 01-APR-16	08-APR-16 08-APR-16	R3434792
Sodium (Na)-Total	6.63 28.7		0.10 0.050	mg/L mg/L	01-APR-16 01-APR-16	08-APR-16 08-APR-16	R3434792 R3434792
	20.7		0.030	IIIg/L	01-AFK-10	00-AFIX-10	R3434792
L1750072-6 MW-101 (NOT ON COC)							
Sampled By: CLIENT on 30-MAR-16 @ 09:00							
Matrix: GW Miscellaneous Parameters							
Bicarbonate (HCO3)	304		1.2	mg/L		06-APR-16	
Carbonate (CO3)	<0.60		1.2 0.60	mg/L		06-APR-16 06-APR-16	
				-		06-APR-16	
Hydroxide (OH) Alkalinity, Total (as CaCO3)	<0.34 249		0.34 1.0	mg/L mg/L		06-APR-16 04-APR-16	R3430389
Chloride (Cl)	_			-		04-APR-16	
Conductivity	13.6		0.50	mg/L			R3429922
	575		1.0	umhos/cm		04-APR-16	R3430389
Hardness (as CaCO3)	309		0.20	mg/L		10-APR-16 01-APR-16	D0 400000
Nitrate (as N)	0.249		0.0050	mg/L			R3429922
Nitrate and Nitrite as N	0.249		0.0051	mg/L		04-APR-16	D0 400000
Nitrite (as N)	< 0.0010		0.0010	mg/L		01-APR-16	R3429922
Sulfate (SO4)	57.7		0.30	mg/L		01-APR-16	R3429922
TDS (Calculated)	332		5.0	mg/L		10-APR-16	
Turbidity	<0.10		0.10	NTU		01-APR-16	R3430190
pH	7.67		0.10	pH units		04-APR-16	R3430389
Ion Balance Calculation Ion Balance	99.5			%		10-APR-16	
Cation - Anion Balance	-0.3			%		10-APR-16	
Anion Sum	6.58			me/L		10-APR-16	
Cation Sum	6.55			me/L		10-APR-16	
Total Coliform and E.coli by MPN QT97							
Total Coliforms	12		1	MPN/100mL		31-MAR-16	R3428763
Escherichia Coli	<1		1	MPN/100mL		31-MAR-16	R3428763
Dissolved Metals by ICP-MS							
Calcium (Ca)-Dissolved	63.2		0.20	mg/L	04-APR-16	09-APR-16	R3435011
Magnesium (Mg)-Dissolved Potassium (K)-Dissolved	36.6		0.050	mg/L	04-APR-16	09-APR-16	R3435011
Sodium (Na)-Dissolved	3.85		0.10	mg/L	04-APR-16 04-APR-16	09-APR-16 09-APR-16	R3435011
	6.57		0.050	mg/L	04-APR-16	09-APR-16	R3435011

Sample Parameter Qualifier Key:

	Descripti	on		
DLM	Detection	Limit Adju	sted due to sample matrix effects.	
MS-B	Matrix Sp	ike recover	ry could not be accurately calculated due to	high analyte background in sample.
est Method	References	5:		
ALS Test Cod	9	Matrix	Test Description	Method Reference**
ALK-CO3CO3-	CALC-WP	Water	Alkalinity, Carbonate	CALCULATION
			its acid neutralizing capacity.Alkalinity is ir v carbonate is calculated and reported as m	mparted by bicarbonate, carbonate and hydroxide components of wate ng CO3 2-/L.
ALK-HCO3HC WP	D3-CALC-	Water	Alkalinity, Bicarbonate	CALCULATION
			i its acid neutralizing capacity.Alkalinity is ir / bicarbonate is calculated and reported as	mparted by bicarbonate, carbonate and hydroxide components of wate mg HCO3-/L
ALK-OHOH-CA	LC-WP	Water	Alkalinity, Hydroxide	CALCULATION
			its acid neutralizing capacity.Alkalinity is ir / hydroxide is calculated and reported as m	mparted by bicarbonate, carbonate and hydroxide components of wate ng OH-/L.
ALK-TITR-WP		Water	Alkalinity, Total (as CaCO3)	APHA 2320B
	alinity is det			imparted by bicarbonate, carbonate and hydroxide components of id to the successive HCO3- and H2CO3 endpoints indicated
CL-IC-N-WP		Water	Chloride in Water by IC	EPA 300.1 (mod)
Inorganic anior	ns are analyz	zed by Ion (Chromatography with conductivity and/or U	V detection.
EC-QT97-END	PT-WP	Water	E. coli to endpoint by MPN QT97	APHA 9223B QT97
			es adapted from APHA 9223 "Enzyme Sus a product containing hydrolyzable substrate	btrate Coliform Test". Eschericia coli bacteria are determined by
mixing serial di	24 hours an	d then the	number of wells exhibiting positive respons	es are counted. The final results are obtained by comparing the
mixing serial di 0.5°C for 18 or	24 hours an	d then the	number of wells exhibiting positive respons	
mixing serial di 0.5°C for 18 or number of posi EC-WP Conductivity of	24 hours an tive respons an aqueous	id then the les to a prol Water s solution re	number of wells exhibiting positive respons bability table. Conductivity	ses are counted. The final results are obtained by comparing the
mixing serial di 0.5°C for 18 or number of posi EC-WP Conductivity of and chemically	24 hours an tive respons an aqueous inert electro	nd then the bes to a prol Water s solution re odes.	number of wells exhibiting positive respons bability table. Conductivity	ses are counted. The final results are obtained by comparing the APHA 2510B
nixing serial di 0.5°C for 18 or humber of posi EC-WP Conductivity of and chemically ETL-HARDNES	24 hours an tive respons an aqueous inert electro	ad then the ses to a prol Water solution re odes. Water	number of wells exhibiting positive respons bability table. Conductivity fers to its ability to carry an electric current	APHA 2510B Conductance of a solution is measured between two spatially fixed
nixing serial di 0.5°C for 18 or humber of posi EC-WP Conductivity of and chemically ETL-HARDNES	24 hours an tive respons an aqueous inert electro SS-DIS-WP SS-TOT-WP	ad then the ses to a prol Water solution re odes. Water	number of wells exhibiting positive respons bability table. Conductivity ofers to its ability to carry an electric current Hardness Calculated	APHA 2510B ACCONDUCTION OF A SOLUTION AS A S
nixing serial di 0.5°C for 18 or humber of posi EC-WP Conductivity of and chemically ETL-HARDNES ETL-HARDNES ETL-SOLIDS-C	24 hours an tive respons an aqueous inert electro SS-DIS-WP SS-TOT-WP	d then the less to a prol Water solution re odes. Water Water	number of wells exhibiting positive respons bability table. Conductivity ifers to its ability to carry an electric current Hardness Calculated Hardness Calculated	APHA 2510B APHA 2510B Conductance of a solution is measured between two spatially fixed HARDNESS CALCULATED HARDNESS CALCULATED
mixing serial di 0.5°C for 18 or number of posi EC-WP Conductivity of and chemically ETL-HARDNES ETL-HARDNES ETL-SOLIDS-C F-IC-N-WP	24 hours an tive respons an aqueous inert electro SS-DIS-WP SS-TOT-WP CALC-WP	d then the less to a prol Water s solution re odes. Water Water Water Water Water	number of wells exhibiting positive respons bability table. Conductivity ofers to its ability to carry an electric current Hardness Calculated Hardness Calculated TDS calculated	APHA 2510B APHA 2510B Conductance of a solution is measured between two spatially fixed HARDNESS CALCULATED HARDNESS CALCULATED CALCULATION EPA 300.1 (mod)
mixing serial di 0.5°C for 18 or number of posi EC-WP Conductivity of and chemically ETL-HARDNES ETL-HARDNES ETL-SOLIDS-C F-IC-N-WP	24 hours an tive respons an aqueous inert electro SS-DIS-WP SS-TOT-WP CALC-WP	d then the less to a prof Water solution re odes. Water Water Water Water Water Water add by lon 0	number of wells exhibiting positive respons bability table. Conductivity afers to its ability to carry an electric current Hardness Calculated Hardness Calculated TDS calculated Fluoride in Water by IC	APHA 2510B APHA 2510B Conductance of a solution is measured between two spatially fixed HARDNESS CALCULATED HARDNESS CALCULATED CALCULATION EPA 300.1 (mod)

MET-T-MS-WP

Total Metals by ICP-MS

Water

APHA 3030E/EPA 6020A-T

This analysis involves preliminary sample treatment by hotblock acid digestion (APHA 3030E). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

L1750072 CONTD....

PAGE 7 of 8 Version: FINAL

Test Method References:

		Test Description	Method Reference**
N-TOTKJ-WP	Water	Total Kjeldahl Nitrogen	Quickchem method 10-107-06-2-E Lachat
ammonia and organic nitro Injection Analysis (FIA). The pH of	ogen compo	unds which are converted to ammonium sulph d sample is raised to a known, basic pH by ne	analyzed for ammonia. Total Kjeldahl nitrogen is the sum of free- ate through this digestion process. Analysis is performed by Flow utralization with a concentrated buffer solution. This neutralization saliclyate and hypochlorite to produce blue colour which is
	monia conce	•	
NH3-COL-WP	Water	Ammonia by colour	APHA 4500 NH3 F
Ammonia in water sample nitroprusside and measure		1 21 1	enol. The intensity is amplified by the addition of sodium
NO2+NO3-CALC-L-WP	Water	Nitrate+Nitrite	CALCULATION
NO2-L-IC-N-WP	Water	Nitrite in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are analy	zed by Ion (Chromatography with conductivity and/or UV d	etection.
NO3-L-IC-N-WP	Water	Nitrate in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are analy	zed by Ion (Chromatography with conductivity and/or UV d	etection.
P-T-COL-WP	Water	Phosphorus, Total	APHA 4500 P PHOSPHORUS
	it using proce	•	hosphorus". Total Phosphorus is determined colourimetrically after
PH-WP	Water	рH	APHA 4500H
The pH of a sample is the reference electrode.	determinatio	on of the activity of the hydrogen ions by poter	tiometric measurement using a standard hydrogen electrode and
SO4-IC-N-WP	Water	Sulfate in Water by IC	EPA 300.1 (mod)
Inorganic anions are analy	zed by Ion C	Chromatography with conductivity and/or UV d	etection.
SOLIDS-TOTSUS-WP	Water	Total Suspended Solids	APHA 2540 D (modified)
Total suspended solids in	aquesous m	atrices is determined gravimetrically after dryi	ng the residue at 103 105°C.
TC,EC-QT51-WP	Water	Total Coliform and E.coli	APHA 9223B QT51
determined simultaneousl	y. The samp 4 hours and	le is mixed with a mixture of hydrolyzable sub- then the number of wells exhibiting positive re	nzyme Substrate Coliform Test". E. coli and Total Coliform are strates and then sealed in a 51-well packet. The packet is incubate sponses are counted. The final results are obtained by comparing
TC,EC-QT97-WP	Water	Total Coliform and E.coli by MPN QT97	APHA 9223B QT97
determined simultaneousl	y. The samp 4 hours and	le is mixed with a mixture of hydrolyzable sub- then the number of wells exhibiting positive re	nzyme Substrate Coliform Test". E. coli and Total Coliform are strates and then sealed in a 97-well packet. The packet is incubate sponses are counted. The final results are obtained by comparing
TC-QT97-ENDPT-WP	Water	Total Coliforms to endpoint by MPN QT97	APHA 9223B QT97
serial dilutions of sample v	with a produc	ct containing hydrolyzable substrates and seal	te Coliform Test". Coliform bacteria are determined by mixing ing in a 97-well packet. The packet is incubated for 18 hours at ed. The final results are obtained by comparing the positive count
TURBIDITY-WP	Water	Turbidity	APHA 2130B (modified)
Turbidity in aqueous matri	ices is deterr	nined by the nephelometric method.	
		odifications from specified reference methods	to improve performance

Laboratory Definition Code	Laboratory Location
WP	ALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADA
Chain of Custody Numbers:	

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
---------------	--------	-------------------------	--------------------

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder:	L175007	-	Report Date: 11-	APR-16	Pa	age 1 of 6		
Client: Contact:	MB Infra & Transport - Highway Engineering - 6th Floor 3RD FLOOR 865 WAVERLY ST Winnipeg MB R3T5P4 MARCI FRIEDMAN-HAMM									
Fest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
ALK-TITR-WP	Water							-		
	R3430389									
WG2285531-1		L1750072-6 249	247		mg/L	0.9	20	04-APR-16		
WG2285531-9 Alkalinity, Tot	9 LCS tal (as CaCO3)		97.6		%		85-115	04-APR-16		
WG2285531-6 Alkalinity, Tot	6 MB tal (as CaCO3)		<1.0		mg/L		1	04-APR-16		
CL-IC-N-WP	Water									
Batch F	R3429922									
WG2284741-6 Chloride (Cl)			101.7		%		90-110	01-APR-16		
WG2284741-5 Chloride (Cl)			<0.50		mg/L		0.5	01-APR-16		
EC-QT97-ENDPT	T-WP Water									
Batch F WG2283566-1 Escherichia C			<1		MPN/100mL		1	30-MAR-16		
EC-WP	Water									
	R3430389									
WG2285531-1 Conductivity	10 DUP	L1750072-6 575	570		umhos/cm	0.9	10	04-APR-16		
WG2285531-8	B LCS	0.0	0.0			0.5	10			
Conductivity			96.4		%		90-110	04-APR-16		
WG2285531-6 Conductivity	6 MB		<1.0		umhos/cm		1	04-APR-16		
F-IC-N-WP	Water									
	R3429922									
WG2284741-6 Fluoride (F)			106.4		%		90-110	01-APR-16		
WG2284741-5 Fluoride (F)	5 MB		<0.020		mg/L		0.02	01-APR-16		
MET-D-MS-WP	Water									
	R3435011									
WG2285366-2 Calcium (Ca)-			97.1		%		80-120	09-APR-16		
Calcium (Ca)-Dissolved Magnesium (Mg)-Dissolved										
Magnesium ()	Ma)-Dissolved		103.0		%		80-120	09-APR-16		

		Workorder: L17	750072	Report Date: 11-	APR-16	Pa	ge 2 of 6
Test	Matrix	Reference Re	sult Qualifier	Units	RPD	Limit	Analyzed
MET-D-MS-WP	Water						
Batch R343501	1						
WG2285366-2 LCS Sodium (Na)-Dissolve	d	10	1.6	%		80-120	09-APR-16
WG2285366-1 MB Calcium (Ca)-Dissolve	d	<0	.20	mg/L		0.2	09-APR-16
Magnesium (Mg)-Diss	olved	<0	.050	mg/L		0.05	09-APR-16
Potassium (K)-Dissolv	ed	<0	.10	mg/L		0.1	09-APR-16
Sodium (Na)-Dissolve	d	<0	.050	mg/L		0.05	09-APR-16
MET-T-MS-WP	Water						
Batch R343479	2						
WG2284298-2 LCS Calcium (Ca)-Total		98	2	%		80 100	08-APR-16
Iron (Fe)-Total		98		%		80-120	08-APR-16
Magnesium (Mg)-Tota	I	94		%		80-120 80-120	08-APR-16
Manganese (Mn)-Tota		96		%		80-120 80-120	08-APR-16
Potassium (K)-Total	1		1.9	%		80-120	08-APR-16
Sodium (Na)-Total		94	-	%		80-120	08-APR-16
WG2284298-1 MB		0-	.0	70		00-120	00-AF K-10
Calcium (Ca)-Total		<0	.20	mg/L		0.2	08-APR-16
Iron (Fe)-Total		<0	.10	mg/L		0.1	08-APR-16
Magnesium (Mg)-Tota	I	<0	.050	mg/L		0.05	08-APR-16
Manganese (Mn)-Tota	I	<0	.0010	mg/L		0.001	08-APR-16
Potassium (K)-Total		<0	.10	mg/L		0.1	08-APR-16
Sodium (Na)-Total		<0	.050	mg/L		0.05	08-APR-16
N-TOTKJ-WP	Water						
Batch R343387	9						
WG2286983-6 LCS							
Total Kjeldahl Nitroger	1	90	.8	%		75-125	07-APR-16
WG2286983-5 MB Total Kjeldahl Nitroger	ı	<0	.20	mg/L		0.2	07-APR-16
NH3-COL-WP	Water						
Batch R343439	2						
WG2287339-2 LCS Ammonia, Total (as N)	10	4.3	%		85-115	06-APR-16
WG2287339-1 MB Ammonia, Total (as N)	<0	.010	mg/L		0.01	06-APR-16
	Water						

NO2-L-IC-N-WP

Water

		Workorder:	L1750072	2	Report Date: 11	-APR-16	Pa	ge 3 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO2-L-IC-N-WP	Water							
Batch R3429922 WG2284741-6 LCS Nitrite (as N)			101.7		%		90-110	01-APR-16
WG2284741-5 MB Nitrite (as N)			<0.0010		mg/L		0.001	01-APR-16
IO3-L-IC-N-WP	Water							
Batch R3429922 WG2284741-6 LCS Nitrate (as N)			101.0		%		90-110	01-APR-16
WG2284741-5 MB Nitrate (as N)			<0.0050		mg/L		0.005	01-APR-16
P-T-COL-WP	Water							
Batch R3429984 WG2285541-18 LCS Phosphorus (P)-Total			104.0		%		80-120	04-APR-16
WG2285541-17 MB Phosphorus (P)-Total			<0.010		mg/L		0.01	04-APR-16
PH-WP	Water							
Batch R3430389 WG2285531-10 DUP pH		L1750072-6 7.67	7.67	J	pH units	0.00	0.2	04-APR-16
WG2285531-7 LCS рН			7.42		pH units		7.3-7.5	04-APR-16
04-IC-N-WP	Water							
Batch R3429922 WG2284741-6 LCS Sulfate (SO4)			101.5		%		00 110	
WG2284741-5 MB Sulfate (SO4)			< 0.30		mg/L		90-110 0.3	01-APR-16 01-APR-16
OLIDS-TOTSUS-WP	Water							
Batch R3429581								
WG2283768-15 LCS Total Suspended Solids			96.7		%		85-115	31-MAR-16
WG2283768-14 MB Total Suspended Solids			<5.0		mg/L		5	31-MAR-10
C,EC-QT51-WP	Water							

		Workorder:	L175007	2	Report Date: 11-/	APR-16	6 Page 4 of 6			
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
TC,EC-QT51-WP	Water									
Batch R3428121										
WG2283383-4 MB										
Total Coliforms			0		MPN/100mL		1	30-MAR-16		
Escherichia Coli			0		MPN/100mL		1	30-MAR-16		
WG2283383-5 MB			0							
Total Coliforms			0		MPN/100mL		1	30-MAR-16		
Escherichia Coli			0		MPN/100mL		1	30-MAR-16		
WG2283383-6 MB Total Coliforms			0		MPN/100mL		1	20 MAD 40		
Escherichia Coli					MPN/100mL			30-MAR-16		
Escherichia Coli			0		WPN/TOOML		1	30-MAR-16		
TC,EC-QT97-WP	Water									
Batch R3428119										
WG2283414-1 MB										
Total Coliforms			<1		MPN/100mL		1	30-MAR-16		
Escherichia Coli			<1		MPN/100mL		1	30-MAR-16		
Batch R3428763										
WG2284133-2 MB										
Total Coliforms			<1		MPN/100mL		1	31-MAR-16		
Escherichia Coli			<1		MPN/100mL		1	31-MAR-16		
TC-QT97-ENDPT-WP	Water									
Batch R3428092										
WG2283566-1 MB										
Total Coliforms			<1		MPN/100mL		1	30-MAR-16		
TURBIDITY-WP	Water									
Batch R3430190		==								
WG2286074-3 DUP Turbidity		L1750072-1 38.4	40.2		NTU	4.6	15	01-APR-16		
WG2286074-2 LCS										
Turbidity			99.0		%		85-115	01-APR-16		
WG2286074-1 MB										
Turbidity			<0.10		NTU		0.1	01-APR-16		

Workorder: L1750072

Report Date: 11-APR-16

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.

Workorder: L1750072

Report Date: 11-APR-16

Page 6 of 6

Hold Time Exceedances:

ALS Product Description	Sample ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
•		Camping Date	Date 1 Totessed	1.00.111	Actual III	Units	Quanner
Physical Tests							
рН							
	1	30-MAR-16 09:00	04-APR-16 15:28	0.25	126	hours	EHTR-FM
	2	30-MAR-16 12:00	04-APR-16 15:28	0.25	123	hours	EHTR-FM
	3	30-MAR-16 14:15	04-APR-16 15:28	0.25	121	hours	EHTR-FM
	4	30-MAR-16 15:15	04-APR-16 15:28	0.25	120	hours	EHTR-FM
	5	30-MAR-16 15:30	04-APR-16 15:28	0.25	120	hours	EHTR-FM
	6	30-MAR-16 09:00	04-APR-16 15:28	0.25	126	hours	EHTR-FM
Anions and Nutrients							
Nitrate in Water by IC (Low	/ Level)						
	1	30-MAR-16 09:00	01-APR-16 16:21	48	55	hours	EHT
	2	30-MAR-16 12:00	01-APR-16 16:21	48	52	hours	EHT
	3	30-MAR-16 14:15	01-APR-16 16:21	48	50	hours	EHT
	4	30-MAR-16 15:15	01-APR-16 16:21	48	49	hours	EHT
	6	30-MAR-16 09:00	01-APR-16 16:21	48	55	hours	EHT
Nitrite in Water by IC (Low	Level)						
	1	30-MAR-16 09:00	01-APR-16 16:21	48	55	hours	EHT
	2	30-MAR-16 12:00	01-APR-16 16:21	48	52	hours	EHT
	2 3	30-MAR-16 14:15	01-APR-16 16:21	48	50	hours	EHT
	4	30-MAR-16 15:15	01-APR-16 16:21	48	49	hours	EHT
	6	30-MAR-16 09:00	01-APR-16 16:21	48	55	hours	EHT
Bacteriological Tests							
Total Coliform and E.coli by	y MPN QT97						
	6	30-MAR-16 09:00	31-MAR-16 17:05	30	32	hours	EHTL
Legend & Qualifier Definition	ns:						

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR: Exceeded ALS recommended hold time prior to sample receipt.
EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT: Exceeded ALS recommended hold time prior to analysis.
Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1750072 were received on 30-MAR-16 16:20.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

KIB-10-302 (2w) 30 mar 10 12:00 50.00 X 2 KIB-12014 (3w) 30 mar 10 12:00 X 3 3 KIB-12015 (3w) 30 mar 10 15:15 Gw X 3 Still-12015 (3w) 30 mar 10 15:15 Gw X 3 DHH 59 (3u) 30 mar 10 15:30 Sw X X 3 Drinking Water (DW) Samples' (client use) Special instructions / Specify Criteria to add on report (client Use) Frozen SMPLE CONDITION AS RECEIVED (lab use only) 1 Are samples taken from a Regulated DW System? Gw No + fritzer Str Observations Yes - No No + fritzer No + fritzer Trives No Gw No + fritzer Str Observations Yes - No No + fritzer SylipMENT RECENT RELEASE (client use) MITAL SHIPMENT RECEPTION (lab use only) Final Cooler Temperatures co Final Cooler Temperatures co Final Cooler Temperatures co SylipMENT RELEASE (client use) MITAL SHIPMENT RECEPTION (lab use only) Final Cooler Temperatures co Final Cooler Temperatures co Final cooler Temperatures co <th>ALS</th> <th>Environmental</th> <th></th> <th>ody (COC) / quest Form I Free: 1 800 6/</th> <th></th> <th></th> <th>L175007</th> <th>2-CC</th> <th>DFC</th> <th></th> <th></th> <th></th> <th>coc</th> <th>Numb</th> <th>Page 14</th> <th> 5 _! , 007</th> <th>02 ₀r _ ∕</th> <th>292 ≀</th> <th>9</th>	ALS	Environmental		ody (COC) / quest Form I Free: 1 800 6/			L175007	2-CC	DFC				coc	Numb	Page 14	5 _! , 007	02 ₀r _ ∕	292 ≀	9
Control Date:	Report To				Report Format	/ Distribution		<u> </u>	s	elect Service	Level Be	Now (Ru	sh Tumar	ound Tin	ne (TAT) is	not availat	ble for all	i tests)	
Diddemic Biology (2) Start with the start with start with the start with start with start with the st				Select Report F	ormat:		EDD (DIGITAL)	R	K Re	gular (Stand	ard TAT if	received	by 3pm)						
Abs Control Enail 2 Art Harvoor Ka Co, Crist Loo, Crist	Address:	.1 .	W3T 5P4 WB MB	Criteria on I Select Distributi	Report - provide details bel	ow If box checked	FAX	E E2	.□ ≞ □ .sa	nergency (1-) ime day or w	business eekend en	days if r nergency	eceived b	ay 3'pm)	am – cont	act ALS for	r surchar	ge	
Invoice To Same as Report To Invoice To the Report To <td>204-</td> <td>896-1209</td> <td></td> <td>Email 1 or Fax</td> <td>HMCIVINOL</td> <td>chssraup Con</td> <td>TLINDelle</td> <td></td> <td>ly Date H</td> <td>(equired to</td> <td>rez,e o</td> <td></td> <td>nalysie</td> <td>Requ</td> <td>est</td> <td></td> <td></td> <td></td> <td></td>	204-	896-1209		Email 1 or Fax	HMCIVINOL	chssraup Con	TLINDelle		ly Date H	(equired to	rez,e o		nalysie	Requ	est				
Copy of Invoice with Report Rev of the End Invoice Determinition De	Invoice To		Г No				N.	-	Inc	licate Filtered	(F). Pres					E/P) below		<u> </u>	<u></u>
Comparity: Limit for Fax: (MVAC Quarrie QE Cas G over Car 3 <th3< th=""> 3 3</th3<>				Select Invoice F							1	I							-
Contact: Email 2 Oil and Gas. Required Fields (client use) Als Queet (2, 55 (6 5 (2, 000, 0)) Approve (10) Out and Gas. Required Fields (client use) Als Queet (2, 55 (6 5 (2, 000, 0)) Approve (10) Out and Gas. Required Fields (client use) Als Queet (2, 55 (6 5 (2, 000, 0)) Als Queet (2, 55 (6 5 (2, 000, 0)) Approve (10) Out and Gas. Required Fields (client use) Als Queet (2, 55 (6 5 (2, 000, 0)) Als Queet (2, 000, 0) Als Contact: Sampler (7, 000, 0) Als Queet (2, 000, 0) Als Contact: Sampler (7, 000, 0) Als Queet (2, 000, 0) Als Contact: Sampler (7, 000, 0) Als Queet (2, 0		, / 1 83							╺───┼─	<u> </u>	+	<u> </u>						2	-
Production Sample // ALS sample // (This description will appear on the report) Date Timo Sample // (Thim /// (Thim)) Sample // (Thim) Sample // (Thim) <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1 - m mg . s g</td><td></td><td>1 3</td><td>. 1</td><td>- 3</td><td></td><td></td><td> ¥ </td><td>1</td><td>12</td><td>]]</td><td>ίl</td><td>3</td><td></td></t<>						1 - m mg . s g		1 3	. 1	- 3			¥	1	12]]	ίl	3	
Autor Concernation and/or Coordinates Date Timo Sample 7 'ALS sample field iteration will appear on the report) (dd mmmryy) Timo Sample 7 'Go SO C CO Co (Dp (st)) 20 - Max-1 (grip (st)) 20 - Max-1 (grip (st)) 20 - Max-1 (grip (st)) 'Go SO C CO Co (Dp (st)) 20 - Max-1 (grip (st)) 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 30 - Max-1 (grip (st)) 32 - Max-1 (grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 30 - Max-1 (grip (st)) 32 - Max-1 (grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 32 - Max-1 (grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 34 34 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 16 - 1 (Grip (st)) 16 - 1 (Grip (st)) </td <td></td> <td>Project Information</td> <td></td> <td></td> <td>Oil and Gas Require</td> <td>d Fields (client us</td> <td>5e)</td> <td>1 2</td> <td></td> <td> 4</td> <td></td> <td></td> <td>10</td> <td>8</td> <td></td> <td>Ä</td> <td>3</td> <td>4</td> <td>uers</td>		Project Information			Oil and Gas Require	d Fields (client us	5e)	1 2		4			10	8		Ä	3	4	uers
Autor Concernation and/or Coordinates Date Timo Sample 7 'ALS sample field iteration will appear on the report) (dd mmmryy) Timo Sample 7 'Go SO C CO Co (Dp (st)) 20 - Max-1 (grip (st)) 20 - Max-1 (grip (st)) 20 - Max-1 (grip (st)) 'Go SO C CO Co (Dp (st)) 20 - Max-1 (grip (st)) 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 30 - Max-1 (grip (st)) 32 - Max-1 (grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 30 - Max-1 (grip (st)) 32 - Max-1 (grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 32 - Max-1 (grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 34 34 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 16 - 1 (Grip (st)) 16 - 1 (Grip (st)) </td <td>ALS Quote #:</td> <td>55656</td> <td></td> <td>Approver ID:</td> <td></td> <td>Cost Center:</td> <td></td> <td>بت ا</td> <td>2</td> <td>ی ا</td> <td>2</td> <td>6</td> <td>4</td> <td>Z</td> <td>3</td> <td>E C</td> <td>F </td> <td>YQ .</td> <td>ntai</td>	ALS Quote #:	55656		Approver ID:		Cost Center:		ب ت ا	2	ی ا	2	6	4	Z	3	E C	F	YQ .	ntai
Autor Concernation and/or Coordinates Date Timo Sample 7 'ALS sample field iteration will appear on the report) (dd mmmryy) Timo Sample 7 'Go SO C CO Co (Dp (st)) 20 - Max-1 (grip (st)) 20 - Max-1 (grip (st)) 20 - Max-1 (grip (st)) 'Go SO C CO Co (Dp (st)) 20 - Max-1 (grip (st)) 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 30 - Max-1 (grip (st)) 32 - Max-1 (grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 30 - Max-1 (grip (st)) 32 - Max-1 (grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 32 - Max-1 (grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 34 34 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 16 - 1 (Grip (st)) 16 - 1 (Grip (st)) </td <td>Job #: 6</td> <td>-0300-007-1000.0</td> <td></td> <td>GL Account:</td> <td></td> <td>Routing Code:</td> <td></td> <td>1 📥</td> <td>3</td> <td>1</td> <td></td> <td>3</td> <td>8</td> <td></td> <td></td> <td>-</td> <td>31.</td> <td>1</td> <td>Ŭ</td>	Job #: 6	-0300-007-1000.0		GL Account:		Routing Code:		1 📥	3	1		3	8			-	31.	1	Ŭ
Autor Concernation and/or Coordinates Date Timo Sample 7 'ALS sample field iteration will appear on the report) (dd mmmryy) Timo Sample 7 'Go SO C CO Co (Dp (st)) 20 - Max-1 (grip (st)) 20 - Max-1 (grip (st)) 20 - Max-1 (grip (st)) 'Go SO C CO Co (Dp (st)) 20 - Max-1 (grip (st)) 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 30 - Max-1 (grip (st)) 32 - Max-1 (grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 30 - Max-1 (grip (st)) 32 - Max-1 (grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 32 - Max-1 (grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 34 34 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 16 - 1 (Grip (st)) 16 - 1 (Grip (st)) </td <td>PO/AFE:</td> <td>Mit floodway</td> <td></td> <td>Activity Code:</td> <td></td> <td></td> <td></td> <td>15</td> <td>r†</td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td>17-1</td> <td>-</td> <td>ΞĽ</td> <td>3</td> <td>l ě</td>	PO/AFE:	Mit floodway		Activity Code:				15	r †	1		1			17-1	-	ΞĽ	3	l ě
Autor Concernation and/or Coordinates Date Timo Sample 7 'ALS sample field iteration will appear on the report) (dd mmmryy) Timo Sample 7 'Go SO C CO Co (Dp (st)) 20 - Max-1 (grip (st)) 20 - Max-1 (grip (st)) 20 - Max-1 (grip (st)) 'Go SO C CO Co (Dp (st)) 20 - Max-1 (grip (st)) 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 30 - Max-1 (grip (st)) 32 - Max-1 (grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 30 - Max-1 (grip (st)) 32 - Max-1 (grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 32 - Max-1 (grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 33 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 34 34 'L No - 1 2 O 1 S (Dw N) 30 - Max-1 (grip (st)) 15 - 1 (Grip (st)) 16 - 1 (Grip (st)) 16 - 1 (Grip (st)) </td <td>_</td> <td></td> <td></td> <td>Location:</td> <td>·</td> <td></td> <td></td> <td>] -</td> <td>e L</td> <td></td> <td>: .</td> <td> \</td> <td> ସ୍ </td> <td>5</td> <td>6</td> <td>Ĩ</td> <td>る</td> <td>5</td> <td>Ë</td>	_			Location:	·] -	e L		: .	\	ସ୍	5	6	Ĩ	る	5	Ë
COSO COO 6 (Dorustic) 30 - Mor-16 9:00 Giw X X 3 K1B-16333- (Giw) 30 - Mar-16 13:00 Golw X 2 2 K1B-1333- (Giw) 30 - Mar-16 13:00 Golw X 3 3 K1B-1303- (Giw) 30 - Mar-16 15:15 Giw X 3 3 K1B-13014 (Giw) 30 - Mar-16 15:15 Giw X 4 3 Q1H-50 (Spifack) 30 - Mar-16 15:30 Switz 3 3 Dinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report (client Use) SAMPLE CONDITION AS RECEIVED (lab use only) : Frozen SAMPLE CONDITION AS RECEIVED (lab use only) : 5 0 0 0 Drinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report (client Use) Frozen Still Diservations Yes No 0 Are samples tor human drinking water use? Giw Not - fi/Hr cit, Use, Use, Use, Use, Use, Use, Use, Use	ALS Lab Wor	k Order # (lab use only)		ALS Contact:		Sampler:]	2		<u>]</u>	10	3-6	4 8	8	چ ب			
KIB- 13.322 (1w) 30 - Mar 10 13:00 GrW X 2 KII- 13.014 (3w) 30 - Mar 10 14:15 GrW X 3 KII- 13.014 (3w) 30 - Mar 10 15:15 GrW X 3 KII- 13.015 (3w) 30 - Mar 10 15:15 GrW X 3 State 30 - Mar 10 15:15 GrW X 4 3 State 30 - Mar 10 15:15 GrW X 4 3 State 30 - Mar 10 15:15 GrW X 4 3 State 30 - Mar 10 15:15 GrW X 4 3 State 30 - Mar 10 15:15 GrW X 4 3 State 30 - Mar 10 15:15 GrW X 4 4 3 State 30 - Mar 10 15:15 GrW X X 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Sample Type</td> <td>Ľ</td> <td>건</td> <td>ع ح</td> <td>5</td> <td>2</td> <td>Ŧ</td> <td></td> <td>С Щ</td> <td>></td> <td>3</td> <td>+</td> <td></td>							Sample Type	Ľ	건	ع ح	5	2	Ŧ		С Щ	>	3	+	
K IB- 13.32 (1,w) 30 * Mw16 13:00 G1W X <t< td=""><td></td><td></td><td> (Dome</td><td>suc)</td><td>30-10-16</td><td>9:00</td><td>Gw</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td><u>د ا</u></td><td>×</td><td>3</td></t<>			(Dome	suc)	30-10-16	9:00	Gw									5	<u>د ا</u>	×	3
K.H12014 (Gw) 30-Mar 14 14:15 Gw X X 33 K.H12015 (Gw) 30-Mar 14 15:15 Gr W X 1 33 PLH 59 (Surfac) 30-mar 14 15:30 5w X X Ø Ø Ø Ø 5 DHH 59 (Surfac) 30-mar 14 15:30 5w X X Ø Ø Ø Ø 5 Drinklag Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report (client Use) Frozen SAMPLE CONDITION AS RECEIVED (lab use only) 1 Are samples teken from a Regulated DW System? Gw Not fultra f		K1B- 12322)	30-Mar16	12.00	GW	X											2
XII-1201S (Gw) 30-Mw 14 15:1S Gw X X		K11-12014	 (Gw`	ý	30-Maril	14:15		X	X										3
Drinklag Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report (client Use) SAMPLE CONDITION AS RECEIVED (lab use only). Drinklag Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report (client Use) Frozen SAMPLE CONDITION AS RECEIVED (lab use only). Prozen Stif Observations Stif Observations Yes No Cooling Initiated Stif PMENT RECEPTION (lab use only) INITIAL SHIPPLENT RECEPTION (lab use only) Yes only FINAL SHIPPLENT RECEPTION (lab use only)			(mw))							1								
Drinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report (client Use) SAMPLE CONDITION AS RECEIVED (lab use only) : Drinking Water (DW) Samples' (client use) Special Instructions / Specify Criteria to add on report (client Use) SAMPLE CONDITION AS RECEIVED (lab use only) : Are samples taken from a Regulated DW System? Gw Not filter filte				i)				17-			1 52	x	50		x				
Drinking Water (DW) Samples' (client use) Special instructions / Specify Criteria to add on report (client Use) Frozen SiF Observations Yes No Are samples taken from a Regulated DW System? Gw N04 fuller of human drinking water use? Gw N04 fuller of human drinking water use? No Ice packs Yes No Ice packs Final Cooler TEMPERATURES *C SHIPMENT RELEASE (client use) INITIAL SHIPMENT RECEPTION (lab use only) Initial SHIPMENT RECEPTION (lab use only) Final SHIPMENT RECEPTION (lab use only)																			
Drinking Water (DW) Samples' (client use) Special instructions / Specify Criteria to add on report (client Use) Frozen SiF Observations Yes No Are samples taken from a Regulated DW System? Gw Not filter of how filteroof filter of how filte										-	<u> </u>					_ _			╅╼┤
Drinking Water (DW) Samples' (client use) Special instructions / Specify Criteria to add on report (client Use) Frozen SiF Observations Yes No Are samples taken from a Regulated DW System? Gw N04 filter of Moth Property Unit Proventions / Specify Unit Ica packs Yes No Ica packs Cooling Initiated F Yes F No Sw MAANAR Proventions					+		 -							ļ	├		-+		┾╌┥
Drinking Water (DW) Samples' (client use) Special instructions / Specify Criteria to add on report (client Use) Frozen Sife Observations Yes No Are samples taken from a Regulated DW System? Gw No+ f. Her ch. Just Qr uservations Yes No Ica packs Yes Yes Yes Yes			· · · · · · · · ·		<u> </u>						+		┟╼╺┥		┝──╁		\rightarrow	_ 	
Drinking Water (DW) Samples' (client use) Special instructions / Specify Criteria to add on report (client Use) Frozen Sife Observations Yes No Are samples taken from a Regulated DW System? Gw No+ f. Her ch. Just Qr uservations Yes No Ica packs Yes Yes Yes Yes								<u> </u>				ļ		ļ		\rightarrow	\rightarrow		4
Drinking Water (DW) Samples' (client use) Special instructions / Specify Criteria to add on report (client Use) Frozen SiF Observations Yes No Are samples taken from a Regulated DW System? Gw N04 filter of Moth Property Unit Proventions / Specify Unit Ica packs Yes No Ica packs Cooling Initiated F Yes F No Sw MAANAR Proventions	l		******		l	L	L	Ļ			<u> </u>			<u> </u>		Ļ	<u> </u>		
Are samples taken from a Regulated DW System? ShiP Coservations No Into the samples taken from a Regulated DW System? F Yes No Coservations No Coservations No Ice packs Yes No Ice packs Yes No Ice packs Yes No Ice packs Yes Final cooler temperatures *C Initiated Initiated Initiated Initiated Initiated Ice packs Yes Final cooler temperatures *C Initiated Ice packs Final cooler temperatures *C Initiated Ice packs Final cooler temperatures *C Initiated Ice packs Final cooler temperatures *C Ice packs Final cooler Final cooler temperatures *C	Drinking	g Water (DW) Samples ¹ (client use)	Special I	nstructions / Spe	cify Criteria to add on	report (client Use)		<u> </u>			IPLE C	ONDIT						No	┶┷╾┥
Intrate of an wheth receive plant as only i	Are samples taken	from a Regulated DW System?	GW NOT filt	ret je	+ Preserve	λ		ice pa	cks `	Yes 🗖	No						=		
Intrate of an wheth receive plant as only i	Are samples for hu		Sus Expand	Drowin	å			· _	-		RATURE	s °C		e de F	INAL COC	JUER TEM	PERATU	IRES *C	
Intrate of an wheth receive plant as only i	r	FYes FNO																	
		SHIPMENT RELEASE (client use)		INITIAL	SHIPMENT RECEPT	ION (lab use only	<u> </u>	<u>+</u> -			INAL'S	HIPME	NTRE	CEPTI	U ON (lab	use only	<u></u>		
A CEPER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY VELICIAL COPY	Alovel.	NIEWUN Date:	a		h	Date: 30-3-16	Time: L.Z.U	Rece	ived by:						<u></u>		<u></u>	, 	

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. Kany water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

MB Infra & Transport - Highway Engineering - 6th Floor ATTN: MARCI FRIEDMAN-HAMM 865 Waverly St Winnipeg MB R3T5P4 Date Received: 21-APR-16 Report Date: 22-APR-16 14:37 (MT) Version: FINAL

Client Phone: 204-896-1209

Certificate of Analysis

Lab Work Order #: L1758871 Project P.O. #: MIT Floodway Job Reference: 16-0300-002-1000-02

Job Reference: C of C Numbers: Legal Site Desc:

Floodway

Brennan Tingley Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

13-12321 riel Melvin on 21-APR-16 @ 10:30 W and E.coli by MPN QT97 i 09-12316 riel Melvin on 21-APR-16 @ 11:15	1 <1						
riel Melvin on 21-APR-16 @ 10:30 W and E.coli by MPN QT97 i D9-12316							
W and E.coli by MPN QT97 i D9-12316							
and E.coli by MPN QT97 i 09-12316							
i D9-12316							
09-12316			1	MPN/100mL		21-APR-16	R3443066
			1	MPN/100mL		21-APR-16	R3443066
W							
•••							
and E.coli by MPN QT97	1		1	MPN/100mL		21-APR-16	R3443066
i						-	R3443066
	<u> </u>		1			217111-10	110-140000
W							
and E.coli by MPN QT97							
-	<1		1	MPN/100mL		21-APR-16	R3443066
i	<1		1	MPN/100mL		21-APR-16	R3443066
11-12014							
riel Melvin on 21-APR-16 @ 14:30							
W							
and E.coli by MPN QT97							
-	<1		1	MPN/100mL		21-APR-16	R3443066
i	1		1	MPN/100mL		21-APR-16	R3443066
11-12015							
riel Melvin on 21-APR-16 @ 16:30							
W							
and E.coli by MPN QT97			4				D0440000
i						_	R3443066 R3443066
	<1		I	WEN/TOUTIL		21-AFK-10	R3443066
W							
and E coli by MBN OT07							
and L.CON by WIF N Q13/	5		1	MPN/100ml		21-APR-16	R3443066
İ							R3443066
			•				
	i D9-12012 riel Melvin on 21-APR-16 @ 12:15 W and E.coli by MPN QT97 i 11-12014 riel Melvin on 21-APR-16 @ 14:30 W and E.coli by MPN QT97 i 11-12015 riel Melvin on 21-APR-16 @ 16:30 W and E.coli by MPN QT97 i and E.coli by MPN QT97 i	D9-12012 - riel Melvin on 21-APR-16 @ 12:15 - and E.coli by MPN QT97 <1	i 2 D9-12012	i 2 1 D9-12012 iel Melvin on 21-APR-16 @ 12:15 ////////////////////////////////////	i 2 1 MPN/100mL 09-12012 i 12:15 M MPN/100mL iel Melvin on 21-APR-16 @ 12:15 1 MPN/100mL i <1	i 2 1 MPN/100mL D9-12012 iel Melvin on 21-APR-16 @ 12:15 ////////////////////////////////////	i 2 1 MPN/100mL 21-APR-16 09-12012 iel Melvin on 21-APR-16 @ 12:15 ////////////////////////////////////

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

Reference Information

Version: FINAL

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
TC,EC-QT97-WP	Water	Total Coliform and E.coli by MPN QT97	APHA 9223B QT97

This analysis is carried out using procedures adapted from APHA Method 9223B "Enzyme Substrate Coliform Test". E. coli and Total Coliform are determined simultaneously. The sample is mixed with a mixture of hydrolyzable substrates and then sealed in a 97-well packet. The packet is incubated at $35.0 - 0.5^{\circ}$ C for 18 or 24 hours and then the number of wells exhibiting positive responses are counted. The final results are obtained by comparing the number of positive responses to a probability table.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	
Chain of Custody Numbers:		

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L1758871

Report Date: 22-APR-16

Page 1 of 2

Client: MB Infra & Transport - Highway Engineering - 6th Floor 865 Waverly St Winnipeg MB R3T5P4 Contact: MARCI FRIEDMAN-HAMM

Test	Ма	atrix Referenc	e Result	Qualifier	Units	RPD	Limit	Analyzed
TC,EC-QT97-WP	w	ater						
Batch R34	443066							
WG2295198-2 Total Coliforms	DUP	L175887	1 -1 <1	RPD-NA	MPN/100mL	N/A	6 5	21-APR-16
Escherichia Coli		۱ <1	<1	RPD-NA RPD-NA	MPN/100mL	N/A N/A	65 65	21-APR-16 21-APR-16
WG2295198-3	DUP	L175887				1	00	21-4110-10
Total Coliforms		4	3		MPN/100mL	28	65	21-APR-16
Escherichia Coli		2	<1	RPD-NA	MPN/100mL	N/A	65	21-APR-16
WG2295198-4 Total Coliforms	DUP	L175887 <1	1-3 <1	RPD-NA	MPN/100mL	N/A	65	21-APR-16
Escherichia Coli		<1	<1	RPD-NA	MPN/100mL	N/A	65	21-APR-16
WG2295198-5	DUP	L175887	1-4					
Total Coliforms		<1	<1	RPD-NA	MPN/100mL	N/A	65	21-APR-16
Escherichia Coli		1	<1	RPD-NA	MPN/100mL	N/A	65	21-APR-16
WG2295198-6 Total Coliforms	DUP	L175887 4	1 -5 4		MPN/100mL	0.0	65	21-APR-16
Escherichia Coli		<1	<1	RPD-NA	MPN/100mL	N/A	65	21-APR-16
WG2295198-7	DUP	L175887	1-6					
Total Coliforms		5	3		MPN/100mL	52	65	21-APR-16
Escherichia Coli		<1	<1	RPD-NA	MPN/100mL	N/A	65	21-APR-16
WG2295198-8 Total Coliforms	MB		<1		MPN/100mL		1	21-APR-16
Escherichia Coli			<1		MPN/100mL		1	21-APR-16

Workorder: L1758871

Report Date: 22-APR-16

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain of Custody (COC) / Analytical **Request Form**

Canada Toll Free: 1 800 668 9878

COC Number: 14 - 455904

www.aisgloba.com		
Report To	Report Format / Distribution	Select Service Level Below (Rush Turnaround Time (TAT) is not available for all tests)
Company: KGS QUUP	Select Report Format: X PDF X EXCEL X EDD (DIGITAL)	R X Regular (Standard TAT If received by 3pm)
Contact: Marci Friedman-Lam	Quality Control (QC) Report with Report 🛛 🔀 Yes 🛄 No	P Priority (2-4 business days if received by 3pm)
Address:	Criteria on Report - provide details below if box checked	E Emergency (1-2 business days if received by 3pm)
Blos wavery Street wpg MB R3T 5P4	Select Distribution: 🔀 EMAIL 🗍 MAIL 🗌 FAX	E2 Same day or weekend emergency if received by 10am – contact ALS for surcharge.
$\frac{\partial \partial \partial c}{\partial t} = \frac{\partial \partial c}{\partial t} + \frac{\partial \partial c}{\partial t} + \frac{\partial \partial c}{\partial t} + \frac{\partial \partial c}{\partial t} + \frac{\partial \partial c}{\partial t} + \frac{\partial \partial c}{\partial t} + \frac{\partial \partial c}{\partial t} + \frac{\partial \partial c}{\partial t} + \frac{\partial c}{\partial$		
204-896-1209	Email 2 MFHAMM &KGSyrdsp.com	Analysis Request
nvoice To Same as Report To KYes C No	Invoice Distribution	Indicate Filtered (F). Preserved (P) or Filtered and Preserved (F/P) below
Copy of Invoice with Report No No	Select Invoice Distribution: 🔀 EMAIL 🗌 MAIL 🗌 FAX	
Company:	Email 1 or Fax what Quarrie @ Kasa roup.con	
Confact:	Email 2	
Project Information	Control of the second s	
ALS Quote #: 055656	Approver D 1 19 19 19 19 19 19 19 19 19 19 19 19 1	
	GL'Accounts	
print chold load /		EC-Q197-
SD: <u>+ 100d Way</u>		
ALS Lab Work Order # (lab use only)	ALS Contact:	
ALS sample # Sample Identification and/or Coordinates	ALS Contact: Sampler: Arvel Mewin	
(lab use only) (This description will appear on the report)	(dd-mmm-yy) (hh;mm) Sample Type	
K13-12321	21-Apr-16 10:30 GW	χ ι ι ι
K09-12316	21-AP-16 11:15 GW	
3 K09-12012		
	21-APr-11 14:30 GW	
5 KII- 12015	<u>21. 86-16 /6:30 GW</u>	
4 <u>Mw 100</u>	21-AP-16 18:00 GW	
		┝╶╍╄╾┅┥╸┼╶┼╶┼╶┥╶┼╶┼╶┼╴┼┈┥╶╂╌╌╸
		┝╼┾━╍┾━╍┼╾┼╶┼╴┼╺┼╸┼╶┟╴┼╼╆╴┼╾╨╂╼╼
<u> </u>		SAMPLE CONDITION AS RECEIVED (lab use only)
Drinking Water (DW) Samples' (client use) Specia	I Instructions / Specify Criteria to add on report (client Use)	Frozen SIF Observations Yes No
The samples taken from a Regulated DW System?	DRIVKINg water Grundling	Ice packs Yes 🔲 No 🗍 Custody seal intact Yes 🗍 No 🗍
	the start of the s	Cooling Initiated
Are samples for human drinking water use?		
☐ Yes ☐ No		
SHIPMENT RELEASE (client use)	INITIAL SHIPMENT RECEPTION (lab use only)	FINAL SHIPMENT RECEPTION (iab use only)
Roleased by: Aric Mellin April 11. U	ed by: A Date: +21-4-16 Time: +21-4-16 Time:	Received by: Date: Time;
ALICE WALLING LANGULUL IN 10	×21-41-16 17:10	

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

WHITE - LABORATORY COPY YELLOW - CLIENT COPY

NA FM-0326e v09 From/03 October 2013

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

PAGE 1 of 11

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Disso	blved Floodway						
	Bicarbonate (HCO3)	617		mg/L			09-JUN-16
	Carbonate (CO3)	<0.60		mg/L			09-JUN-16
	Hydroxide (OH)	<0.34		mg/L			09-JUN-16
	*Nitrate and Nitrite as N	3.25		mg/L	10		06-JUN-16
рН							
	рН	7.30		pH units			08-JUN-16
Turbidity							
	*Turbidity	0.41		NTU			03-JUN-16
TDS calcula	ted						
	TDS (Calculated)	990		mg/L		500	09-JUN-16
Sulfate in W	ater by IC						
	Sulfate (SO4)	93.7		mg/L		500	03-JUN-16
Nitrite in Wa	ater by IC (Low Level)						
	*Nitrite (as N)	<0.0020	DLM	mg/L	1		03-JUN-16
Nitrate in Wa	ater by IC (Low Level)						
	*Nitrate (as N)	3.25		mg/L	10		03-JUN-16
Ion Balance	Calculation						
	Ion Balance	109		%			09-JUN-16
	Cation - Anion Balance	4.3		%			09-JUN-16
	Anion Sum Cation Sum	19.1 20.9		me/L			09-JUN-16
		20.9		me/L			09-JUN-16
Hardness Ca	alculated Hardness (as CaCO3)	882				500	07-JUN-16
D : 1 1 D		002		mg/L		500	07-3011-10
Dissolved M	letals by ICP-MS	113					06-JUN-16
	Calcium (Ca)-Dissolved Magnesium (Mg)-	113		mg/L mg/L			06-JUN-16
	Dissolved			ing/E			
	Potassium (K)-Dissolved	6.55		mg/L			06-JUN-16
	Sodium (Na)-Dissolved	69.8		mg/L		200	06-JUN-16
Conductivity							
	Conductivity	1710		umhos/cm			08-JUN-16
Chloride in V	-						
	Chloride (Cl)	243		mg/L		250	03-JUN-16
Alkalinity, To	otal (as CaCO3)						
	Alkalinity, Total (as CaCO3)	506		mg/L			08-JUN-16
Total Colifor	rm and E.coli by MPN QT97						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

PAGE 2 of 11

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97						
Total Coliforms	<1		MPN/100mL	0		02-JUN-16
Escherichia Coli	<1		MPN/100mL	0		02-JUN-16
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWG 	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de or diatomaceous e	tection limit. arth filtration plea	se see
Approved by Approved by						
Gail Hill, B.Sc. Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

PAGE 3 of 11

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Disso	lved Floodway						
	Bicarbonate (HCO3)	438		mg/L			09-JUN-16
	Carbonate (CO3)	<0.60		mg/L			09-JUN-16
	Hydroxide (OH)	<0.34		mg/L			09-JUN-16
	*Nitrate and Nitrite as N	1.57		mg/L	10		06-JUN-16
рН							
r	рН	7.63		pH units			08-JUN-16
Turbidity	·						
Tanbianty	*Turbidity	0.17		NTU			03-JUN-10
TDS calculat							
100 calculat	TDS (Calculated)	490		mg/L		500	09-JUN-16
Sulfata in M		100		ing/E		500	
Sulfate in Wa	Sulfate (SO4)	64.1				500	03-JUN-16
		04.1		mg/L		500	03-3011-10
Nitrite in Wa	ter by IC (Low Level)	0.0010					
	*Nitrite (as N)	<0.0010		mg/L	1		03-JUN-16
Nitrate in Wa	ater by IC (Low Level)						
	*Nitrate (as N)	1.57		mg/L	10		03-JUN-16
Ion Balance	Calculation						
	Ion Balance	113		%			09-JUN-16
	Cation - Anion Balance	5.9		%			09-JUN-16
	Anion Sum Cation Sum	9.49 10.7		me/L			09-JUN-16 09-JUN-16
		10.7		me/L			09-3010-10
Hardness Ca		482				500	07-JUN-16
	Hardness (as CaCO3)	462		mg/L		500	07-3010-16
Dissolved M	letals by ICP-MS						
	Calcium (Ca)-Dissolved	74.8		mg/L			06-JUN-16
	Magnesium (Mg)- Dissolved	71.7		mg/L			06-JUN-16
	Potassium (K)-Dissolved	4.47		mg/L			06-JUN-16
	Sodium (Na)-Dissolved	21.6		mg/L		200	06-JUN-16
Conductivity	/						
-	Conductivity	853		umhos/cm			08-JUN-16
Chloride in V	Water by IC						
	Chloride (CI)	30.6		mg/L		250	03-JUN-16
Alkalinity To	otal (as CaCO3)			Ŭ			
Annual Inty, IX	Alkalinity, Total (as CaCO3)	359		mg/L			08-JUN-16
Total Colifor	rm and E.coli by MPN QT97						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

PAGE 4 of 11

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97						
Total Coliforms	1	[MPN/100mL	0	1	02-JUN-16
Escherichia Coli	<1		MPN/100mL	0]	02-JUN-16
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWC 	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de or diatomaceous e	tection limit. arth filtration plea	ase see
Approved by Gail Hill, B.Sc. Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

PAGE 5 of 11

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Disso	lved Floodway						
	Bicarbonate (HCO3)	379		mg/L			09-JUN-16
	Carbonate (CO3)	<0.60		mg/L			09-JUN-16
	Hydroxide (OH)	<0.34		mg/L			09-JUN-16
	*Nitrate and Nitrite as N	<0.0051		mg/L	10		06-JUN-1
рН							
-	рН	7.56		pH units			08-JUN-1
Turbidity							
-	*Turbidity	12.8		NTU			03-JUN-1
TDS calculat	ted						
	TDS (Calculated)	660		mg/L		500	09-JUN-1
Sulfate in Wa	ater by IC		1	5			
oundle in m	Sulfate (SO4)	238		mg/L		500	03-JUN-1
Nitrito in Wa	ter by IC (Low Level)					000	
Nume in wa	*Nitrite (as N)	<0.0010		mg/L	1		03-JUN-1
		<0.0010		iiig/L	1		00.001
Nitrate in wa	ater by IC (Low Level) *Nitrate (as N)	<0.0050			10		02 11 11 1/
		<0.0050		mg/L	10		03-JUN-16
Ion Balance		400					
	Ion Balance Cation - Anion Balance	108 4.1		%			09-JUN-1 09-JUN-1
	Anion Sum	11.8		me/L			09-JUN-1
	Cation Sum	12.8		me/L			09-JUN-1
Hardness Ca	alculated						
	Hardness (as CaCO3)	530		mg/L		500	07-JUN-1
Dissolved M	etals by ICP-MS]				
	Calcium (Ca)-Dissolved	86.3		mg/L			06-JUN-10
	Magnesium (Mg)-	76.5		mg/L			06-JUN-1
	Dissolved	4.50		-			
	Potassium (K)-Dissolved Sodium (Na)-Dissolved	4.50		mg/L		000	06-JUN-1 06-JUN-1
Conduct's 't		40.0		mg/L		200	
Conductivity		4000					
	Conductivity	1020		umhos/cm			08-JUN-10
Chloride in V	-						
	Chloride (CI)	21.0		mg/L		250	03-JUN-1
Alkalinity, To	otal (as CaCO3)						
	Alkalinity, Total (as CaCO3)	311		mg/L			08-JUN-10
Total Colifor	m and E.coli by MPN QT97						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

PAGE 6 of 11

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97						
Total Coliforms	<1		MPN/100mL	0		02-JUN-16
Escherichia Coli	<1		MPN/100mL	0		02-JUN-16
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 CDWQG for Nitrate+Nitrite-N is the limit for nitrate only Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa A blank entry designates no known limit. A shaded value in the Results column exceeds CDWC 	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de l or diatomaceous e	tection limit. arth filtration plea	se see
Approved by Gail Hill, B.Sc. Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

PAGE 7 of 11

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Disso	Ived Floodway						
	Bicarbonate (HCO3)	312		mg/L			09-JUN-16
	Carbonate (CO3)	<0.60		mg/L			09-JUN-16
	Hydroxide (OH)	<0.34		mg/L			09-JUN-16
	*Nitrate and Nitrite as N	0.211		mg/L	10		06-JUN-16
рН							
•	рН	7.60		pH units			08-JUN-16
Turbidity	•						
	*Turbidity	0.49		NTU			03-JUN-16
TDS calculat							
100 calculat	TDS (Calculated)	360		mg/L		500	09-JUN-16
Cultoto in M/	, ,	000		iiig/L		500	
Sulfate in Wa	•	60.9				500	03-JUN-16
	Sulfate (SO4)	00.9		mg/L		500	03-3010-10
Nitrite in Wa	ter by IC (Low Level)	0.0010					
	*Nitrite (as N)	<0.0010		mg/L	1		03-JUN-16
Nitrate in Wa	ater by IC (Low Level)						
	*Nitrate (as N)	0.211		mg/L	10		03-JUN-16
Ion Balance	Calculation						
	Ion Balance	112		%			09-JUN-16
	Cation - Anion Balance	5.8		%			09-JUN-16
	Anion Sum Cation Sum	6.85 7.69		me/L			09-JUN-16
		7.09		me/L			09-3011-10
Hardness Ca		363				500	
	Hardness (as CaCO3)	363		mg/L		500	07-JUN-16
Dissolved M	etals by ICP-MS						
	Calcium (Ca)-Dissolved	72.4		mg/L			06-JUN-16
	Magnesium (Mg)- Dissolved	44.3		mg/L			06-JUN-16
	Potassium (K)-Dissolved	4.25		mg/L			06-JUN-16
	Sodium (Na)-Dissolved	7.40		mg/L		200	06-JUN-16
Conductivity	1						
-	Conductivity	625		umhos/cm			08-JUN-16
Chloride in V	Nater by IC						
	Chloride (Cl)	16.1		mg/L		250	03-JUN-16
Alkalinity To	otal (as CaCO3)						
, and and y, it	Alkalinity, Total (as CaCO3)	256		mg/L			08-JUN-16
Total Colifor	m and E.coli by MPN QT97						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

PAGE 8 of 11

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
		1				
Total Coliform and E.coli by MPN QT97						
Total Coliforms	10		MPN/100mL	0		02-JUN-16
Escherichia Coli	<1		MPN/100mL	0		02-JUN-16
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWC 	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de or diatomaceous e	tection limit. arth filtration plea	se see
Approved by Avin						
Gail Hill, B.Sc. Account Manager	<u> </u>					

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

PAGE 9 of 11

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Disso	lved Floodway						
	Bicarbonate (HCO3)	288		mg/L			09-JUN-16
	Carbonate (CO3)	<0.60		mg/L			09-JUN-16
	Hydroxide (OH)	<0.34		mg/L			09-JUN-16
	*Nitrate and Nitrite as N	0.0760		mg/L	10		06-JUN-16
рН							
•	рН	7.72		pH units			08-JUN-16
Turbidity							
	*Turbidity	0.93		NTU			03-JUN-16
TDS calculat	ted						
	TDS (Calculated)	343		mg/L		500	09-JUN-16
Sulfate in W							
ounate in W	Sulfate (SO4)	64.6		mg/L		500	03-JUN-16
Nitrita in Ma		01.0		ing/E		500	
Nitrite in wa	ter by IC (Low Level) *Nitrite (as N)	0.0027		ma/l			03-JUN-16
		0.0027		mg/L	1		05-5010-10
Nitrate in Wa	ater by IC (Low Level)	0.0700					
	*Nitrate (as N)	0.0733		mg/L	10		03-JUN-16
Ion Balance							
	Ion Balance	109 4.5		%			09-JUN-16
	Cation - Anion Balance Anion Sum	4.5 6.55		% me/L			09-JUN-16
	Cation Sum	7.16		me/L			09-JUN-16
Hardness Ca	alculated						
	Hardness (as CaCO3)	337		mg/L		500	07-JUN-16
Dissolved M	etals by ICP-MS						
Dissolved W	Calcium (Ca)-Dissolved	66.2		mg/L			06-JUN-16
	Magnesium (Mg)-	41.7		mg/L			06-JUN-16
	Dissolved			_			
	Potassium (K)-Dissolved	4.22		mg/L			06-JUN-16
	Sodium (Na)-Dissolved	7.36		mg/L		200	06-JUN-16
Conductivity							
	Conductivity	596		umhos/cm			08-JUN-16
Chloride in V	-						
	Chloride (Cl)	16.9		mg/L		250	03-JUN-16
Alkalinity, To	otal (as CaCO3)						
	Alkalinity, Total (as CaCO3)	236		mg/L			08-JUN-16
Total Colifor	m and E.coli by MPN QT97						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

PAGE 10 of 11

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97						
Total Coliforms Escherichia Coli	5 <1		MPN/100mL	0		02-JUN-16 02-JUN-16
			MPN/100mL	0		02-3011-10
CDWQG = Health Canada Guideline Limits updated	DECEMBER					
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWG 	guidelines on cor ater Quality	ventional treatm	ent and slow sand	N.D. = less than de l or diatomaceous e	tection limit. arth filtration plea	se see
Approved by Gail Hill, B.Sc.						
Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Guidelines & Objectives

Sample Parameter Qualifier key listed:

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
Health Canada	MAC Health Related Criteria Limits
Nitrate/Nitrite-N*	
Lead*	A cumulative body poison, uncommon in naturally occurring hard waters.
Fluoride*	Present in fluoridated water supplies at 0.8 mg/L to reduce dental caries. Elevated levels causes fluorosis (mottling of teeth).
Total Coliforms*	Criteria is 0 CFU/100mL. Adverse health effects.
E. Coli*	Criteria is 0 CFU/100 mL. Certain E. Coli bacteria can be life threatening.

*Health Canada Canadian Drinking Water Quality Guidelines (MAC limit)

Aesthetic Objective Concentration Levels

Alkalinity	Acid neutralizing capacity. Usually a measure of carbonate and bicarbonates and calculated and reported as calcium carbonate.
Balance	Quality control parameter ratioing cations to anions
Bicarbonate	See Alkalinity. Report as the anion HCO3-1
Carbonate	See Alkalinity. Reported at the anion CO3-2
Calcium	See Hardness. Common major cation of water chemistry.
Chloride	Common major anion of water chemistry.
Conductance	Physical test measuring water salinity (dissolved ions or solids)
Hardness	Classical measure or capacity of water to precipitate soap (chiefly calcium and magnesium ions). Causes scaling tendency in water if carbonates/bicarbonates are present (if >200 mg/L). For drinking water purposes waters with results <200 mg/L are considered acceptable, results >200 mg/L are considered poor but can be tolerated. Results >500 mg/L are unacceptable.
Hydroxide	See alkalinity
	See hardness. Common major cation of water chemistry. Elevated levels (>125 mg/L) may exert a cathartic or diuretic action.
Magnesium pH	Measure of water acidity/alkalinity. Normal range is 7.0-8.5.
Potassium	Common major cation of water chemistry.
Sodium	Common major cation of water chemistry. Measure of salinity (saltiness). The aesthetic objective (not related to health) for sodium in drinking water is 200 mg/L. However, where sodium concentration of the drinking water exceeds 20 mg/L, it is recommended that any person on a sodium restricted diet consult with his/her physician or Medical Officer of Health concerning the use of that water.
Sulphate	Common major anion of water chemistry. Elevated levels may exert a cathartic or diuretic action.
Total Dissolved Solids	A measure of water salinity.
Iron	Causes staining to laundry and porcelain and astringent taste. Oxidizes to red-brown precipitate on exposure to air.
Manganese Heterotrophic	Elevated levels may cause staining of laundry and porcelain.
Plate Count	Criteria is 500 cfu/mL Measure of heterotrophic bacteria present.

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

			Workorder:	L1777719	9	Report Date: 09)-JUN-16	Pa	ige 1 of 5
Client:									
Contact: Test		atrix	Deference	Decult	Qualifier	Units	RPD	Limit	Anolyzed
Test	IVI	atrix	Reference	Result	Quaimer	Units	RPD	Limit	Analyzed
ALK-TITR-WP	v	Vater							
WG2324124-	R3475767 10 DUP otal (as CaCO3))	L1777719-5 236	243		mg/L	2.8	20	08-JUN-16
WG2324124- Alkalinity, To	9 LCS otal (as CaCO3))		96.4		%		85-115	08-JUN-16
WG2324124- Alkalinity, To	6 MB otal (as CaCO3))		<1.0		mg/L		1	08-JUN-16
CL-IC-N-WP	v	Vater							
Batch	R3473400								
WG2320702- Chloride (Cl)				100.5		%		90-110	03-JUN-16
WG2320702- Chloride (Cl)				<0.50		mg/L		0.5	03-JUN-16
EC-WP	v	Vater							
	R3475767								
WG2324124- Conductivity			L1777719-5 596	600		umhos/cm	0.7	10	08-JUN-16
WG2324124- Conductivity	8 LCS			98.1		%		90-110	08-JUN-16
WG2324124- Conductivity	6 MB			<1.0		umhos/cm		1	08-JUN-16
MET-D-MS-WP	v	Vater							
	R3473925								
WG2320712- Calcium (Ca				102.2		%		80-120	06-JUN-16
	, (Mg)-Dissolved			103.7		%		80-120	06-JUN-16
Potassium (ł	<)-Dissolved			103.8		%		80-120	06-JUN-16
Sodium (Na)	-Dissolved			103.2		%		80-120	06-JUN-16
WG2320712-									
Calcium (Ca				<0.20		mg/L		0.2	06-JUN-16
-	(Mg)-Dissolved			<0.050		mg/L		0.05	06-JUN-16
Potassium (ł				<0.10		mg/L		0.1	06-JUN-16
Sodium (Na)				<0.050		mg/L		0.05	06-JUN-16
NO2-L-IC-N-WP		Vater							
Batch WG2320702- Nitrite (as N)				98.9		%		90-110	03-JUN-16
WG2320702-									

		Workorder:	L177771	9 Re	eport Date: 09-	JUN-16	Pa	age 2 of 5
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO2-L-IC-N-WP	Water							
Batch R347340	0							
WG2320702-13 MB Nitrite (as N)			<0.0010		mg/L		0.001	03-JUN-16
NO3-L-IC-N-WP	Water							
Batch R347340	0							
WG2320702-14 LCS Nitrate (as N)			100.8		%		90-110	03-JUN-16
WG2320702-13 MB Nitrate (as N)			<0.0050		mg/L		0.005	03-JUN-16
PH-WP	Water							
Batch R347576	7							
WG2324124-10 DUP рН		L1777719-5 7.72	7.68	J	pH units	0.04	0.2	08-JUN-16
WG2324124-7 LCS рН			7.42		pH units		7.3-7.5	08-JUN-16
SO4-IC-N-WP	Water							
Batch R347340 WG2320702-14 LCS Sulfate (SO4)			101.0		%		90-110	03-JUN-16
WG2320702-13 MB Sulfate (SO4)			<0.30		mg/L		0.3	03-JUN-16
TC,EC-QT97-WP	Water							
Batch R347167	1							
WG2320278-2 DUP Total Coliforms		L1777719-5 5	4		MPN/100mL	24	65	02-JUN-16
Escherichia Coli		<1	<1	RPD-NA	MPN/100mL	N/A	65	02-JUN-16
WG2320278-3 DUP Total Coliforms		L1777719-4 10	9		MPN/100mL	12	65	02-JUN-16
Escherichia Coli		<1	<1	RPD-NA	MPN/100mL	N/A	65	02-JUN-16
WG2320278-4 DUP	1	L1777719-3						
Total Coliforms		<1	<1	RPD-NA	MPN/100mL	N/A	65	02-JUN-16
Escherichia Coli		<1	<1	RPD-NA	MPN/100mL	N/A	65	02-JUN-16
WG2320278-5 DUP Total Coliforms		L1777719-2 1	<1	RPD-NA	MPN/100mL	N/A	65	02-JUN-16
Escherichia Coli		<1	<1	RPD-NA	MPN/100mL	N/A	65	02-JUN-16
WG2320278-6 DUP Total Coliforms		L1777719-1 <1	<1	RPD-NA	MPN/100mL	N/A	65	02-JUN-16

		Workorder:	L177771	9 Re	eport Date: 09-	JUN-16	Pa	age 3 of 5
Test	Matrix	Reference Resul		Qualifier	Units	RPD	Limit	Analyzed
TC,EC-QT97-WP	Water							
Batch R3471671								
WG2320278-6 DUP Escherichia Coli		L1777719-1 <1	<1	RPD-NA	MPN/100mL	N/A	65	02-JUN-16
WG2320278-1 MB Total Coliforms			<1		MPN/100mL		1	02-JUN-16
Escherichia Coli			<1		MPN/100mL		1	02-JUN-16
TURBIDITY-WP	Water							
Batch R3473113 WG2321668-2 LCS	5							
Turbidity			97.0		%		85-115	03-JUN-16
WG2321668-1 MB Turbidity			<0.10		NTU		0.1	03-JUN-16

Workorder: L1777719

Report Date: 09-JUN-16

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1777719

Report Date: 09-JUN-16

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
рН							
	1	02-JUN-16 09:00	08-JUN-16 10:16	0.25	145	hours	EHTR-FM
	2	02-JUN-16 10:00	08-JUN-16 10:16	0.25	144	hours	EHTR-FM
	3	02-JUN-16 11:30	08-JUN-16 10:16	0.25	143	hours	EHTR-FM
	4	02-JUN-16 13:00	08-JUN-16 10:16	0.25	141	hours	EHTR-FM
	5	02-JUN-16 14:00	08-JUN-16 10:16	0.25	140	hours	EHTR-FM

Legend & Qualifier Definitions:

EHTR-FM:	Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR:	Exceeded ALS recommended hold time prior to sample receipt.
EHTL:	Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT:	Exceeded ALS recommended hold time prior to analysis.
Rec. HT:	ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1777719 were received on 02-JUN-16 15:30.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

ALS Environmental	quest Form			L17777	19-C						COC Nu		4 - ! • 			29
Canada To	ll Free: 1 800 6	68 9878								J.						
Report To	T	Report Format	/ Distribution	······			Select S	ervice Le	rel Belov	w (Rush	Turnaround	Time (TA) is not ava	illable for	r all tests)	
Company: KGS Groop	Select Report F			EDD (DIGITAL)	R	N	Regular (Standard "	AT If rec	eived by	/ 3pm)					
	Quality Control	(QC) Report with Rep			Р	_	Priority (2	-4 busine:	ss days if	receive	d by 3pm)					
Contact: Marci Friedman - Hamm Address: 865 Waven ley Street, Winnipes, MB	Criteria on (Select Distributi	Report - provide details bek on: E	wif box checked	FAX	E E2		-				eived by 3p received b	•	ontact ALS	for surd	harge.	
Phone: 204 896 1209	Email 1 or Fax I Email 2	my hann @1	group.co	~	Speci	fy Date	Requir	ed for E	2,E or I	_	alysis Re	quest				
Invoice To Same as Report To L Yes L No		Invoice DI:				ĥ	ndicate F	iltered (F).	Preserv	ed (P) o	Fillered an	d Preserve	d (F/P) hek	wc		
Copy of Invoice with Report	Select Invoice D	Distribution:	EMAIL MA	JL FAX		Ī										
Company: MGS Comp	Email 1 or Fax	Dimacquarrie	Charl gro	4-00K	AW-YWD7	a										
Contact: Bill Mac Dame.	Email 2			·•	5	47										2
Project Information		Dil and Gas Require	d Fields (client u	ise)	3	~										Containe
ALS Quote #: Q 56271	Approver ID:		Cost Center:		15	461										outa
Job #:	GL Account:		Routing Code:		4					ĺ						of U
PO/AFE: 16-0300-002	Activity Code:				<u> </u>	ଙ୍										per la companya de la companya de la companya de la companya de la companya de la companya de la companya de la
LSD:	Location:				13	<u>V</u>										Lun Z
ALS Lab Work Order # (lab use only)	ALS Contact:	Icoly Delhainer	Sampler: Al	ra ads	100										·	
ALS Sample # Sample Identification and/or Coordinates		Date	Time	Sample Type	S	4										
(lab use only) (This description will appear on the report)		(dd-mm-yy)	(hh:mm)		<u>I₹</u>			<u>+</u> -	<u> </u>					$ \rightarrow $		$-+\pi$
1 KIS-1252		02-2-16	09:00	62	X	ス										2
2 109-12316		4	10 = 00	9	7	X						_				2
3 409-12012		-	11:30	٦	Y	X										2
4 1/1-12014			13:00		X	7										2
5 KIF 12015		પ	14=00	4	X	X	1									2
									_			<u> </u>	<u> </u>	\square		
	• • • •											+ -	┼╌╌╿			
· · · · · · · · · · · · · · · · · · ·																
· · · · · · · · · · · · · · · · · · ·	_															
						ĺĺ										
				_												
Bredat Special	Instructions / Sno	cify Criteria to add on	report (client line	1				SAMPL	E CON	DITIO	N AS RE	CÉIVED	(lab use	only)		
····· ····· ()	matricitoria / apt	city Criteria to add on	Teport (client ose	, 	Froze	n				s	IF Øbser	vations	Yes		No	
Are samples taken from a Regulated DW System?					lce pa Coolir	acks ng Initia			No		ustody se				No	
Are samples for human drinking water use?							OLER T	EMPERAT	URES °C	2		FINAL	OOLER TE	MPERA	TURES °C	
						\mathcal{O}										
SHIPMENT RELEASE (client use)		SHIPMENT RECEPT			-			FIN	AL SHI	PMEN	TRECEP					
Released by:	a oy:					lived by					Date		V9 Francos Jan	_		

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

Failure to complete all portions of this form may delay analysis. Please III in this form LEGIBLY, By the use of this form instructor acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

 Date:
 09-JUN-16

 PO No.:
 L177725

 WO No.:
 L177725

 Project Ref:
 16-0300-002

 Sample ID:
 PTH-44

 Sampled By:
 ADS/AN

 Date Collected:
 02-JUN-16

 Lab Sample ID:
 L177725-1

 Matrix:
 SW

PAGE 1 of 5

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Total Floodway						
Bicarbonate (HCO3)	277		mg/L			09-JUN-16
Carbonate (CO3)	<0.60		mg/L			09-JUN-16
Hydroxide (OH)	<0.34		mg/L			09-JUN-16
*Nitrate and Nitrite as N	0.727		mg/L	10		06-JUN-16
рН						
pH	8.03		pH units			08-JUN-16
Turbidity						
*Turbidity	10.0		NTU			03-JUN-16
Total Metals by ICP-MS						
Calcium (Ca)-Total	62.8		mg/L			06-JUN-16
Magnesium (Mg)-Total	41.7		mg/L			06-JUN-16
Potassium (K)-Total	4.84		mg/L			06-JUN-16
Sodium (Na)-Total	27.8		mg/L		200	06-JUN-16
TDS calculated						
TDS (Calculated)	396		mg/L		500	09-JUN-16
Sulfate in Water by IC						
Sulfate (SO4)	81.0		mg/L		500	03-JUN-16
Nitrite in Water by IC (Low Level)						
*Nitrite (as N)	0.0234		mg/L	1		03-JUN-16
Nitrate in Water by IC (Low Level)						
*Nitrate (as N)	0.704		mg/L	10		03-JUN-16
Ion Balance Calculation						
Ion Balance	107		%			09-JUN-16
Cation - Anion Balance	3.5		%			09-JUN-16
Anion Sum	7.36		me/L			09-JUN-16
Cation Sum	7.90		me/L			09-JUN-16
Hardness Calculated						
Hardness (as CaCO3)	329		mg/L		500	07-JUN-16
Conductivity						
Conductivity	665		umhos/cm			08-JUN-16
Chloride in Water by IC						
Chloride (CI)	38.4		mg/L		250	03-JUN-16
Alkalinity, Total (as CaCO3)						
Alkalinity, Total (as CaCO3)	227		mg/L			08-JUN-16
Phosphorus (P)-Total	0.108		mg/L			07-JUN-16
Ammonia, Total (as N)	<0.010		mg/L			03-JUN-16

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

KGS Group Consultants (Winnipeg) 865 Waverly Street - 3rd Floor Winnipeg MB R3T 5P4 ATTN: Marci Friedman Hamm
 Date:
 09-JUN-16

 PO No.:
 L177725

 WO No.:
 L177725

 Project Ref:
 16-0300-002

 Sample ID:
 PTH-44

 Sampled By:
 ADS/AN

 Date Collected:
 02-JUN-16

 Lab Sample ID:
 L177725-1

 Matrix:
 SW

PAGE 2 of 5

Escherichia Coli			Measure	MAC	Objective	Date Analyzed
Ecohorichia Cali						
Eschenchia Coli	1210		MPN/100mL	0		02-JUN-16
Total Coliforms	41100		MPN/100mL	0		02-JUN-16
Total Kjeldahl Nitrogen	1.32		mg/L			08-JUN-16
Total Suspended Solids	13.0		mg/L			06-JUN-16
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only. * Turbidity guideline based on membrane filtration. For g Summary Table of Guidelines for Canadian Drinking Wat - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWQG Approved by Craig Riddell, B.Sc.Ag Account Manager	If present as N uidelines on con er Quality	itrate then the lir ventional treatm	ent and slow sand			ise see

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 09-JUN-16

 PO No.:
 L177725

 WO No.:
 L177725

 Project Ref:
 16-0300-002

 Sample ID:
 PTH-59

 Sampled By:
 ADS/AN

 Date Collected:
 02-JUN-16

 Lab Sample ID:
 L177725-2

 Matrix:
 SW

PAGE 3 of 5

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Total Floodway						
Bicarbonate (HCO3)	256		mg/L			09-JUN-16
Carbonate (CO3)	<0.60		mg/L			09-JUN-16
Hydroxide (OH)	<0.34		mg/L			09-JUN-16
*Nitrate and Nitrite as N	4.68		mg/L	10		06-JUN-16
рН						
pH	8.24		pH units			08-JUN-16
Turbidity						
*Turbidity	16.8		NTU			03-JUN-16
Total Metals by ICP-MS						
Calcium (Ca)-Total	64.4		mg/L			06-JUN-16
Magnesium (Mg)-Total	46.4		mg/L			06-JUN-16
Potassium (K)-Total	6.53		mg/L			06-JUN-16
Sodium (Na)-Total	30.4		mg/L		200	06-JUN-16
TDS calculated						
TDS (Calculated)	434		mg/L		500	09-JUN-16
Sulfate in Water by IC						
Sulfate (SO4)	93.2		mg/L		500	03-JUN-16
Nitrite in Water by IC (Low Level)						
*Nitrite (as N)	0.0606		mg/L	1		03-JUN-16
Nitrate in Water by IC (Low Level)						
*Nitrate (as N)	4.62		mg/L	10		03-JUN-16
Ion Balance Calculation						
Ion Balance	110		%			09-JUN-16
Cation - Anion Balance	4.6		%			09-JUN-16
Anion Sum	7.77		me/L			09-JUN-16
Cation Sum	8.52		me/L			09-JUN-16
Hardness Calculated						
Hardness (as CaCO3)	352		mg/L		500	07-JUN-16
Conductivity						
Conductivity	718		umhos/cm			08-JUN-16
Chloride in Water by IC						
Chloride (Cl)	46.2		mg/L		250	03-JUN-16
Alkalinity, Total (as CaCO3)						
Alkalinity, Total (as CaCO3)	210		mg/L			08-JUN-16
Phosphorus (P)-Total	0.285		mg/L			07-JUN-16
Ammonia, Total (as N)	0.014		mg/L			03-JUN-16
,						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

KGS Group Consultants (Winnipeg) 865 Waverly Street - 3rd Floor Winnipeg MB R3T 5P4 ATTN: Marci Friedman Hamm
 Date:
 09-JUN-16

 PO No.:
 L177725

 WO No.:
 L177725

 Project Ref:
 16-0300-002

 Sample ID:
 PTH-59

 Sampled By:
 ADS/AN

 Date Collected:
 02-JUN-16

 Lab Sample ID:
 L177725-2

 Matrix:
 SW

PAGE 4 of 5

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Escherichia Coli	1440		MPN/100mL	0		02-JUN-16
Total Coliforms	26100		MPN/100mL	0		02-JUN-16
Total Kjeldahl Nitrogen	1.87		mg/L			08-JUN-16
Total Suspended Solids	15.0		mg/L			06-JUN-16
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa A blank entry designates no known limit. A shaded value in the Results column exceeds CDWQ Approved by Craig Riddell, B.Sc.Ag Account Manager	guidelines on con iter Quality	ventional treatm	ent and slow sand	N.D. = less than de	ection limit. arth filtration plea	ase see
ADDRESS: 1329 Niakwa Road East. Unit						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1777725 CONTD

PAGE 5 of 5

Guidelines & Objectives

Health Canada MAC Health Related Criteria Limits

Nitrate/Nitrite-N*	Criteria limit is 10 mg/L (1.0 mg/L if present as all Nitrite-N). High concentrations may contribute to blue baby syndrome in infants.
Lead*	A cumulative body poison, uncommon in naturally occurring hard waters.
Fluoride*	Present in fluoridated water supplies at 0.8 mg/L to reduce dental caries. Elevated levels causes fluorosis (mottling of teeth).
Total Coliforms*	Criteria is 0 CFU/100mL. Adverse health effects.
E. Coli*	Criteria is 0 CFU/100 mL. Certain E. Coli bacteria can be life threatening.

*Health Canada Canadian Drinking Water Quality Guidelines (MAC limit)

Aesthetic Objective Concentration Levels

Alkalinity	Acid neutralizing capacity. Usually a measure of carbonate and bicarbonates and calculated and reported as calcium carbonate.
Balance	Quality control parameter ratioing cations to anions
Bicarbonate	See Alkalinity. Report as the anion HCO3-1
Carbonate	See Alkalinity. Reported at the anion CO3-2
Calcium	See Hardness. Common major cation of water chemistry.
Chloride	Common major anion of water chemistry.
Conductance	Physical test measuring water salinity (dissolved ions or solids)
Hardness	Classical measure or capacity of water to precipitate soap (chiefly calcium and magnesium ions). Causes scaling tendency in water if carbonates/bicarbonates are present (if >200 mg/L). For drinking water purposes waters with results <200 mg/L are considered acceptable, results >200 mg/L are considered poor but can be tolerated. Results >500 mg/L are unacceptable.
Hydroxide	See alkalinity
Magnesium	See hardness. Common major cation of water chemistry. Elevated levels (>125 mg/L) may exert a cathartic or diuretic action.
рН	Measure of water acidity/alkalinity. Normal range is 7.0-8.5.
Potassium	Common major cation of water chemistry.
Sodium	Common major cation of water chemistry. Measure of salinity (saltiness). The aesthetic objective (not related to health) for sodium in drinking water is 200 mg/L. However, where sodium concentration of the drinking water exceeds 20 mg/L, it is recommended that any person on a sodium restricted diet consult with his/her physician or Medical Officer of Health concerning the use of that water.
Sulphate	Common major anion of water chemistry. Elevated levels may exert a cathartic or diuretic action.
Total Dissolved Solids	A measure of water salinity.
Iron	Causes staining to laundry and porcelain and astringent taste. Oxidizes to red-brown precipitate on exposure to air.
Manganese Heterotrophic	Elevated levels may cause staining of laundry and porcelain.
Plate Count	Criteria is 500 cfu/mL Measure of heterotrophic bacteria present.

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

			Workorder: L1777725 Report Date: 09-JUN-16					Page 1 of				
Client:	865 Wav Winnipeg	up Consultant erly Street - 3r g MB R3T 5P	d Floor									
Contact:	Marci Frie	edman Hamm										
est		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed			
ALK-TITR-WP		Water										
	R3475767											
WG2324124-9 Alkalinity, Tot		O3)		96.4		%		85-115	08-JUN-16			
WG2324124-6 Alkalinity, Tot		O3)		<1.0		mg/L		1	08-JUN-16			
CL-IC-N-WP		Water										
Batch	R3473400											
WG2320702- Chloride (Cl)	14 LCS			100.5		%		90-110	03-JUN-16			
WG2320702- Chloride (Cl)	13 MB			<0.50		mg/L		0.5	03-JUN-16			
EC-QT97-ENDP	T-WP	Water										
Batch	R3471660											
WG2320511-2 Escherichia (L1777725-1 1210	860		MPN/100mL	34	65	02-JUN-16			
WG2320511- Escherichia (<1		MPN/100mL		1	02-JUN-16			
EC-WP		Water										
Batch	R3475767											
WG2324124-8 Conductivity	B LCS			98.1		%		90-110	08-JUN-16			
WG2324124-6	6 MB											
Conductivity				<1.0		umhos/cm		1	08-JUN-16			
IET-T-MS-WP		Water										
	R3473925											
WG2321777-2 Calcium (Ca)				107.9		%		80-120	06-JUN-16			
Magnesium (103.1		%		80-120	06-JUN-16			
Potassium (K				104.0		%		80-120	06-JUN-16			
Sodium (Na)-	-Total			107.5		%		80-120	06-JUN-16			
WG2321777- Calcium (Ca)				<0.20		mg/L		0.2	06-JUN-16			
Magnesium (<0.050		mg/L		0.2	06-JUN-16			
Potassium (K				<0.10		mg/L		0.00	06-JUN-16			
Sodium (Na)-	,			<0.050		mg/L		0.05	06-JUN-16			
		Wator		-0.000				0.00	00-0011-10			

N-TOTKJ-WP

Water

		Workorder:	L177772	5	Report Date: 0	9-JUN-16	Page 2 of 5				
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed			
N-TOTKJ-WP	Water										
Batch R3475017 WG2322920-6 LCS Total Kjeldahl Nitrogen			98.0		%		75-125	08-JUN-16			
WG2322920-5 MB Total Kjeldahl Nitrogen			<0.20		mg/L		0.2	08-JUN-16			
NH3-COL-WP	Water										
Batch R3474097 WG2321991-2 LCS											
Ammonia, Total (as N)			100.3		%		85-115	03-JUN-16			
WG2321991-1 MB Ammonia, Total (as N)			<0.010		mg/L		0.01	03-JUN-16			
NO2-L-IC-N-WP	Water										
Batch R3473400 WG2320702-14 LCS Nitrite (as N) N			98.9		%		90-110	03-JUN-16			
WG2320702-13 MB Nitrite (as N)			<0.0010		mg/L		0.001	03-JUN-16			
NO3-L-IC-N-WP	Water										
Batch R3473400 WG2320702-14 LCS Nitrate (as N)			100.8		%		90-110	03-JUN-16			
WG2320702-13 MB Nitrate (as N)			<0.0050		mg/L		0.005	03-JUN-16			
P-T-COL-WP	Water										
Batch R3474546 WG2322229-14 LCS											
Phosphorus (P)-Total			97.7		%		80-120	07-JUN-16			
WG2322229-13 MB Phosphorus (P)-Total			<0.010		mg/L		0.01	07-JUN-16			
PH-WP	Water										
Batch R3475767 WG2324124-7 LCS pH			7.42		pH units		7.3-7.5	08-JUN-16			

Water

		Workorder: L1777725			Report Date: 09-	JUN-16	Pa	Page 3 of 5			
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed			
SO4-IC-N-WP	Water										
Batch R3473	3400										
WG2320702-14 L Sulfate (SO4)	cs		101.0		%		90-110	03-JUN-16			
WG2320702-13 M Sulfate (SO4)	В		<0.30		mg/L		0.3	03-JUN-16			
TC-QT97-ENDPT-WP	Water										
Batch R3471	660										
WG2320511-2 D Total Coliforms	UP	L1777725-1 41100	26100		MPN/100mL	44	65	02-JUN-16			
WG2320511-1 M Total Coliforms	В		<1		MPN/100mL		1	02-JUN-16			
TURBIDITY-WP	Water										
	3113 CS										
Turbidity			97.0		%		85-115	03-JUN-16			
WG2321668-1 M Turbidity	В		<0.10		NTU		0.1	03-JUN-16			

Workorder: L1777725

Report Date: 09-JUN-16

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material

CVV Continuing Calibration Verification CVS Calibration Verification Standard LCSD Laboratory Control Sample Duplicate

Workorder: L1777725

Report Date: 09-JUN-16

Hold Time Exceedances:

ALC Dreduct Decerintian	Sample	Someling Data	Data Dragonad	Rec. HT	Actual HT	Units	Qualifiar
ALS Product Description	ID	Sampling Date	Date Processed	кес. пт	Actual HI	Units	Qualifier
Physical Tests							
рН							
	1	02-JUN-16 11:00	08-JUN-16 10:16	0.25	143	hours	EHTR-FM
	2	02-JUN-16 14:30	08-JUN-16 10:16	0.25	140	hours	EHTR-FM

Legend & Qualifier Definitions:

EHTR-FM:	Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR:	Exceeded ALS recommended hold time prior to sample receipt.
EHTL:	Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT:	Exceeded ALS recommended hold time prior to analysis.
Rec. HT:	ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1777725 were received on 02-JUN-16 15:30.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

ALS			ody (COC) / quest Form I Free: 1 800 66			L1777725	-COF	I IIII ⁼C				C	OC NI)31		7
Report To	100 -			Report Format	/ Distribution			-	Select S	Service Le	vol Bel	ow (Rush T	umarour	nd Time (TAT) is not	available	for all tests	s)	
Company:	KGS GROUP		Select Report Fo	rmat: 🚺 🕅		EDD (DIGITAL)	R		Regular (Standard	TAT If re	eceived by 3	3pm)						
Contact:	MARCI FRICOMANN	Hamm	Quality Control (0	C) Report with Rep	ort Pres	s 🗌 No	Р		Priority (2	2-4 busine	ss days	if received	by 3pm))					
Address:	SEC 1. ALCOIN	~~~~	Criteria on Re	eport - provide details bej			E	<u> </u>	Emergen	cy (1-2 bu	isiness d	lays if recel	/ed by 3	3pm)					
	005 WHORLEY	<u> </u>	Select Distributio		MAIL MAIL		E2					rgency if r	eceived i	by 10am	- contact	ALS for su	rcharge.		
Phone;	204 896 -1209		Email 1 or Fax	MFHAM	<u>n@KCSCC</u>	Carp. Com	Specif	y Date	Requir	red for E	2,E or	P:					<u>.</u>		
L	<u> (</u>	·	Email 2	UCLUEN		ANY COM						Anal	ysis R	Reques	t				
Invoice To	Same as Report To TYes TX		•	Invoice Di	stribution				ndicate F	ittered (F)	, Preser	ved (P) or F	iltered	and Prese	erved (F/P)	below	_,		
	Copy of Invoice with Report 7 Yes 1	No	Select Invoice Di	<u> </u>	EMAIL MAI		5							2					
Company:	KIS GRAVP		Email 1 or Fax	WMACQUA	feer ee Ka	SGRUP.CO	もめ				윗			2		Ì			
Contact:	BILL MACQUARRIES		Email 2				4		、 _	+	7	10	₩ Q	Ð					ų
	Project Information			il and Gas Require		se)		Cor	$\hat{\sigma}$	0	<u>S</u>	rt s	2	!					Number of Containers
ALS Quote #:	0.0071		Approver ID:		Cost Center:		F.	J	3	5 b	ЗV	2	3 S	+-					Cont
Job #:	16-0300-002		GL Account:	<u> </u>	Routing Code:		5	5	4	N.	5	7) (C	\tilde{z}					j
PO/AFE:			Activity Code:				12	\mathbf{F}	$\boldsymbol{\boldsymbol{\mathcal{S}}}$	6	1 ,	7-11	5 1						Ę
L\$D:	·····		Location:				10	` (4	ΥI		শা	2/	5.					DN N
ALS Lab W	ork Order # (lab use only)		ALS Contact:	4CMAIGR	Sampler: A	OS/AN	SPOULU	wptg	P	5	01-	51	N D N		Š				
ALS Sample #			-	Date	Time	Sample Type	Ś	्र	그	5	ã.	$t \rightarrow t$	≳\≀	Ы.	N L			1 !	
(lab use only)	(This description will appe	ear on the report)		(dd-mmm-yy)	(hh:mm)		~~	کہ	4	'	<u>v.</u>	$\overline{\tau}$	니	<u></u>	1	_	\downarrow		
•	<u> ptt - 44</u>			<u>02-06-16</u>	100	SW		\geq	\geq	\leq		\geq	기문	<u> </u>	<				5
2	0+H-59			07-06-16	1430	5W	\times	<u> </u>	\mathbf{X}	$\underline{\sim}$	メ	$\times \ge$	$\leq $	\bowtie	\leq				5
									1										
													T		Î				
						1											+ +		
h						· · · ·							+						
													+			<u> </u>	+		
·						 					-					—	┥──┤		
		, · · · · · · · · · · · · · · · · · · ·								·			_+_				\square	 	
					i														
					1							1							
																	+ +		
										SAMP	LE CO	NDITION	ASR	ECEIVI	ED (lab i	use onl		ل ـــــا	L
	ng Water (DW) Samples ¹ (client use)	Special	Instructions / Spec	ify Criteria to add on	report (client Use)	l	Frozei	ı						ervation		'es [No	, <u> </u>	
	en from a Regulated DW System?						lce pa		Yes		No	Cu Cu	stody (seal int	act	Yes [No		0
							Coolin												
1	human drinking water use?							· · · ·	DOLER T	EMPERA	TURES	°C ·		FINA		TEMPER	RATURES	°C]
	<u> </u>						67	8											
Released by:	SHIPMENT RELEASE (client use)	ne: Receive	INITIAL :	SHIPMENT RECEPT				ived by		FIN	AL SH	IPMENT				e only) ime:]
LA A	A PAGE FOR ALS LOCATIONS AND SAMPVING INFOR	5.20	<u> </u>		Date:			-					Da	ate:	J20s vG9 Front/0				

Fallure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

- ---

