wsp

September 11, 2017

April 12, 2018 - amended for privacy protection

Environmental Approvals Branch Manitoba Sustainable Development 160-123 Main Street, Box 80 Winnipeg, MB R3C 1A5

Attention: Ms. Tracey Braun, M.Sc., Director

Dear Ms. Braun:

Subject: RE: EAL 1089 ERR, City of Winnipeg Biosolids Land Application Program, Pilot, Client File No. 963.20

WSP Canada Group Ltd., (WSP) has been retained by the City of Winnipeg to assist with the land application program for Environment Act Licence 1089 ERR based on the Notice of Alteration provided on June 8, 2017. The following letter outlines the approach used to develop the application rates for the City of Winnipeg biosolids and includes a site map, and application rate calculation worksheet.

In accordance with the Manitoba regulatory framework, the following Acts and Regulations apply and will be adhered to throughout the Pilot land application program.

- The Environment Act C.C.S.M. c. E125 (1987)
- Licensing Procedures Regulations 163/88
- Classes of Development Regulation 164/88
- Environment Act Fees Regulation 168/96
- Livestock Manure and Mortalities Management Regulation 42/98
- The Water Protection Act C.C.S.M. c. W65 (2005)
- Nutrient Management Regulation 62/2008

Cooperating Farm Producer

The agricultural field to receive biosolids is NE31-8-1EPM and the north half of SE31-8-1EPM (Figure 1, attached). The crop rotation established for this field by the producer is: oats or corn, then canola, then wheat followed by soybeans. In 2017, the crop was oats with a harvest yield of 157 bushels per acre (bu/ac) and the crop for 2018 will be canola with a target yield of 50 bu/ac.

Dominant Soil Series

Interpretation of the soil survey report for the areas indicates that the dominant soil series identified in the current agricultural fields includes: Red River, Osborne (RIV7-OBOd3) and Myrtle and Scanterbury (MYT5-SCY5) (Figure 1). Outlined in Table 1 are the classification of soil

1600 Buffalo Place Winnipeg, MB, Canada R3T 6B8

Tel.: +1 204 477-6650

T: +1 204 474-2864 wsp.com Myrtle and Scanterbury (MYT5-SCY5) (Figure 1). Outlined in Table 1 are the classification of soil and the Canada Land Inventory for dryland agricultural capability for each of the four identified soil series.

Table 1.	. Four Soil	Series	Identified	within NE	and	SE31-08-01EPM
----------	-------------	--------	------------	-----------	-----	---------------

Order	Great Group	Subgroup	Soil Series, Family Description	Dryland Agricultural Capability
Chernozemic - Soils with chernozemic Ah horizon more than 10 cm thick and with B or C of high base	Black horizon with dry colour Munsell values darker	Orthic Black	Myrtle (MYT) well to moderately well drained Orthic Black soil developed on moderately to strongly calcareous fine textured lacustrine and alluvial deposits.	Class 1, No limitations
saturation divalent cations, calcium usually common. Well to imperfectly drained soil.	than 3.5	Gleyed Black	Scanterbury (SCY) developed on moderately to strongly calcareous lacustrine clay, Imperfectly drained	2W
		Gleyed Rego Black	Red River (RIV) developed on moderately to strongly calcareous lacustrine clay, Imperfectly drained.	2W
Gleysolic Poorly drained soils which may have an organic and/or an A horizon. The subsoils show gleying and are dull coloured, but may have brighter colored prominent mottles. Soils associated with wetness.	Humic Gleysol	Rego Humic	Osborne (OBO) developed on moderately to strongly calcareous lacustrine clay, poorly drained. Drained phase	3W

CONSTRAINTS

The following constraints have been satisfied:

- The depth of clay or clay till is greater than 1.5m between the soil surface and water table based on the pedological development of the soil series.
- Application field is:
 - Greater than 1000m from a designated residential area;
 - o Greater than 10m from any property line of a property with a residence;
 - Greater than 8m from a major wetland, bog, marsh or swamp;
 - Greater than 15m from first order waterway, 30m from a second order or higher waterway; and,
 - o Greater than 50m from any groundwater well.
- Land is not subject to annual inundation.

NUTRIENT MANAGEMENT AND LAND APPLICATION PRESCRIPTIONS

Soil Samples

Two bench mark, composite soil samples were collected for each quarter section (NE31-8-1EPM: W001 and W002; SE31-8-1EPM: W003 and W004) and UTM coordinates were recorded for each location. The composite soil sample was comprised of 10 sub samples and collected from 0-15cm and 15-60cm depths. Sample analysis included:

Sample Analys	Sample Analysis (15-60cm)	
Available Phosphate-P (Olsen)	Arsenic	Total Nitrogen
Available Potassium	Cadmium	Nitrate-N
Total Nitrogen	Chromium	Nitrate + Nitrite-N
Nitrate-N	Copper	Nitrate-N
Nitrate + Nitrite-N	Lead	
Nitrate-N	Mercury	
рН	Nickel	
	Zinc	

Laboratory results for the soil analysis will be outlined in Tables 2, 3, 4, and 5 and the attached Certificate of Analysis.

Biosolids Analysis

As a component of the overall biosolids management program, the City of Winnipeg has maintained a comprehensive biosolids quality monitoring program completing laboratory analysis for a wide spectrum of nutrients and metals. Biosolids analysis has been completed every two weeks by the City of Winnipeg Laboratory and ALS Laboratory. A summary of results for these analysis is included in Table 6 and are reported annually by the City of Winnipeg as required by EAL #1089E RR.

Phosphorus

Since 2007, the City of Winnipeg wastewater treatment process has included chemical treatment with Ferric Chloride (FeCl³⁺) at the North End Sewage Treatment Plant (NEWPCC) to precipitate Total Phosphorus out. The reaction between phosphorus and metal salts is as follows:

 $FeCl_3 + PO_4^{3-}$ \rightarrow $FePO_4$ (precipitate) + 3Cl⁻

In 2002, the City of Winnipeg completed a number of studies on the process of chemical treatment. In Section 13 of the Nitrification Study (Earth Tech Inc., 2002), the chemical phosphorous removal alternatives are reviewed. In this study it is reported that on the basis of reaction stoichiometry, 162.3g of FeCl₃ will react with 95g of PO₄ to form 150.8g of FePO₄, resulting in a weight ratio of 5.2:1 of FeCl₃ to phosphorus. In general however, the chemicals required vary significantly depending upon the wastewater characteristics such as influent phosphorus concentrations, pH, alkalinity, quantity and nature of suspended solids, ionic constituents and the effluent phosphorus limit required. The NEWPCC feeds ferric chloride at the primary sludge feed influent to the digester (approximately 80L/hr set rate) and at the digested sludge feed effluent from the holding tanks (approximate feed rate 15L/hr, automatic flow adjusted ratio).

Laboratory analysis of the biosolids demonstrates (Table 6) Total Phosphorus is on average 17,905 mg/kg, dry and standard deviation of 4,125 mg/kg, dry (n=116). Further laboratory analysis between April 2017 and present establishes the average plant available Phosphate-P as 756 mg/kg, with a standard deviation of 266 mg/kg, dry (n=10) using the Modified Kelowna extraction (Table 6). The plant available Phosphate-P is approximately 4% of the Total Phosphorous (Table 2 and 3). This is far below the typical assumption that 50% of Total Phosphorous is made available in manure (Tri-Provincial Manure Application and User Guidelines), and non-chemically treated biosolids (USEPA, 1995).

Studies have demonstrated that biosolids treated with metal salts (Ferric Chloride or Alum) greatly reduce plant available Phosphate-P. Pastene (1981) as reported in O'Connor et al (2002) recommended the molar ratio of (Al + Fe) to phosphorus as an indicator of the P-supplying power of the biosolids. It was suggested that ratio values of <1 were characteristic of biosolids capable of supplying large quantities of soluble phosphorus, whereas ratio values of >1 indicate sources of poor phosphorus supply. O'Connor et al's (2002) work determined that significantly lower phosphorus availability was characterized by biosolids containing very high (>50g/kg) total Fe and Al concentrations and which have been processed by methods that result in dry materials (>60% solids). McCoy (1986) found that P uptake from sludges treated with FeCl₃, averaged 4% of the uptake from monocalcium phosphate (MCP). The uptake from the sludge treated with Fe₃ and Alum was 0% relative to MCP and plant uptake of phosphorus from FeCl₃ treated sludge relative to triple superphosphate (TSP) was only 10%.

Based on the knowledge that the City of Winnipeg Biosolids are treated with Ferric Chloride salt to achieve a reduction in the total phosphorus concentration in the wastewater stream, the assumption is that the resulting biosolids (post Ferric Chloride treatment) provide a low percentage of plant available phosphorus to plants. As important to this assumption is that the receiving soils are calcium based with an average soil pH of 7.5 where it is understood that the FePO₄ precipitate will remain insoluble form and continue to limit plant availability of phosphorus. Therefore, it is concluded that the land application program should be based on nitrogen value rather than phosphorus to ensure that full agronomic nutrient value is achieved in a land application program.

Nitrogen Mineralization

The biosolids application rate to the agricultural land will be based on the content and availability of the nitrogen present in the biosolids. Fitzgerald and Racz (1999) evaluated the effect of biosolids on crops, soil and environmental quality and in this work the nitrogen mineralization of nitrogen in the City of Winnipeg Biosolids is reported to be between 11% and 17%. A conservative approach to nitrogen mineralization rate for this program will be estimated at 20%, less than the typical 25% mineralization applied in manure application programs, but more than the observed mineralization rate reported by Fitzgerald and Racz (1999).

Nutrient Management Plan

The 2018 crop is planned to be canola, with a target yield of 55 bu/ac, thus requiring an estimated 168 kg/ha (150 lb/ac) of nitrogen and 62 kg/ha (55 lb/ac) of P_2O_5 . Field crop nutrient uptake and removal for canola is reported to be between 33 to 44 lbs/ac for a 35 bu/ac yield, this is approximately 1 lb P_2O_5 per bushel of Canola or 55 lb/ac for the target yield.

Fall 2017 soil nutrients demonstrate a field that is nearly depleted in plant available nitrogen and phosphorus, therefore permitting an application rate that is sufficient to permit suitable redevelopment of the plants' nutrient base. The field prescription for application rate is outlined in Table 2 and 3; the basic assumptions that the application rate is based on are as follows:

- Fall 2017 soil residual nitrogen and phosphorus concentrations are low and are not included as a resource for plant uptake and removal in 2018 cropping year.
- Biosolids solids content is consistent at an average 27%.
- FeCl₃ biosolids Phosphate-P is approximately 4% of Total Phosphorous content and significantly less than the assumed 50% Plant Available Phosphate.
- Organic nitrogen mineralization in Year 1 is estimated at 20%, Year 2 @ 12% and Year 3 @ 6%.
- Biosolids will be surface applied and incorporated within 48 hours. The assumed volatilization loss is estimated to be 15% for Ammonium-nitrogen.

This establishes a nitrogen based application of approximately 20 dry tonnes per hectare to provide 168 kg/ha (150 lbs/acre) of plant available nitrogen and approximately 15 kg/ha (14 lb/ac) of P_2O_5 (33% of required). Therefore the application of 5,000 wet tonnes biosolids will require approximately 66 hectares or 164 acres of land (Table 2 and 3).

Trace Element Loading

Table 4 and 5 outline the cumulative trace element concentrations based on the anticipated land application loading rate of 20 dry tonnes per hectare. None of the metals required to be monitored exceed the applied cumulative weight allowed in both NE31 and SE31-08-01EPM.

Schedule

It is anticipated that the Pilot land application program will be initiated September 13, 2017 and continue for approximately five weeks or until 5,000 wet tonnes of biosolids have been land applied. The program will not extend beyond the November 10, 2017 restriction date.

Monitoring and Reporting

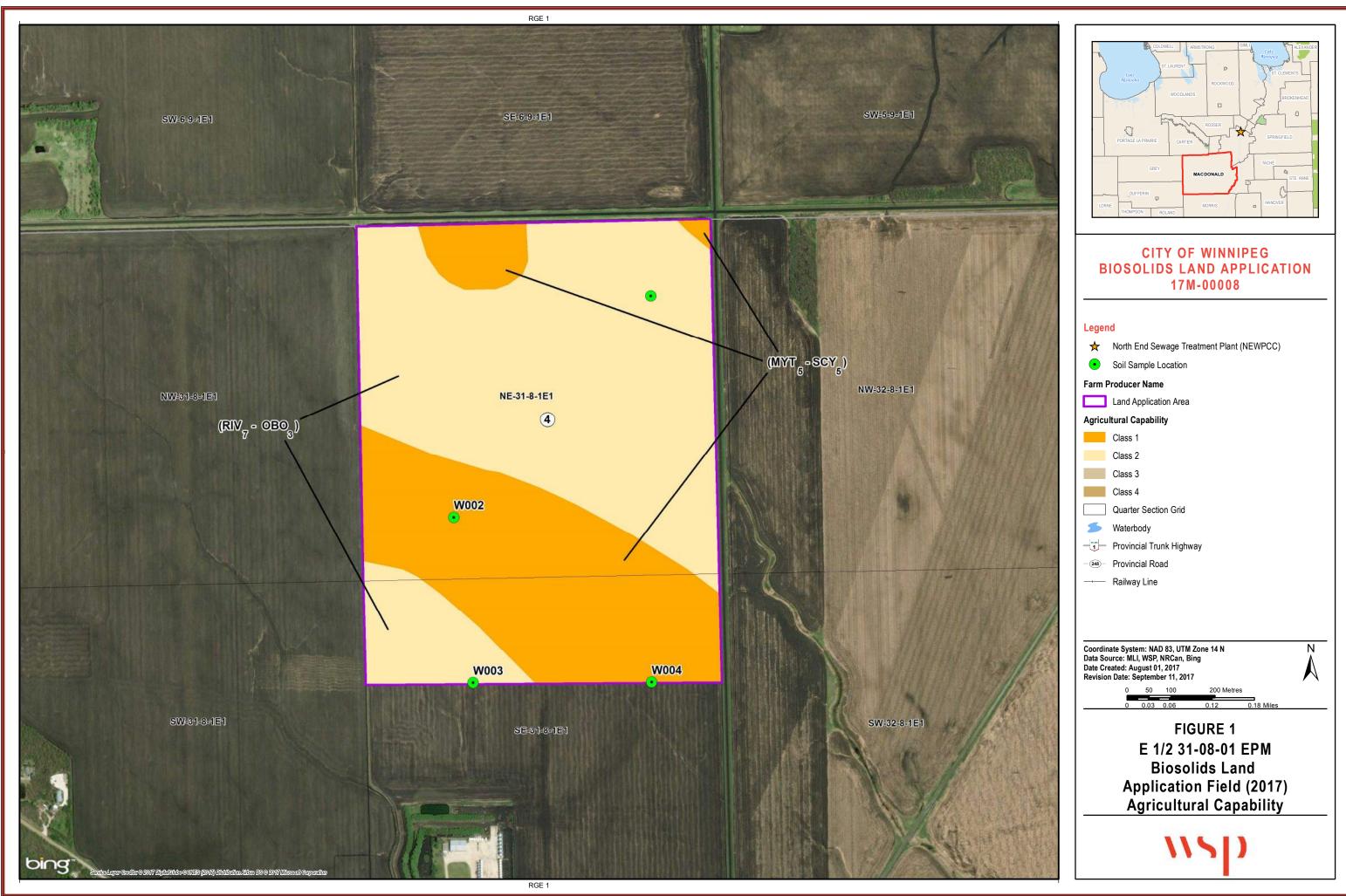
On or before December 1, 2017 the details of the Pilot land application program will be reported to MSD including: location, spread area, tonnes applied, application rates and dates, total land applied volumes and any deviations that may occur.

For three years following the biosolids land application, annual post-harvest soil testing of each field at bench mark sample locations will be completed for Nitrate-N (0-60cm) and Phosphorus using the Olsen-P test (0-15cm). Supplemental information from the cooperating farm producer including the nutrient management program and cropping system employed will also be provided to MSD. The annual monitoring information will be provided to MSD before the 15th day of March of each year.

Closing

On behalf of the City of Winnipeg, WSP is pleased to provide the outlined nutrient management plan and application prescription rate for biosolids to NE and SE31-08-01EPM. We respectfully request approval from MSD for this Pilot land application program to proceed by September 13, 2017. Should MSD have any further questions or require further clarification, please contact the undersigned directly at: 204-259-1488 or Darren.keam@wsp.com

Sincerely,


Heam.

Darren Keam, M.Sc., P.Ag. Manager, Environmental Management

DK/xx Encl.

cc:

Siobhan Burland Ross, Environmental Approval Branch, Manitoba Sustainable Development Robert Boswick, Environmental Approval Branch, Manitoba Sustainable Development David Hay, Water Science and Watershed Management Branch, Manitoba Sustainable Development Brian Wiebe, Water Science and Watershed Management Branch, Manitoba Sustainable Development Duane Griffin – Water and Waste Department, City of Winnipeg Amanda Wolfe - Water and Waste Department, City of Winnipeg

September 11, 2017

Table 2. Field Prescription Application Rate, NE31-08-01EPM

Field ID:	NE31-08-01EPM	
Land Area Available (ha):		64
2018 Crop	Can	ola
2018 Target Yield:	55 bi	u/ac
	lb/ac kg/ha	
Target Nitrogen total :	150	168
Fertilizer Phosphate (P2O5) total:	40	45
1 x P2O5 Crop Removal @ target Yield:	55	62
2 x P2O5 Crop Removal @ target Yield:	110	123
3 x P2O5 Crop Removal @ target Yield:	165	185
Sulfate-S target:	20	22

Plant Available Nutrients Soil Test Data					
	W0001	W0001			
Sample Depth	0-15 cm	15-60 cm	Total Available		
Units	mg	kg⁻¹	kg ha-1		
Total Nitrogen	0.318	0.202	-		
Available Nitrate-N	02.6	2	17		
Available Phosphate-P	12.6		25		
Available Potassium	418		836		
Available Sulfate-S			-		
	W0002	W0002			
Sample Depth	0-15 cm	15-60 cm	Total Available		
Units	mg	kg⁻¹	kg ha-1		
Total Nitrogen	0.238	0.254			
Available Nitrate-N	02.0	2	16		
Available Phosphate-P	07.0		14		
Available Potassium	309		618		
Available Sulfate-S			-		

City of Winnipeg Biosolids Characteristics and Analysis

Deve we at an Norma	Parameter	11 mit	Biosolid Analysis Pilot
Parameter Name	Description	Unit	Project
Estimated Biosolid Volume	In-field	m ³	5,000
Specific Gravity	As Received	g cm ⁻¹	1.00
Estimated Biosolids		tonnes	5,000
Dry tonnes biosolids available (=wet tonnes x %solids)	Dried Basis	tonnes	1,345
Moisture	As Received	%	73.3
Total Solids	As Received	%	26.9
Total Volatile Solids	Dry Basis	%	
Organic Matter	Dry Basis	%	-
Inorganic Content	Dry Basis	%	-
Total Organic Carbon	Dry Basis	%	28.94
N:P Ratio	Dry Basis	x:1	2.07
рН	Saturated Paste		6.15
	Dried Basis	%	3.7
Total N	Dried Basis	mg kg⁻¹	37,144
	Dried Basis	kg Tonne ⁻¹	37.1
	wet	mg kg-1	4,963.0
Ammonium - N (NH4-N)	Dried Basis	mg kg ⁻¹	1,325.3
	Dried Basis	kg Tonne ⁻¹	1.3
Available Nitrate-N	Dried Basis	mg kg ⁻¹	3.22
Available Nitrate-N		kg Tonne ⁻¹	0.003
Total Phosphorous	Dried Basis	mg kg ⁻¹	17,905
Phosphate-P (Modified Kelowna solution)	Dried Basis	mg kg-1	721
Total P:Phosphate-P ratio	Dried Basis	x:1	25
Percent Phosphate of Total		%	4
Amount of Biosolids Nutrient Available to Crop			
Organic N (=TN-ammonium N)	Dried Basis	mg kg ⁻¹	35,818
Organic N	Dried Basis	kg Tonne ⁻¹	36
Method of Application:	1		Incorporated
Anticipated Weather			Cool/dry

:		Incorporated	
r		Cool/dry	
) within 1 day			15
Dried Basis	kg Tonne⁻¹	-	7.2
Dried Basis	kg Tonne ⁻²	1.	.13
Dried Basis	kg Tonne⁻¹	5	8.3
Dried Basis	kg Tonne⁻¹	2	4.3
Dried Basis	kg Tonne⁻¹		2.1
Dried Basis	kg Tonne ⁻¹	(0.7
	Dried Basis Dried Basis Dried Basis Dried Basis	r vithin 1 day Dried Basis kg Tonne ⁻¹ Dried Basis kg Tonne ⁻² Dried Basis kg Tonne ⁻¹	r Cool/dry) within 1 day Dried Basis kg Tonne ⁻¹

Applicati	Land Area Required			
Nitrogen Based Application Rate	Dried Basis	tonnes ha ⁻¹	20	66 Ha
Amount of Available P2O5 applied	Dried Basis	kg ha ⁻¹	15	164 Ac
P ₂ O ₅ Application check		%	33	
Application Ra	te based on Phosph	orous (1xCR)		Land Area Required
Total Phosphorus Based Application Rate	Dried Basis	tonnes ha ⁻¹	85	16 Ha
	Dried Basis	kg ha ⁻¹	709	39 Ac
Amount of Nitrogen applied		lb ac ⁻¹	631	
		kg ha ⁻¹	- 541	
Additional Nitrogen required		lb ac-1	- 482	
Application Ra	te based on Phosph	orous (2xCR)		Land Area Required
Total Phosphorus Based Application Rate	Dried Basis	tonnes ha ⁻¹	171	8 Ha
Amount of Nitrogen applied	Dried Basis	kg ha ⁻¹	1,418	19 Ac
Additional Nitrogen required		kg ha ⁻¹	- 1,250	
Application Ra	Land Area Required			
Total Phosphorus Based Application Rate	Dried Basis	tonnes ha ⁻¹	256	5 Ha
Amount of Nitrogen applied	Dried Basis	kg ha ⁻¹	2,127	13 Ac
Additional Nitrogen required		kg ha ⁻¹	- 1,959	

Selected Application rate based on:		Nitrogen	PAN Year 1
	Dried Basis	tonnes ha ⁻¹	20
Colocted Application Data		tons ac ⁻¹	9
Selected Application Rate	Wet Basis	tonnes ha ⁻¹	79
	Wet basis	tons ac ⁻¹	36
Estimated Biosolids Volume Applied	Wet	Tonnnes	5,070
Estimated Biosolids Volume Remaining	Wet	Tonnes	- 70

Notes

Available Ammonium N - Volatilization loss associated with different application methods (0% with Injection)

Organic N - TKN - Ammonium N

Available Organic N - Organic N x 0.20 year 1 (Ross and Racz, 2003)

Mineralization of Year 2 = 12%, Year 3 = 6%

Plant Available Nitrogen= (NO3-N)+Volatilization factor (NH4-N)+Organic N Mineralization

Plant Available Phosphorus based on P2O5 (Modified Kelowna Analysis) as the biosolids are FeCI treated and fixes the majority of the total P.

Soil Phosphorous Olsen method.

* See Estimates of Ammonium-N Retained After Biosolids application

September 11, 2017

Table 3. Field Prescription Application Rate, SE31-08-01EPM

Field ID:	SE31-08-01EPM	
Land Area Available (ha):		25
2018 Crop	Can	ola
2018 Target Yield:	55 b	u/ac
	lb/ac	kg/ha
Target Nitrogen total :	150	168
Fertilizer Phosphate (P2O5) total:	40	45
1 x P2O5 Crop Removal @ target Yield:	40	45
2 x P2O5 Crop Removal @ target Yield:	80	90
3 x P2O5 Crop Removal @ target Yield:	arget Yield: 120 134	
Sulfate-S target:	20 22	

Plant Available Nutrients Soil Test Data					
	W0003	W0003			
Sample Depth	0-15 cm	15-60 cm	Total Available		
Units	mg	kg⁻¹	kg ha-1		
Total Nitrogen	0.29	0.186			
Available Nitrate-N	02.0	2	16		
Available Phosphate-P	09.0		18		
Available Potassium	390		780		
Available Sulfate-S			-		
	W0004	W0004			
Sample Depth	0-15 cm	15-60 cm	Total Available		
Units	mg	kg⁻¹	kg ha-1		
Total Nitrogen	0.333	0.202			
Available Nitrate-N	02.0	2	16		
Available Phosphate-P	17.3		35		
Available Potassium	430		860		
Available Sulfate-S			-		

City of Winnipeg Biosolids Characteristics and Analysis

Parameter Name	Parameter	Unit	Biosolid Analysis Pilot
	Description		Project
Estimated Biosolid Volume	In-field	m ³	5,000
Specific Gravity	As Received	g cm ⁻¹	1.00
Estimated Biosolids		tonnes	5,000
Dry tonnes biosolids available (=wet	Dried Desis		1 245
tonnes x %solids)	Dried Basis	tonnes	1,345
Moisture	As Received	%	73.3
Total Solids	As Received	%	26.9
Total Volatile Solids	Dry Basis	%	
Organic Matter	Dry Basis	%	-
Inorganic Content	Dry Basis	%	-
Total Organic Carbon	Dry Basis	%	28.94
N:P Ratio	Dry Basis	x:1	2.07
рН	Saturated Paste		6.15
	•	r	_
	Dried Basis	%	3.7
Total N	Dried Basis	mg kg ⁻¹	37,144
	Dried Basis	kg Tonne⁻¹	37.1
	wet	mg kg-1	4,963.0
Ammonium - N (NH4-N)	Dried Basis	mg kg⁻¹	1,325.3
	Dried Basis	kg Tonne⁻¹	1.3
Available Nitrate-N	Dried Basis	mg kg⁻¹	3.22
Available Nitrate-N		kg Tonne ⁻¹	0.003
Total Phosphorous	Dried Basis	mg kg⁻¹	17,905
Phosphate-P (Modified Kelowna solution)	Dried Basis	mg kg-1	721
Total P:Phosphate-P ratio	Dried Basis	x:1	25
Percent Phosphate of Total		%	4
Amount of Biosolids Nutrient Available to Crop			
Organic N (=TN-ammonium N)	Dried Basis	mg kg⁻¹	35,818
Organic N	Dried Basis	kg Tonne ⁻¹	36
Method of Application:		Ť	Incorporated
Anticipated Weather			Cool/dry
Anticipated Volatilization (%)	within 1 day		15
Available Organic N (@ 20%)	Dried Basis	kg Tonne⁻¹	7.2
Ammonium nitrogen available	Dried Basis	kg Tonne ⁻²	1.13
Plant Available Nitrogen (PAN) (Year 1)	Dried Basis	kg Tonne ⁻¹	8.3
PAN Year 2 (@12% mineralization)	Dried Basis	kg Tonne ⁻¹	4.3
PAN Year 3 (@6% mineralization)	Dried Basis	kg Tonne ⁻¹	2.1
P ₂ O _{5 equivalent}	Dried Basis	kg Tonne ⁻¹	0.7
2 Sequinaria		AS IONNE	0.7

Applicat	ion Rate based on N	itrogen		Land Area Required	
Nitrogen Based Application Rate	Dried Basis	tonnes ha ⁻¹	20	66	<mark>3</mark> На
Amount of Available P2O5 applied	Dried Basis	kg ha ⁻¹	15	164	1 Ac
P2O5 Application check		%	33		
Application Ra	te based on Phosph	orous (1xCR)		Land Area Required	
Total Phosphorus Based Application Rate	Dried Basis	tonnes ha ⁻¹	62.18	22	2 Ha
	Dried Basis	kg ha ⁻¹	516	53	B Ac
Amount of Nitrogen applied		lb ac ⁻¹	459		
		kg ha ⁻¹	- 348		
Additional Nitrogen required		lb ac-1	- 309		
Application Ra	te based on Phosph	orous (2xCR)		Land Area Required	
Total Phosphorus Based Application Rate	Dried Basis	tonnes ha ⁻¹	124.36	11	l Ha
Amount of Nitrogen applied	Dried Basis	kg ha ⁻¹	1,031	27	7 Ac
Additional Nitrogen required		kg ha⁻¹	- 863		
Application Ra	te based on Phosph	orous (3xCR)		Land Area Required	
Total Phosphorus Based Application Rate	Dried Basis	tonnes ha ⁻¹	186.54	7	7 Ha
Amount of Nitrogen applied	Dried Basis	kg ha ⁻¹	1,547	18	B Ac
Additional Nitrogen required		kg ha ⁻¹	- 1,379		

Selected Application rate based on:		Nitrogen	PAN Year 1
	Dried Basis	tonnes ha ⁻¹	20
Selected Application Rate	Drieu Basis	tons ac ⁻¹	9
Selected Application Rate	Wet Basis	tonnes ha ⁻¹	79
	Wet basis	tons ac ⁻¹	36
Estimated Biosolids Volume Applied	Wet	Tonnnes	1,980
Estimated Biosolids Volume Remaining	Wet	Tonnes	3,020

Notes

 $\label{eq:stable} A mmonium \ N \ - \ Volatilization \ loss \ associated \ with \ different \ application \ methods \ (0\% \ with \ Injection)$

Organic N - TKN - Ammonium N

Available Organic N - Organic N x 0.25year 1

Mineralization of Year 2 = 12%, Year 3 = 6%

Plant Available Nitrogen= (NO3-N)+Volatilization factor (NH4-N)+Organic N Mineralization

Plant Available Phosphorus based on P2O5 (Modified Kelowna Analysis) as the biosolids are FeCl treated and fixes the majority of the total P.

Soil Phosphorous Olsen method.

 $\ensuremath{^*}$ See Estimates of Ammonium-N Retained After Biosolids application

 Table 4. City of Winnipeg Biosolid Trace Elements (Metal) Field Specific Soil Metal Concentrations and Cumulative Metal Concentrations

Trace Element	City of Wpg Average Concentration		NE31-8-1E (0-15cm) W001		NE31-8-1E (0-15cm) W002		Mean Soil Metal Concentration	Loading Rate 20 Tonnes / Ha (dry)	Cumulative Metal Concentration	Cumulative Weight Allowed by Guideline ²
	mg kg⁻¹	kg tonne ⁻¹	mg kg⁻¹	kg ha⁻¹	mg kg⁻¹	kg ha⁻¹	kg ha⁻¹	kg ha⁻¹	kg ha⁻¹	kg ha⁻¹
Arsenic (As)	4.39	0.00	8.99	0.009	9.06	0.009	0.01	0.000	0.01	21.6
Cadmium (Cd)	2.25	0.00	0.20	0.000	0.20	0.000	0.00	0.000	0.00	2.5
Chromium (Cr)	115.80	0.12	44.5	0.045	48.6	0.049	0.05	0.000	0.05	115.2
Copper (Cu)	596.81	0.60	32.2	0.032	30.6	0.031	0.03	0.000	0.03	113.4
Lead (Pb)	72.73	0.07	15.1	0.015	13.6	0.014	0.01	0.000	0.01	126
Mercury (Hg)	1.01	0.00	00.0	0.000	00.0	0.000	0.00	0.000	0.00	11.9
Nickel (Ni)	55.21	0.06	44.0	0.044	44.8	0.045	0.04	0.000	0.04	90
Zinc (Zn)	1394.99	1.39	092	0.092	93.0	0.093	0.09	0.000	0.09	360

Notes:

Max loading rate calculated

¹ = Soil concentrations less than detection

 2 = Cumulative Weight Allowed by Guideline includes the metals in soils.

 Table 5. City of Winnipeg Biosolid Trace Elements (Metal) Field Specific Soil Metal Concentrations and Cumulative Metal Concentrations

Trace Element	City of Wpg Average Concentration		SE31-8-1E (0-15cm) W003		SE31-8-1E (0-15cm) W004		Mean Soil Metal Concentration	Loading Rate 20 Tonnes / Ha (dry)	Cumulative Metal Concentration	Cumulative Weight Allowed by Guideline ²	
	mg kg⁻¹	kg tonne ⁻¹	mg kg⁻¹	kg ha⁻¹	mg kg⁻¹	kg ha⁻¹	kg ha⁻¹	kg ha⁻¹	kg ha⁻¹	kg ha⁻¹	
Arsenic (As)	4.39	0.00	9.23	0.009	9.34	0.009	0.01	0.000	0.01	21.6	
Cadmium (Cd)	2.25	0.00	0.25	0.000	0.30	0.000	0.00	0.000	0.00	2.5	
Chromium (Cr)	115.80	0.12	51.2	0.051	43.5	0.044	0.05	0.000	0.05	115.2	
Copper (Cu)	596.81	0.60	32.9	0.033	31.8	0.032	0.03	0.000	0.03	113.4	
Lead (Pb)	72.73	0.07	14.5	0.015	15.7	0.016	0.02	0.000	0.02	126	
Mercury (Hg)	1.01	0.00	00.0	0.000	00.0	0.000	0.00	0.000	0.00	11.9	
Nickel (Ni)	55.21	0.06	15.6	0.016	39.0	0.039	0.03	0.000	0.03	90	
Zinc (Zn)	1394.99	1.39	101	0.101	90.0	0.090	0.10	0.000	0.10	360	

Notes:

Max loading rate calculated

 1 = Soil concentrations less than detection

 2 = Cumulative Weight Allowed by Guideline includes the metals in soils.

Table 6. Analytical Summary of City of Winnipeg Biosolids Analysis (2012 to Present)

Statistical Analysis Summary	Total Solids	Moisture	Total Organic Carbon (dry basis)	Total Kjendal Nitrogen	Total Nitrogen (Slu-ext)	рН	Conductivity	Aluminum	Arsnic	Cadmium	Colbolt	Chromium
		(%)		(mg/k	g N)		(μS/cm)		Tot	al (mg/kg a	lry)	
Min	21.5	68.9	23.2	23600.0	30900.0	5.8	5260.0	27.4	3.0	1.3	4.0	63.6
Max	34.1	79.8	34.8	39900.0	44200.0	7.3	20600.0	11600.0	6.3	9.8	24.9	345.0
Average	26.9	73.3	27.4	32627.6	37347.1	6.1	9459.9	6923.4	4.4	2.2	6.6	115.8
95th percentile	31.3	77.9	32.5	38100.0	42360.0	6.7	15330.0	9561.5	5.6	4.1	8.5	203.9
Standard Deviation	2.9	3.0	3.3	3491.1	3606.9	0.3	3341.4	1690.0	0.7	1.2	2.3	42.9
Count (n=)	114	100	90	101	17	59	55	108	108	108	104	108

Notes:

Data provided by City of Winnipeg

Table 6. Analytical Summary (

Statistical Analysis Summary	Copper	Iron	Mercury	Potassium	Molybdenum	Nickel	Phosphorus	Lead	Selenium	Zinc
					Total (mg/k	g dry)				
Min	370.0	24700.0	0.6	705.0	7.7	16.7	13400.0	29.5	1.9	632.0
Max	954.0	68000.0	1.8	2810.0	30.6	121.0	26800.0	325.0	106.0	5080.0
Average	596.8	38517.6	1.0	1760.1	15.0	55.2	17905.0	72.7	5.3	1395.0
95th percentile	813.5	59725.0	1.4	2368.0	20.3	82.8	24695.0	120.3	5.5	2852.0
Standard Deviation	126.1	10481.9	0.2	338.1	3.8	16.2	4125.7	46.4	12.8	762.9
Count (n=)	108	108	95	105	107	106	108	106	108	110

Notes:

Data provided by City of Winni

Table 6. Analytical Summary (

Statistical Analysis Summary	Ammonium-N	Phosphate-P (mg/Kg)	Sulfate-S (mg/Kg)	Potassium (mg/Kg)	Nitrite-N (mg/Kg)	Nitrate-N (mg/Kg)	Nitrate + Nitrite-N (mg/Kg)	Loss On Ignition (%)	Inorganic Carbon as CaCO3		Total Inorganic Carbon in Soil	-
	(mg/Kg) (wet)			(mg/kg d	lry)			(%)		(%	5)	
Min	3120.0	450.0	554.0	530.0	1.0	4.6	3.0	40.5	5.7	25.5	0.7	24.3
Max	6700.0	1380.0	2540.0	690.0	1.8	4.6	3.3	52.7	10.2	31.9	1.2	31.2
Average	4963.0	720.5	1994.4	625.3	1.4	4.6	3.2	47.0	7.8	28.9	0.9	28.0
95th percentile	5804.0	1188.0	2516.0	683.2	1.7	4.6	3.3	52.5	10.1	31.8	1.2	30.9
Standard Deviation	1076.7	255.3	544.9	53.8	0.2	0.0	0.1	3.8	1.3	1.8	0.2	1.9
Count (n=)	10	10	10	10	6	1	5	10	15	15	15	15

Notes:

Data provided by City of Winni

WSP Canada Group Limited ATTN: BRIAN MOONS 1600 Buffalo Place Winnipeg MB R3T 6B8

Date Received: 22-AUG-17 Report Date: 01-SEP-17 07:37 (MT) Version: FINAL

Client Phone: 204-477-6650

Certificate of Analysis

Lab Work Order #: L1978983 Project P.O. #: Job Reference:

C of C Numbers: Legal Site Desc:

NOT SUBMITTED 17M-00008-01

Hua Wo Chemistry Laboratory Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Detail	ls/Parameters	Result	MU	Qualifier*	D.L.	Units	Bias	Extracted	Analyzed	Batch
L1978983-1	W001 0-15									
Sampled By:	BM on 22-AUG-17 @ 09:00									
Matrix:	SOIL									
	aneous Parameters									
	Available Phosphate-P	12.6	-		1.0	mg/kg	_	25-AUG-17	25-AUG-17	R381204
	Available Potassium	418	+/-52	DLHC	40	mg/kg	-11 8%	25-AUG-17		
	Mercury (Hg)	0.0380	+/-0.010	52.10	0.0050	mg/kg	0		29-AUG-17	
	Total Nitrogen by LECO	0.318	+/-0.056		0.000	%	0		29-AUG-17	
	pH (1:2 soil:water)	6.52	+/-0.18		0.020	pH	0		31-AUG-17	
Nitrato	Nitrite and Nitrate+Nitrite-N	0.52	+/-0.18		0.10	pri	0	31-A00-17	31-A00-17	130102
Nill ale,	Nitrite-N	<0.40	_		0.40	mg/kg	-	31-AUG-17	31-AUG-17	R38163
	Nitrate+Nitrite-N	2.6	+/-1.5		2.0	mg/kg	0		31-AUG-17	
	Nitrate-N	2.6	-		2.0	mg/kg	-		31-AUG-17	
Metals					2.0					
	Arsenic (As)	8.99	+/-1.1		0.10	mg/kg	0	25-AUG-17	28-AUG-17	R38137
	Cadmium (Cd)	0.196	+/-0.035		0.020	mg/kg	0	25-AUG-17	28-AUG-17	R38137
	Chromium (Cr)	44.5	+/-8.0		1.0	mg/kg	0	25-AUG-17	28-AUG-17	R38137
	Copper (Cu)	32.2	+/-4.8		1.0	mg/kg	0	25-AUG-17	28-AUG-17	R38137
	Lead (Pb)	15.1	+/-2.9		0.20	mg/kg	0	25-AUG-17	28-AUG-17	R38137
	Nickel (Ni)	44.0	+/-5.5		0.50	mg/kg	0		28-AUG-17	
	Zinc (Zn)	92	+/-12		10	mg/kg	0	25-AUG-17	28-AUG-17	R38137
1978983-2	W001 15-60									
Sampled By:	BM on 22-AUG-17 @ 09:00									
Matrix:	SOIL									
Miscella	aneous Parameters									
	Total Nitrogen by LECO	0.202	+/-0.037		0.020	%	0	29-AUG-17	29-AUG-17	R38143
Nitrate,	Nitrite and Nitrate+Nitrite-N									
	Nitrite-N	<0.40	-		0.40	mg/kg	-	31-AUG-17	31-AUG-17	R38163
	Nitrate+Nitrite-N	<2.0	-		2.0	mg/kg	-	31-AUG-17	31-AUG-17	R38163
	Nitrate-N	<2.0	-		2.0	mg/kg	-	31-AUG-17	31-AUG-17	R38163
_1978983-3	W002 0-15									
Sampled By:	BM on 22-AUG-17 @ 10:00									
Matrix:	SOIL									
Miscella	aneous Parameters									
	Available Phosphate-P	7.0	-		1.0	mg/kg	-	25-AUG-17	25-AUG-17	R38120
	Available Potassium	309	+/-40		20	mg/kg	-11.8%	25-AUG-17	25-AUG-17	R38121
	Mercury (Hg)	0.0290	+/-0.0084		0.0050	mg/kg	0		29-AUG-17	
	Total Nitrogen by LECO	0.238	+/-0.043		0.020	%	0		29-AUG-17	
	pH (1:2 soil:water)	7.50	+/-0.18		0.10	pH	0		31-AUG-17	
Nitrate	Nitrite and Nitrate+Nitrite-N	1.00	., 0.10		0.10	, P''				
initiate,	Nitrite-N	<0.40	-		0.40	mg/kg	-	31-AUG-17	31-AUG-17	R38163
	Nitrate+Nitrite-N	<2.0	-		2.0	mg/kg	-		31-AUG-17	
	Nitrate-N	<2.0	-		2.0	mg/kg	-		31-AUG-17	
Metals										
	Arsenic (As)	9.06	+/-1.2		0.10	mg/kg	0	25-AUG-17	28-AUG-17	R38137
	Cadmium (Cd)	0.204	+/-0.036		0.020	mg/kg	0	25-AUG-17	28-AUG-17	R38137
	Chromium (Cr)	48.6	+/-8.8		1.0	mg/kg	0	25-AUG-17	28-AUG-17	R38137
	Copper (Cu)	30.6	+/-4.6		1.0	mg/kg	0	25-AUG-17	28-AUG-17	R38137
	Lead (Pb)	13.6	+/-2.6		0.20	mg/kg	0	25-AUG-17	28-AUG-17	R38137
	Nickel (Ni)	44.8	+/-5.6		0.50	mg/kg	0	25-AUG-17	28-AUG-17	R38137
	Zinc (Zn)	93	+/-12		10	mg/kg	0	25-AUG-17	28-AUG-17	R38137
L1978983-4	W002 15-60									
Sampled By:	BM on 22-AUG-17 @ 10:00									
Matrix:	SOIL									

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Detai	ls/Parameters	Result	MU	Qualifier*	D.L.	Units	Bias	Extracted	Analyzed	Batch
L1978983-4	W002 15-60									
Sampled By:	BM on 22-AUG-17 @ 10:00									
Matrix:	SOIL									
	aneous Parameters									
mooon	Total Nitrogen by LECO	0.254	+/-0.046		0.020	%	0	29-AUG-17	29-4116-17	R381434
Nitrato	Nitrite and Nitrate+Nitrite-N	0.234	17-0.040		0.020	/0	0	25 700 17	25 700 17	11001404
Nitiate,	Nitrite-N	<0.40	-		0.40	mg/kg	_	31-AUG-17	31-AUG-17	R381638
	Nitrate+Nitrite-N	<2.0	-		2.0	mg/kg	-	31-AUG-17		
	Nitrate-N	<2.0	-		2.0	mg/kg	-	31-AUG-17		
L1978983-5	W003 0-15					3.3				
Sampled By:	BM on 22-AUG-17 @ 10:20									
	SOIL									
Matrix:	aneous Parameters									
wiscena					4.0			DE ALIO 47	DE ALIC 17	D204204
	Available Phosphate-P	9.0	-		1.0	mg/kg	-	25-AUG-17		
	Available Potassium	390	+/-49		20	mg/kg		25-AUG-17		
	Mercury (Hg)	0.0310	+/-0.0088		0.0050	mg/kg	0	25-AUG-17		
	Total Nitrogen by LECO	0.290	+/-0.052		0.020	%	0	29-AUG-17		
	pH (1:2 soil:water)	6.98	+/-0.18		0.10	pН	0	31-AUG-17	31-AUG-17	R381622
Nitrate,	Nitrite and Nitrate+Nitrite-N									
	Nitrite-N	<0.40	-		0.40	mg/kg	-	31-AUG-17		
	Nitrate+Nitrite-N	<2.0	-		2.0	mg/kg	-	31-AUG-17		
	Nitrate-N	<2.0	-		2.0	mg/kg	-	31-AUG-17	31-AUG-17	R381638
Metals										
	Arsenic (As)	9.23	+/-1.2		0.10	mg/kg	0	25-AUG-17		
	Cadmium (Cd)	0.252	+/-0.045		0.020	mg/kg	0	25-AUG-17		
	Chromium (Cr)	51.2	+/-9.3		1.0	mg/kg	0	25-AUG-17		
	Copper (Cu)	32.9	+/-4.9		1.0	mg/kg	0		28-AUG-17	
	Lead (Pb)	14.5	+/-2.8		0.20	mg/kg	0	25-AUG-17		
	Nickel (Ni) Zing (Zp)	45.6	+/-5.7 +/-13		0.50	mg/kg	0	25-AUG-17		
	Zinc (Zn)	101	+/-13		10	mg/kg	0	25-AUG-17	26-AUG-17	K3013/3
L1978983-6	W003 15-60									
Sampled By:	BM on 22-AUG-17 @ 10:20									
Matrix:	SOIL									
Miscella	aneous Parameters									
	Total Nitrogen by LECO	0.186	+/-0.035		0.020	%	0	29-AUG-17	29-AUG-17	R381434
Nitrate,	Nitrite and Nitrate+Nitrite-N									
	Nitrite-N	<0.40	-		0.40	mg/kg	-	31-AUG-17		
	Nitrate+Nitrite-N	<2.0	-		2.0	mg/kg	-	31-AUG-17		
	Nitrate-N	<2.0	-		2.0	mg/kg	-	31-AUG-17	31-AUG-17	R381638
L1978983-7	W004 0-15									
Sampled By:	BM on 22-AUG-17 @ 10:45									
Matrix:	SOIL									
Miscella	aneous Parameters									
	Available Phosphate-P	17.3	-		1.0	mg/kg	-	25-AUG-17	25-AUG-17	R381204
	Available Potassium	430	+/-54	DLHC	40	mg/kg	-11.8%	25-AUG-17	25-AUG-17	R381212
	Mercury (Hg)	0.0383	+/-0.010		0.0050	mg/kg	0	25-AUG-17		
	Total Nitrogen by LECO	0.333	+/-0.059		0.020	%	0	29-AUG-17		
	pH (1:2 soil:water)	6.63	+/-0.18		0.10	pH	0		31-AUG-17	
Nitrata	Nitrite and Nitrate+Nitrite-N	0.03	1, 0.10		0.10			01-700-17	01-700-17	11001022
minate,	Nitrite-N	<0.40	-		0.40	mg/kg	-	31-AUG-17	31-AUG-17	R381638
	Nitrate+Nitrite-N	<2.0	-		2.0	mg/kg		31-AUG-17		
	Nitrate-N	<2.0	-		2.0	mg/kg		31-AUG-17		
Metals		~2.0			2.0			0.700-17	51700-17	
metais										

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Detai	ls/Parameters	Result	MU	Qualifier*	D.L.	Units	Bias	Extracted	Analyzed	Batch
1 4070000 7	W004.0.45									
L1978983-7	W004 0-15									
Sampled By:	BM on 22-AUG-17 @ 10:45									
Matrix:	SOIL									
Metals	Arsenic (As)	9.34	+/-1.2		0.10	mg/kg	0	25-AUG-17	28 4110 17	D2912723
	Cadmium (Cd)	9.34 0.295	+/-1.2		0.10	mg/kg	0	25-AUG-17		
	Chromium (Cr)	43.5	+/-7.9		1.0	mg/kg	0	25-AUG-17		
	Copper (Cu)	31.8	+/-4.8		1.0	mg/kg	0		28-AUG-17	
	Lead (Pb)	15.7	+/-3.1		0.20	mg/kg	0	25-AUG-17		
	Nickel (Ni)	39.0	+/-4.9		0.50	mg/kg	0		28-AUG-17	
	Zinc (Zn)	90	+/-11		10	mg/kg	0		28-AUG-17	
L1978983-8	W004 15-60									
Sampled By:	BM on 22-AUG-17 @ 10:45									
Matrix:	SOIL									
	aneous Parameters									
	Total Nitrogen by LECO	0.202	+/-0.038		0.020	%	0	29-AUG-17	29-AUG-17	R381434
Nitrate	Nitrite and Nitrate+Nitrite-N	0.202	1, 0.000		0.020			20710011	20710011	
initiato,	Nitrite-N	<0.40	-		0.40	mg/kg	-	31-AUG-17	31-AUG-17	R3816380
	Nitrate+Nitrite-N	<2.0	-		2.0	mg/kg	-	31-AUG-17	31-AUG-17	R3816380
	Nitrate-N	<2.0	-		2.0	mg/kg	-	31-AUG-17	31-AUG-17	R3816380

Reference Information

L1978983 CONTD.... PAGE 5 of 6

Qualifier	Description				
DLHC	Detection Lin	nit Raise	ed: Dilution required due to high conce	entration of test analyte(s).	
est Method R	eferences:				
ALS Test Code	М	atrix	Test Description	Preparation Method Reference	Method Reference**
HG-200.2-CVAF	-WP So	il	Mercury in Soil by CVAFS		EPA 200.2/1631E (mod)
Soil samples ar	e digested with	nitric ar	nd hydrochloric acids, followed by ana	lysis by CVAFS.	
K-AVAIL-SK	So	il	Available Potassium		Comm. Soil Sci. Plant, 25 (5&6)
Plant available 770 nm.	ootassium is ex	tracted	from the soil using Modified Kelowna	solution. Potassium in the soil extract	is determined by flame emission at
MET-200.2-MS-	WP So	il	Metals		EPA 200.2/6020A
	eighed. The s	ample is		through a 2 mm (10 mesh) sieve, and A 200.2). Instrumental analysis is by ir	
	nmentally avail	able." E		ry strong acid digestion that is intende structures are not normally dissolved b	
N-TOT-LECO-S	K So	il	Total Nitrogen by combustion method		CSSS (2008) 22.4
The sample is ig	inited in a com	bustion	analyzer where nitrogen in the reduce	ed nitrous oxide gas is determined usir	ng a thermal conductivity detector.
N2/N3-AVAIL-S	K So	il	Nitrate, Nitrite and Nitrate+Nitrite-N	N	APHA 4500 NO3F
passage of the s sulfanilamide fo measured at co column.	ample through lowed by coup orimetrically at	a copp ling with 520nm	erized cadmium column. The nitrite N-(1-naphthyl) ethylenediamine dihy Nitrite is determined on the same ex	n chloride solution. Nitrate plus Nitrite i (reduced nitrate plus original nitrite) is drochloride. The resulting water solub stract by following the same instrumen	then determined by diazotizing with le dye has a magenta color which is tal procedure without a cadmium
Reference: Rec	ommended Me	thoas of	Soli Analysis for Canadian Prairie Ag	gricultural Soils. Alberta Agriculture (19	988) p. 19 and 28
PH-1:2-SK	So	il	pH (1:2 Soil:Water Extraction)		AB Ag (1988) p.7
			rater (by volume) is mixed. The slurry red using a pH meter.	is allowed to stand with occasional sti	rring for 30 - 60 minutes. After
PO4-AVAIL-OL	SEN-SK So	il	Available Phosphate-P by Olsen		CSSS (2008) 8.2
Plant available	hosphorus is e	extracted	d from the sample with sodium bicark	ponate. PO4-P in the filtered extract is	determined colorimetrically at 880 nm
			ence is the closest nationally or interr lifications from the specified reference	ationally recognized reference for the to improve performance.	applicable ALS test method. ALS
The last two lett	ers of the abov	e test c	ode(s) indicate the laboratory that per	formed analytical analysis for that test	. Refer to the list below:
aboratory Def	nition Code	Labo	oratory Location		
		AI 9	ENVIRONMENTAL - SASKATOON, S	SASKATCHEWAN CANADA	
		AL3			
SK VP			ENVIRONMENTAL - WINNIPEG, MA	·	

Reference Information

GLOSSARY OF REPORT TERMS

Surr - Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than. D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

MU: Measurement Uncertainty. The reported uncertainty is an expanded uncertainty calculated using a coverage factor of 2 which gives a level of confidence of approximately 95%.

Bias: The reported method bias is the average long term deviation from the target value for a long term reference or control sample, measured in percent. Zero values indicate no detectable method bias.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

			Workorder:	L197898	3	Repo	rt Date: 01-SE	P-17		Page 1 of 5
•	1600 Buff	ada Group Limite alo Place MB R3T 6B8	d							
Contact:	BRIAN M	OONS								
Test		Matrix	Reference	Result	Qualifier	U	nits	RPD	Limit	Analyzed
HG-200.2-CVAF-V	VP	Soil								
	3814622									
WG2604093-4 Mercury (Hg)	CRM		PACS-3	107.1		%	6		70-130	29-AUG-17
WG2604093-5 Mercury (Hg)	DUP		L1978983-7 0.0383	0.0370		m	ng/kg	3.5	40	29-AUG-17
WG2604093-2 Mercury (Hg)	LCS			106.8		9	6		80-120	29-AUG-17
WG2604093-1 Mercury (Hg)	MB			<0.0050		m	ng/kg		0.005	29-AUG-17
K-AVAIL-SK		Soil		10.0000			ing/ing		0.000	23-700-11
	3812127	001								
WG2600851-1	DUP		L1979030-3							
Available Pota			398	401		n	ng/kg	0.8	30	25-AUG-17
WG2600851-3 Available Pota	IRM ssium		FARM2005	94.6		%	6		70-130	25-AUG-17
WG2600851-2 Available Pota	MB ssium			<20		n	ng/kg		20	25-AUG-17
MET-200.2-MS-W	Р	Soil								
Batch R	3813733									
WG2601712-4 Arsenic (As)	CRM		PACS-3	99.2		%	6		70-130	28-AUG-17
Cadmium (Cd))			92.6		%	6		70-130	28-AUG-17
Chromium (Cr)			101.5		%	6		70-130	28-AUG-17
Copper (Cu)				102.8		%	6		70-130	28-AUG-17
Lead (Pb)				92.2		%	6		70-130	28-AUG-17
Nickel (Ni)				100.1		%	6		70-130	28-AUG-17
Zinc (Zn)				99.4		%	6		70-130	28-AUG-17
WG2601712-5 Arsenic (As)	CRM		CANMET TILL	-1 102.0		%	6		70-130	28-AUG-17
Cadmium (Cd))			101.9		%	6		70-130	28-AUG-17
Chromium (Cr)			99.0		%	6		70-130	28-AUG-17
Copper (Cu)				103.1		%			70-130	28-AUG-17
Lead (Pb)				104.4		%			70-130	28-AUG-17
Nickel (Ni)				101.0		%			70-130	28-AUG-17
Zinc (Zn)				98.9		%			70-130	28-AUG-17
WG2601712-7 Arsenic (As)	DUP		WG2601712-6 9.34	9.45		m	ng/kg	1.1	30	28-AUG-17

		Workorder:	L1978983	Re	eport Date: 01-S	SEP-17	I	Page 2 of 5
1600 Buff	alo Place	d						
BRIAN M	OONS							
	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
/P	Soil							
R3813733								
		WG2601712-6 0.268	0.251		mg/kg	6.8	30	28-AUG-17
r)		43.5	43.0		mg/kg	1.2	30	28-AUG-17
		31.8	30.7		mg/kg	3.6	30	28-AUG-17
		15.7	15.5		mg/kg	1.5	40	28-AUG-17
		39.0	38.6		mg/kg	0.9	30	28-AUG-17
		90	88		mg/kg	2.4	30	28-AUG-17
LCS			107.2		0/			28-AUG-17
4)								28-AUG-17 28-AUG-17
								28-AUG-17 28-AUG-17
.,								28-AUG-17
								28-AUG-17
								28-AUG-17
								28-AUG-17
MB								
4)								28-AUG-17
								28-AUG-17 28-AUG-17
')								28-AUG-17 28-AUG-17
								28-AUG-17
								28-AUG-17
			<10		mg/kg		10	28-AUG-17
(Soil							
R3814347								
		L1978697-3 0.557	0.552		%	1.0	20	29-AUG-17
IRM		08-109_SOIL						
-			0.115		%		0.085-0.135	29-AUG-17
			<0.020		%		0.02	29-AUG-17
	Soil							
3816380								
DUP		L1978983-2 <0.40	<0.40	RPD-NA	mg/kg	N/A	50	31-AUG-17
	1600 Buff. Winnipeg BRIAN M /P 3813733 DUP 1) r) // MB d) r) // MB	1600 Buffalo Place Winnipeg MB R3T 6B8 BRIAN MOONS Matrix /P Soil R3813733 DUP t) r) // MB d) r) // MB d) r) // MB d) r) // Soil R3814347 DUP t) r) // Soil R3814347 // DUP hby LECO // MB hby LECO // MB hby LECO // Soil R3816380 // Soil R3816380	WSP Canada Group Limited 1600 Buffalo Place Winnipeg MB R3T 6B8 BRIAN MOONS Matrix Reference VP Soil R3813733 DUP WG2601712-6 0.268 1. 0.268 1. 31.8 15.7 39.0 90 2. LCS 1. MB MB 1. MB 1. MB 1. MB 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	WSP Canada Group Limited Biolo Buifalo Place Winnipeg MB R3T 6B8 BRIAN MONS Reference Result Matrix Reference Result VP Soil Soil Vincipeg MB R3T 6B8 BRIAN MONS Soil WG2601712-6 Image: Colspan="2">Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2" Image: Colspan="2"				

			Workorder:	L1978983		Report Date:	01-SEP-17		Page 3 of 5			
Client:	1600 Buffa	ada Group Limite alo Place MB R3T 6B8	d									
Contact:	BRIAN MO											
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed			
N2/N3-AVAIL-SH	(Soil										
Batch WG2604304- Nitrate+Nitrite	-		L1978983-2 <2.0	<2.0	RPD-NA	mg/kg	N/A	30	31-AUG-17			
WG2604304-3 Nitrate+Nitrite			SAL814	114.1		%		70-130	31-AUG-17			
WG2604304- Nitrite-N	2 MB			<0.40		mg/kg		0.4	31-AUG-17			
Nitrate+Nitrite	e-N			<2.0		mg/kg		2	31-AUG-17			
PH-1:2-SK		Soil										
Batch WG2604311-2 pH (1:2 soil:w			SAL814	8.09		рН		7.65-8.25	31-AUG-17			
PO4-AVAIL-OLS Batch	EN-SK R3812043	Soil										
WG2599642- Available Pho	1 DUP		L1978598-7 6.2	7.0		mg/kg	12	30	25-AUG-17			
WG2599642- Available Pho			FARM2005	103.4		%		80-120	25-AUG-17			
WG2599642-2 Available Pho				<1.0		mg/kg		1	25-AUG-17			

Quality Control Report Workorder: L1978983 Report Date: 01-SEP-17

Client:	WSP Canada Group Limited							
	1600 Buffalo Place							
	Winnipeg MB R3T 6B8							
Contact:	BRIAN MOONS							

Contact:

Legend:

-	
Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate
Sample	Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1978983

Report Date: 01-SEP-17

Client: WSP Canada Group Limited 1600 Buffalo Place Winnipeg MB R3T 6B8 Contact: BRIAN MOONS

Page 5 of 5

Hold Time Exceedances:

ALS Product Description	Sample ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Plant Available Nutrients							
Nitrate, Nitrite and Nitrate-	+Nitrite-N						
	1	22-AUG-17 09:00	31-AUG-17 16:38	3	9	days	EHT
	2	22-AUG-17 09:00	31-AUG-17 16:38	3	9	days	EHT
	3	22-AUG-17 10:00	31-AUG-17 16:38	3	9	days	EHT
	4	22-AUG-17 10:00	31-AUG-17 16:38	3	9	days	EHT
	5	22-AUG-17 10:20	31-AUG-17 16:38	3	9	days	EHT
	6	22-AUG-17 10:20	31-AUG-17 16:38	3	9	days	EHT
	7	22-AUG-17 10:45	31-AUG-17 16:38	3	9	days	EHT
	8	22-AUG-17 10:45	31-AUG-17 16:38	3	9	days	EHT

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR: Exceeded ALS recommended hold time prior to sample receipt.
EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT: Exceeded ALS recommended hold time prior to analysis.
Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1978983 were received on 22-AUG-17 14:55.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Report To

Company:

Contact:

Address:

Chain of Custody (COC) / Analytical

Canada Toll Free: 1 800 668 9878

🔽 No

Р

COC Number: 14 -

Select Service Level Below (Rush Turnaround Time (TAT) is not available for all tests)

Priority (2-4 bus, days if received by 3pm) 50% surcharge - contact ALS to confirm TAT

E Emergency (1-2 bus, days if received by 3pm) 100% surcharge - contact ALS to confirm TAT

E2 Same day or weekend emergency - contact ALS to confirm TAT and surcharge

R Regular (Standard TAT if received by 3 pm - business days)

Page	1 of	1
197	FB3	

Report Format / Distribution WSP Group Canada Limited Select Report Format: PDF VEXCEL EDD (DIGITAL) Brian Moons Quality Control (QC) Report with Report √ Yes 1600 Buffalo Place Criteria on Report - provide details below if box checked Select Distribution: 🖌 EMAIL MAIL FAX

Phone:	204-477-6650 Email 1 or Fax brian moons@wsp.com				Specify Date Required for E2,E or P:																						
				Email 2	darren.keam@w	sp.com							A	nalys	is Rec	uest											
Invoice To	Same as Report To	∏ Yes				listribution			Indi	cate Fil	tered (F), Preser	ved (P)) or Filte	ered an	d Prese	rved (F	/P) below	r.								
	Copy of Invoice with Report	🗖 Yes	₽ No	Select Invoice Distribution: 🗹 EMAIL 🗌 MAIL 🔲 FAX															Τ								
Company:	WSP Group Canada Limited			Email 1 or Fax	apwest@wsp.cor	n																					
Contact:	accounts payable			Email 2																ω ν							
	Project Inform	ation		Oi	I and Gas Requir	ed Fields (client	use)]		z										Number of Containers							
ALS Quote #:	Q63821			Approver ID:		Cost Center:		Olsen	_	and Nitrate+Nitrite-N	_									onta							
Job #:	17M-00008-01			GL Account:		Routing Code:		ō	combustion	N.	extraction		e							Ŭ							
PO / AFE:				Activity Code:				به ا	inqu	trate	extra		Pb, Zn							Jer C							
LSD:				Location:				hate		Ū.	water	Ĕ	N, P							Ë							
ALS Lab We	ork Order # (lab use only)			ALS Contact:	Judy D	Sampler:	Brian Moons	Available Phosphate-P	Total nitrogen by	Nitrie	1:2 soil:wa	le potassium	Cr, Cu, P	CVAFS						z							
ALS Sample # (lab use only)	· ·		and/or Coordinates appear on the report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Availab	Total ni	Nitrate,	pH by 1	Available	As, Cd,	Hg by C													
	. W001 0-15				22Aug.1	9.00	Soil	R	R	R	R	R	R	R						2							
	W001 15-60				10	9:00	Soil		R	R				 					-	1							
	W002 0-15					10:07	Soil	R	R	R	R	R	R	R					-	2							
	W002 15-60					10:00	Soil		R	R									+	1							
	W003 0-15					10:20	Soil	R	R	R	R	R	R	R				_	+	2							
	W003 15-60					10:20	Soil		R	R										1							
	W004 0-15					10:15	Soil	R	R	R	R	R	R	R					+	2							
	W004 15-60					10:45	Soil	-	R	R									-	1							
								<u> </u>											+								
	· · ·	•	17																-								
								<u> </u>					_														
Drinkin	g Water (DW) Samples ¹ (client		Spacial In	etructions / Spec	ify Criteria to add	n report (client Li					SAMPI	MPLE CONDITION AS RECEIVED (lab use only							ly)								
			opecial in			Sin report (chefit ()		Froze	en					SIF C)bserv	ations	Y	es	No								
ר י די		17							acks ng Initi			No		Custo	ody se	al inta	ct Y	′es 🗖	No								
	r human drinking water use?									OLER	TEMPE	ATURE	S°C		F	NAL CO	OLER	TEMPER	RATURES	°C							
ר <u>ה</u>							_	MZ	-9																		
Det	SHIPMENT RELEASE (clie	nt use)			HIPMENT RECEI					· · · · · · · · · · · · · · · · · · ·	FIN	AL SH	PMEN	NT RE	CEP	TION (I	ab us	e only)									
Released by:	Moor 2017	-08-2	Time: 14:5	ed by:	AQ	Date: AUG 22/17	Time: 2:55	Rece	eived b	y:					Date		Т	ime:									
	K PAGE FOR ALS LOCATIONS A	ND SAMPLI	NG INFORMATION		WH	ITE LABORATOR	RY COPY YEI		CLIEN					4	,	IA-FM-0328e	VOS Fronts	04 January 201	•								

c pag ероп сору